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Rényi entropies Sn are evaluated for a single interval using the two point function of bosonic

twist fields on a torus. For the case of the compact boson, the sum over the classical saddle

points results in the Riemann-Siegel theta function associated with the An−1 lattice. We
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4.1 Bosons 26

4.2 Fermions 27

5 Finite size corrections from holography 29

5.1 One-loop corrections: bosons 33

5.2 One loop corrections: fermions 34

5.3 Discussion 36

6 Conclusions 36

A Jacobi theta functions 38

B Evaluating W 1
1 and W 2

2 39

C One-loop determinant for the Chern-Simons gauge field 46

D Sums involving 2-letter words 47

1 Introduction

Entanglement entropy is emerging as an important observable to characterize behaviour of

quantum field theories and many body theories. In condensed matter physics entanglement

entropy is used as an order parameter to characterize quantum phase transitions [1].1 It is

also useful as a measure of thermalization in non-equilibrium statistical mechanics [3]. En-

tanglement entropy is defined as follows [4–6]: first partition the complete set of observables

1See [2] for a complete list of references for the application of entanglement entropy to many body physics.
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of the quantum systems into two disjoint Hilbert spaces A and its complement B. Define

the reduced density matrix ρA by tracing over the observables in B. Then entanglement

entropy between the observables in the two Hilbert spaces is defined by

SE = Tr(ρA ln ρA). (1.1)

In quantum field theories usually the Hilbert spaces A refers to the degrees of freedom in

a spatial region A. Evaluation of entanglement entropy is usually done by computing the

Rényi entropies which are defined as

Sn = − 1

n− 1
ln Tr(ρnA) . (1.2)

Then entanglement entropy is then derived as the limit SE = limn→1 Sn.

Though entanglement entropy has proved to be an useful observable, it is difficult to

compute even in the case of free theories. In 1 + 1 dimensional conformal field theories if A

denotes a single interval of length L, the evaluation of Rényi entropies can be done exactly

using the replica trick [6–9]. The Rényi entropies Sn are determined by evaluating the

partition function of the CFT on a n Riemann sheets joined consecutively and cyclically

along the interval A. In general these Riemann sheets form a higher genus surface. This

can then be shown to be equivalent to evaluating the two point function of the ‘twist’

operator of dimension

∆n = ∆̄n =
c

24

(
n− 1

n

)
, (1.3)

inserted at the end points of the interval. Here c refers to the central charge of the CFT.

We therefore obtain

exp(−(n− 1)Sn(A)) = 〈Tn(L)T̄n(0)〉, (1.4)

=
( a
L

)4∆n

where Tn is the twist operator and a the cut-off. We have normalized the two point

functions to unity. Change in this normalization just leads to a non-universal constant.

Thus the Rényi entropies for a single interval are given by

Sn(A) =
c(n+ 1)

6n
ln
L

a
. (1.5)

Though these are evaluated for an integer n, the resulting expression is assumed to be

analytic in n and the entanglement entropy is obtained in the n→ 1 limit. Note that the

only information Rényi entropies of a single interval carry about the conformal field theory

is its central charge.

There are two possible methods to obtain more information regarding the details of

the CFT using Rényi entropies. One is to generalize the subsystem A to multiple in-

tervals [10–13]. The other is to consider the CFT on a circle of radius R and at finite

temperature T , that is the CFT is on a torus. Rényi entropies for CFT’s on tori contain

finite size corrections which are suppressed by O(e−πRT ) in the high temperature expan-

sion compared to the result in (1.5). These depend on the details of the CFT. In this
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regard, the only known analytical result for Rényi entropies is the case of free fermions on

the torus [14, 15]. In this paper we generalize this to the case of a free complex boson on

the torus.2 Rényi entropies corresponding to a single interval is evaluated by using the two

point function of the bosonic twist operators on the torus. These two point functions can

be evaluated by the ‘stress-tensor method’ [17–19] (see also [20]). As far as we are aware

this is the first instance of an application of the bosonic twist correlators on the torus. The

Rényi entropies, Sn consists of two contributions one due to the quantum part of the two

point function and the other due to the various saddle points of the classical action. For a

boson compactified on a spacetime square torus of size R and for a rectangular worldsheet

torus we show that the contribution of the classical saddle points to the two point function

reduces to the Riemann-Seigel theta function associated with the An−1 lattice. For the

interested reader the result is given in (2.89). The compact free boson CFT describes a

class of 1 + 1 dimensional condensed matter systems called Luttinger liquids. Examples of

these are Heisenberg spin chains and 1-dimensional Bose gases with repulsive interactions.

At the conformal point they can be described by compact bosons but with different radius

R. Therefore our result is relevant for all these systems.

We then study the de-compactification regime in detail. The result for the Rényi

entropies in this regime is given in (3.2). We first show that when the size of the interval

L approaches the size of the circle R, the entanglement entropy S1 reduces to the thermal

entropy of a complex boson on a circle. This serves a simple check of our result. We then

set up a systematic high temperature expansion of the Rényi entropies and obtain the

leading finite size corrections.

The second goal of this paper is to compare the finite size corrections for both the free

boson theory and for the free fermion theory to that obtained from holography. Though

entanglement entropy is a difficult quantity to evaluate in field theories, there is a very

simple proposal by Ryu and Takanayagi to evaluate it in strongly coupled field theories

which admit a gravitational dual [21, 22]. Recently for the case of conformal field theories

in 2 dimensions which admit a gravitational dual, the Ryu-Takanayagi proposal has been

derived from the conventional rules of AdS/CFT [23]. This derivation has been extended

to higher dimensions in [24]. Recall that Rényi entropies are determined by evaluating the

partition function of the CFT on a n-sheeted Riemann surface. The n-sheets are joined

consecutively and cyclically along the interval A. From the rules of AdS/CFT we obtain

Zn(CFT ) = exp (−(n− 1)Sn(A)(CFT )) =

∫
D[g]e−S[g], (1.6)

= exp

(
cSclassical + S1-loop +O

(
1

c

))
where g refers to all fields which occur in the bulk action. The path integral over g is done

over bulk geometries whose boundaries reduce to the n-sheeted Riemann surface which on

which the CFT lives. Sclassical is obtained by evaluating the classical action on these bulk

geometries. c is the central charge which is related to the inverse of the three dimensional

2Numerical results for the entanglement entropy of the massive scalar in 1+1 dimensions were obtained

in [16].
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Newton’s constant. S1-loop refers to the one-loop contribution on performing the path

integral. Explicit bulk duals of CFT’s living on the replica geometry which in general is a

higher genus Riemann surface were constructed in [23]. These bulk duals are handlebody

geometries which can be constructed by realizing the higher genus Riemann surface at

the boundary using Schottky uniformization [25]. The partition function of the CFT is

evaluated holographically by computing the path integral in (1.6). Using the equality

in (1.6) the leading contribution of the Rényi entropies at large c can be obtained by

evaluating Sclassical. In the n→ 1 limit it has been shown to reduce to the Ryu-Takanayagi

prescription.

Using this approach a method to obtain one-loop corrections to the Rényi entropies as

well as the Ryu-Takanayagi formula has been proposed in [26].3 The proposal has been ver-

ified upto the 6th order in the short interval expansion of the Renyi entropy of two disjoint

intervals on a plane in [29]. This proposal also predicts finite size corrections to the Rényi

entropies of a single interval on a torus. Determining the 1-loop corrections S1-loop involves

evaluating one-loop determinants of all the fields present in the bulk handlebody geome-

tries. One loop determinants in these handlebody geometries have been evaluated in [31]

following a conjecture by [30]. The one-loop determinants are sensitive to only the quan-

tum numbers of the spectrum of the fields in the bulk. That is, given the spin and the mass

of the bulk field, the one-loop determinant is completely specified. One-loop determinants

are in-sensitive to interactions. In fact the determinant organizes itself into characters of

the Virasoro algebra as expected from symmetry considerations Further more the 1-loop

contribution is independent of the central charge of the theory. In fact when the bulk ge-

ometry is thermal AdS3 which is dual to the CFT on a genus one surface, it has been seen

that the 1-loop determinant of a single field in the bulk organizes it self into Virasoro blocks

and is equal to the partition function of the dual field in the CFT [31, 35–37]. Note that

the dual operator is also entirely determined by the quantum numbers of the corresponding

field in the bulk. Thus we expect the contribution to the finite size corrections of the Rényi

entropies from the 1-loop determinant of a single U(1) l Chern-Simons should capture the

leading finite size corrections of the Rényi entropies of single boson. The Chern-Simons

field in the bulk is dual to currents with conformal dimensions (1, 0) and (0, 1) which are

the physical degrees of freedom of a free boson CFT. Similarly we expect the leading

contribution to the finite size corrections of the Rényi entropies from the 1-loop determi-

nant of a single Dirac field to be captured by the free fermions with conformal dimensions

(1/2, 0) and (0, 1/2). It is important to note that the classical action Sclassical also contains

finite size corrections to Rényi entropies. We will see that these finite size corrections are

sub-leading in e−πRT when compared to that from the one loop determinants for both the

Chern-Simons field as well as the Dirac field in the bulk. These finite size corrections also

do not contribute to the entanglement entropy as they vanish in the n→ 1 limit.4

3An alternate method to evaluate one loop corrections has been proposed by [27] for higher dimensions.

This has been verified recently for the case of 3 dimensional CFT’s in [28].
4The finite size contributions to the Rényi entropies from the 1-loop determinant of the graviton in the

bulk begins at the same order in e−πRT as the finite size contributions from Sclassical. Therefore in this case

the leading finite size corrections cannot be obtained just from S1-loop.
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Motivated by these arguments we evaluate the leading finite size corrections obtained

by considering the one loop determinant of the Chern-Simons gauge field in the handlebody

geometries. We show that these corrections agree precisely with the leading finite size cor-

rections for the case of free bosons on the torus. We also compare the finite size corrections

obtained by considering the one loop determinant of the Dirac field on the handle body

geometries and obtain precise agreement with the leading finite size corrections for the case

of free fermions on the torus. We consider these agreements as a non-trivial check of the

method proposed in [26].

The organization of the paper is as follows. In the next section we derive the Rényi

entropies of a free compact boson for a single interval on a torus. We detail the necessary

methods from the theory of Zn orbifolds for this purpose. In section 3 we discuss the

decompactification regime in detail and show that in the limit when the size of the interval

becomes the size of the CFT spatial circle the entanglement entropy reduces to the thermal

entropy of bosons on a circle. In section 4 we write down the leading finite size corrections

to Rényi entropies for free bosons on the torus and for the free fermions in the high

temperature expansion. The result for the free fermions has been derived earlier in [14]

and we review it here for completeness. In section 5 we evaluate finite size corrections

to Rényi entropies in the bulk handlebody geometries using the method proposed in [26].

We show that finite size corrections obtained by considering one-loop determinants of

the Chern-Simons gauge field and the Dirac field agree precisely with the leading finite

corrections obtained for the free boson and free fermion CFT. Finally, section 6 contains our

conclusions. Appendix A contains details of conventions we use for Jacobi-theta functions.

Appendix B derives various identities for integrals of cut differentials used in the main text.

Appendix C contains the evaluation of the one-loop determinant of the Chern-Simons gauge

field in AdS3. Appendix D derives certain sums which are used for evaluating the one-loop

determinants in handlebody geometries.

2 Bosonic twist correlators on the torus

The replica trick reduces the evaluation of the Renyi entropy for a single interval in 1 + 1

CFT’s to the computation of the two point function of twist fields. The CFT of interest

is the free complex boson CFT in 1 + 1 dimensions, the complex boson is compactified on

square torus of radius R. It obeys the boundary conditions

φ(e2πiz, e−2πiz̄) = φ(z, z̄) + R(m1 + im2), (2.1)

The system is of finite size and is kept at finite temperature β. Let φi with i = 0, 1, · · · , n−1

label the replica copies. To diagonalize the action of the cyclic permutation of the copies

we consider the following linear combinations

φ̃k =

n−1∑
j=0

e2πij k
nφj , k = 0, · · ·n− 1. (2.2)

φ̃k is multiplied by the phase e2πi k
n as one moves around the twist operator. The boundary

conditions in (2.1) also need to be imposed on φ̃k. Thus we obtain the following boundary
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conditions on φ̃k

φ̃k(e
2πiz, e−2πiz̄) = e2πi k

n φ̃k(z, z̄) + R

n−1∑
j=0

e2πij k
n (mj,1 + imj,2). (2.3)

Thus φ̃k is compactified on the lattice Λ k
n

which is defined as

Λ k
n
≡

q = R

n−1∑
j=0

e
2πikj
n (mj,1 + imj,2); mj,1,mj,2 ∈ Z

 . (2.4)

We now split φ̃k into the classical and the quantum part as φ̃k = φ̃quk + φ̃clk . The two point

function of the twist fields then splits into the a contribution from the quantum part and

the sum over classical saddle points. The classical part obeys the boundary condition

φ̃clk (e2πiz, e−2πiz̄) = e2πi k
n φ̃clk (z, z̄) + v, (2.5)

where v is a vector in the lattice Λ k
n

. The quantum part obeys the boundary condition

φ̃quk (e2πiz, e−2πiz̄) = e2πi k
n φ̃quk (z, z̄). (2.6)

Let σk,n be the twist field which responsible for the boundary condition in (2.3) and σ̄k,n
the anti-twist field. Let the two point function of these operators on the torus be given by

Zk,n = 〈σk,n(z1, z̄1)σ̄k,n(z2, z̄2)〉. (2.7)

Then the Rényi entropy on the torus is given by

exp((1− n)Sn) =

n−1∏
k=0

Zk,n =

n−1∏
k=0

〈σk,n(z1, z̄1)σ̄k,n(z2, z̄2)〉. (2.8)

From this discussion, we see that the first task is to evaluate the two point function of

the twist operators on the torus. This has been done in [18] and for the n = 2 case by [19].

To make our discussion self contained and simplified we review the procedure to evaluate

this two point function. To un-clutter the notation, let the complex boson be denoted by

X. Then the steps to obtain the two point function are as follows.

1. We first write down the Greens functions

g(z, w; zi, z̄i) ≡
1

Zk,n
〈−∂zX∂wX̄σk,n(z1, z̄1)σ̄k,n(z2, z̄2)〉, (2.9)

h(z̄, w; zi, z̄i) ≡
1

Zk,n
〈−∂z̄X∂wX̄σk,n(z1, z̄1)σ̄k,n(z2, z̄2)〉.

where zi, i = 1, 2 are the two points at which the twist operators are inserted. These

correlators are determined using the behaviour as z, w approach the points at which

the twist fields are inserted and monodromy conditions.

– 6 –
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2. The monodromy conditions are given as follows. First split the X into a classical

piece and a quantum fluctuation

X = Xcl +Xqu. (2.10)

When integrated over closed loops over the two cycles of the torus the quantum piece

does not change, that is

∆γaXqu =

∮
γa

dz∂zXqu +

∮
γa

dz̄∂z̄Xqu = 0. (2.11)

Here γa, a = 1, 2 are the two cycles of the torus. The classical part obeys

∆γaXcl =

∮
γa

dz∂zXcl +

∮
γa

dz̄∂z̄Xcl = va, (2.12)

where va is related to a translation on the compact torus Λ k
n

, which will be specified

subsequently.

3. The Green’s functions g(z, w; zi, z̄i), h(z̄, w; zi, z̄i) are written down which obey the

monodromy conditions and have the right singularity structure when z, w approaches

the twist insertions zi, z̄i. Then we obtain the expectation value of the stress tensor

by taking the following limit

〈T (z)〉 = lim
ω→z

(
g(z, w)− 1

(z − w)2

)
. (2.13)

4. The OPE of the stress tensor with the primary field φ of weight hφ is given by

T (z)φ(w, w̄) ∼
hφ

(z − w)2
φ(w, w̄) +

1

(z − w)
∂wφ(w, w̄). (2.14)

Using this OPE we can obtain the following set of differential equations for the two

point function contribution from the quantum part Zquk,n.

∂zi lnZquk,n = lim
z→zi

(
(z − zi)〈T (z)〉 − h

(z − zi)

)
, (2.15)

where

h =
1

2

k

n

(
1− k

n

)
, (2.16)

is the weight of the twist field. This can be repeated and a similar set of differential

equations can be obtained by considering the OPE of the anti-holomorphic stress

tensor T̄ (z̄) with the twist fields.

5. Solving these differential equations result in the quantum part of the two point func-

tion Zquk,n.

– 7 –
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6. The classical part of the two point function is obtained by considering the classical

solutions ∂zXcl, ∂z̄Xcl which satisfy the monodromy conditions given in (2.11). We

then evaluate the classical action given by

Scl(Xcl, Xcl) =
1

4π

∫
d2z(∂zX∂z̄X̄ + ∂z̄X∂zX̄). (2.17)

7. The full two point function is then given by summing over all the classical solutions

Z = Zquk,n

∑
〈Xcl〉

e−Scl . (2.18)

2.1 Quantum contribution

In this subsection we construct the quantum contribution Zquk,n of the two point function of

the twist operators. We begin with writing down the the Green’s function g and h which

satisfy the required conditions. To do this we write down the cut differential for 〈∂zX〉,
where the expectation value is taken in presence of the twist operators. The twist operator

is located at z1 while the anti-twist operator is located at z2. This is given by

ω1(z) = ϑ1(z − z1)−(1−k/n)ϑ1(z − z2)−k/nϑ1(z − (1− k/n)z1 − (k/n)z2). (2.19)

Here z1 is the location of the twist operator and z2 is the location of the anti-twist operator.

Note that these cut differentials are doubly periodic, that is they are periodic under z →
z + 1 and z → z + τ where τ is the modular parameter of the torus. They also have the

required behaviour

lim
z→z1
〈∂zX〉 ∼ (z − z1)−(1− k

n
) + · · · , (2.20)

lim
z→z2
〈∂zX〉 ∼ (z − z2)−k/n + · · · .

We also have the cut differential for 〈∂zX̄〉 which is given by

ω2(z) = ϑ1(z − z1)−k/nϑ1(z − z2)−(1−k/n)ϑ1

(
z − k

n
z1 −

(
1− k

n

)
z2

)
. (2.21)

Again this differential is doubly periodic, and it has the required behaviour

lim
z→z1
〈∂z̄X〉 ∼ (z − z1)−k/n + · · · , (2.22)

lim
z→z2
〈∂z̄X〉 ∼ (z − z2)−(1−k/n) + · · · .

The cut differentials for 〈∂z̄X〉 is given by the complex conjugate

ω̄2(z̄) = ϑ1(z̄ − z̄1)−k/nϑ1(z̄ − z̄2)−(1−k/n)ϑ1

(
z̄ − k

n
z̄1 −

(
1− k

n

)
z̄2

)
. (2.23)

This is again doubly periodic and has the behaviour

lim
z̄→z̄1
〈∂z̄X〉 ∼ (z̄ − z̄1)−k/n + · · · , (2.24)

lim
z̄→z̄1
〈∂z̄X〉 ∼ (z̄ − z̄2)−(1−k/n) + · · · .

– 8 –
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Similarly the cut differential for 〈∂z̄X̄〉 is given by

ω̄1(z̄) = ϑ1(z̄ − z̄1)−(1−k/n)ϑ1(z̄ − z̄2)−k/nϑ1

(
z̄ −

(
1− k

n

)
z̄1 −

k

n
z̄2

)
. (2.25)

This has the behaviour

lim
z̄→z̄1
〈∂z̄X〉 ∼ (z̄ − z̄1)−(1−k/n) + · · · , (2.26)

lim
z̄→z̄1
〈∂z̄X〉 ∼ (z̄ − z̄2)−k/n + · · · .

Let us also define

γ1−k/n = ϑ1(z − z1)−(1−k/n)ϑ1(z − z2)−k/n), (2.27)

γk/n = ϑ1(z − z1)−k/nϑ1(z − z2)−(1−k/n),

Y1 = −
(

1− k

n

)
(z1 − z2),

Y2 =
k

n
(z1 − z2) ,

to un-clutter our expressions.

We can now write down the Green’s functions.

g(z, w) = gs(z, w) +Aω1(z)ω2(w), (2.28)

h(z, w) = Bω̄2(z̄)ω2(w).

A,B will be determined by the monodromy conditions given in (2.11). gs contains the

double pole in the respective Green’s function and is given by

gs(z, w) = γ1−k/n(z)γk/n(w)

(
ϑ′1(0)

ϑ1(z − w)

)2

P (z, w), (2.29)

where

P (z, w) =
k

N
F1(z, w)ϑ1(w − z1)ϑ(z − z2) +

(
1− k

N

)
F2(z, w)ϑ1(w − z2)ϑ(z − z1),

F1(z, w) =
ϑ1(z − w + U1)

ϑ1(U1)

ϑ1(z − w + Y1 − U1)

ϑ1(Y1 − U1)
, (2.30)

F2(z, w) =
ϑ1(z − w + U2)

ϑ1(U2)

ϑ1(z − w + Y2 − U2)

ϑ1(Y2 − U2)
.

Note that gs(z, w), P (z, w) is doubly periodic and gs has a double pole at z = w with

coefficient 1. U1, U2 are determined by the requirement that the single pole is absent in

gs when z → w. After some simple algebra it is easy see from the construction of P (z, w)

that this requirement is satisfied if F1 and F2 obey the conditions

∂zF1(z, w)|z=w = 0, ∂zF2(z, w)|z=w = 0. (2.31)
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This leads to the equations

ϑ′1(U1)

ϑ1(U1)
+
ϑ′1(Y1 − U1)

ϑ1(Y1 − U1)
= 0, (2.32)

ϑ′1(U2)

ϑ1(U2)
+
ϑ′1(Y2 − U2)

ϑ1(Y2 − U2)
= 0.

Note that l.h.s. of each equation is a doubly periodic meromorphic function of U1, U2

respectively. There is a simple pole at U1 = 0 and Y1 − U1 = 0 for the first l.h.s. of the

first equation. Similarly l.h.s. of the second equation has a simple pole at U2 = 0 and

Y2 − U2 = 0. Therefore each of these functions has two zeros say at U
(0)
1 and Y1 − U (0)

1

and similarly for the second function. We will choose U1 = U
(0)
1 and U2 = U

(0)
2 . Then the

equations in (2.32) are satisfied identically. We will not need the explicit solution U
(0)
i or

even the explicit form of P (z, w) for evaluating the quantum part of the two point function.

From the constraints on P (z, w) imposed by the fact that gs(z, w) has a double pole with

coefficient 1 and no single pole, it is easy to see that P (z, w) obeys the following equation

γ1−k/n(w)γk/n(w)

(
∂

∂z

∂

∂w
P (z, w)|z=w +

∂2

∂z2
P (z, w)|z=w

)
=

(
1− k

n

)
ϑ′′1(w − z1)

ϑ1(w − z1)
+
k

n

ϑ′′1(w − z2)

ϑ1(w − z2)
+
ϑ′1(w − z1)ϑ′1(w − z2)

ϑ1(w − z1)ϑ1(w − z2)
. (2.33)

We now determined A,B from the monodromy conditions given in (2.11). We define the

following integrals along the two cycles of the torus.

W 1
1 =

∫
γ1
dzω1(z), W 2

1 =

∫
γ1
dz̄ω̄2(z̄), (2.34)

W 1
2 =

∫
γ2
dzω1(z), W 2

2 =

∫
γ2
dz̄ω̄2(z̄).

Then the equations (2.11) reduce to

Aω2(w)W 1
1 +Bω2(w)W 2

1 = −
∫
γ1
dzgs(z, w), (2.35)

Aω2(ω)W 1
2 +Bω2(w)W 2

2 = −
∫
γ2
dzgs(z, w).

The solution for A,B are given by

Aω2(w) = − 1

|W |

(
W 2

2

∫
γ1
dzgs(z, w)−W 2

1

∫
γ2
dzgs(z, w)

)
, (2.36)

Bω2(w) = − 1

|W |

(
W 1

1

∫
γ2
dzgs(z, w)−W 1

2

∫
γ1
dzgs(z, w)

)
,

|W | = W 1
1W

2
2 −W 1

2W
2
1 .

Note that these are just functions of w. Therefore the Greens’ functions are

g(z, w) = gs(z, w)− ω1(z)
1

|W |

(
W 2

2

∫
γ1
dygs(y, w)−W 2

1

∫
γ2
dygs(y, w)

)
,

h(z̄, w) = −ω̄2(z̄)
1

|W |

(
W 1

1

∫
γ2
dygs(y, w)−W 1

2

∫
γ1
dygs(y, w)

)
. (2.37)
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We proceed to the second stage and obtain the stress tensor. Taking the limit given

in (2.13) and using the identity (2.33) we obtain

〈T (z)〉 =
1

2

[
k

n

ϑ′1(z − z1)

ϑ′1(z − z1)
+

(
1− k

n

)
ϑ′1(z − z2)

ϑ′1(z − z2)

] [(
1− k

n

)
ϑ′1(z − z1)

ϑ1(z − z1)
+
k

n

ϑ′1(z − z2)

ϑ′1(z − z2)

]
− 1

2
γ1− k

n
(z)γk(z)

∂

∂z

∂

∂w
P (z, w)|w=z −

1

3

ϑ′′′1 (0)

ϑ′1(0)

− ω1(z)
1

|W |

(
W 2

2

∫
γ1
dy gs(y, z)−W 2

1

∫
γ2
dy gs(y, z)

)
. (2.38)

We now obtain differential equations for the quantum part of the two point function using

the identity in (2.15). A similar set of differential equations can be obtained by considering

the expectation value of the anti-holomorphic stress tensor in the presence of the twist

fields. We will examine the differential equation for ∂z1 lnZquk,n. Taking the limit in (2.15)

we obtain

∂z1 lnZquk,n =
1

2

((k
n

)2
+
(

1− k

n

)2
)
θ′1(z1 − z2)

θ1(z1 − z2)
(2.39)

− 1

2θ′1(0)

1

ϑ1(z1 − z2)

∂

∂z

∂

∂w
P (z, w)|z=w=z1

− 1

|W |

(
W 2

2

∫
γ1
dzω1(z)Λ(z)−W 2

1

∫
γ2
dzω1(z)Λ(z)

)
,

where

Λ(z) = lim
w→z1

(
ω1(w)

γ1−k/n(w)

)
γ1−k/n(z)

ω1(z)

ϑ′1(0)P (z, z1)

ϑ2
1(z − z1)ϑ1(z1 − z2)

. (2.40)

We will now rewrite Λ in terms of the cut differential ω1. To do this we use the form

of P (z, w) given in (2.30) and the equations (2.32) to Taylor expand P (z, z1) about z1

and obtain

lim
z→z1

Λ(z) ∼ 1− k/n
z − z1

(2.41)

It is easy to see that this is also the leading singularity of the function f(z) =

ω1(z)−1∂z1ω1(z). The functions Λ(z) and f(z) are meromorphic doubly periodic func-

tions which agree at their poles. Therefore their difference must be a constant. Thus we

have the equation

ω1(z)Λ(z) = ∂z1ω1 + Sω1(z) (2.42)

To obtain S, we examine the behaviour of the of Λ(z)− (ω1(z))−1∂z1ω1(z) as z → z1. This

results in

S =
∂2
zP (z, z1)|z=z1

2ϑ′1(0)ϑ1(z1 − z2)
. (2.43)

We now substitute (2.42) and use the identity (2.33) to write the differential equation for

the two point correlator as

∂z1Z
qu
k,n = − 1

|W |
(W 2

2 ∂z1W
1
1 −W 2

2 ∂z1W
1
2 ) + ∂z1 ln

[
ϑ1(z1 − z2)−(1−k/n)k/n

]
. (2.44)
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Note that the first term can be rewritten as

− 1

|W |
(W 2

2 ∂z1W
1
1 −W 2

2 ∂z1W
1
2 ) = −∂z1 ln |W |. (2.45)

This is because the integrals W 2
2 ,W

1
2 depend on anti-holomorphic coordinates. Using this

input, and integrating the differential equation we obtain

Zquk,n = f(τ, k/n, z2, z̄1, z̄2)|W |−1
(
ϑ1(z1 − z2)−(1−k/n)k/n

)
. (2.46)

One can use the similar procedure to obtain a differential equation for z2 and also for

the anti-holomorphic coordinates z̄1, z̄2 by considering the expectation value of the the

anti-holomorphic stress tensor 〈T̄ (z̄)〉. This leads to

Zquk,n = f(τ, k/n)|W |−1ϑ1(z1 − z2)−(1−k/n)k/nϑ1(z1 − z2)
−(1−k/n)k/n

. (2.47)

The normalization f can be determined by demanding that in the limit z1 → z2, the two

point function is normalized to one. It is easy to see that in this limit the integrals reduce to

W 1
1 →

∫ 1

0
dz = 1, W 2

2 →
∫ τ

0
dz̄ = τ, (2.48)

W 1
2 →

∫ τ̄

0
dz = τ̄ , W 2

1 →
∫ 1

0
dz̄ = 1.

Note that we are taking the cycle γ2 to be such that z̄ runs from 0 to τ , which implies z

runs from 0 to τ̄ . Therefore |W | → 2iτ2 where τ2 is the imaginary part of the modulus of

the torus. Using this argument we have

Zquk,n =
2iτ2

|W |

(
ϑ′1(0)

ϑ1(z1 − z2)

)(1−k/n)k/n
(

ϑ′1(0)

ϑ1(z1 − z2)

)(1−k/n)k/n

. (2.49)

The quantum contribution of the Ashkin-Teller model [19] can be recovered from the above

expression by setting k/n = 1/2.

2.2 Classical contribution

In this sub-section we will evaluate the classical contribution due to the various saddle

points of the action. These saddle points exist when the complex boson is compactified on

a torus. Consider the torus to be a square torus of radius R+ iR. Then the twisted sector

boundary conditions for classical solutions is of the form

Xcl(e
2πiz, e−2πiz̄) = e2πik/nXcl(z, z̄) + v, (2.50)

where v is a vector related to translations in the lattice Λ k
n

which will be specified precisely

subsequently. These boundary conditions give rise to the following monodromy conditions.∮
γa

dz ∂zXcl +

∮
γa

dz̄ ∂z̄Xcl = va (a = 1, 2)∮
γa

dz ∂zX̄cl +

∮
γa

dz̄ ∂z̄X̄cl = v̄a. (2.51)
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The subscript a denotes the two cycles of the worldsheet torus. The classical action is

given by

Scl[X, X̄] =
1

4π

∫
D
d2z (∂zXcl∂z̄X̄cl + ∂z̄Xcl∂zX̄cl). (2.52)

We now have to evaluate the classical action given below for solutions satisfying the bound-

ary conditions in (2.51). The domain of integration D will be specified below. The classical

solutions to the equations of motion can also be written in terms of the cut differentials.

They are given by

∂zXcl(z) = aω1(z), ∂z̄Xcl(z̄) = bω̄2(z̄),

∂zX̄cl(z) = ãω2(z), ∂z̄X̄cl(z̄) = b̃ω̄1(z̄). (2.53)

Note that these solutions satisfy the required holomorphic/anti-holomorphic conditions

and the singularity properties near the twist operators. Substituting (2.53) in (2.51) we

get the following system of equations.(
W 1

1 W 2
1

W 2
1 W 2

2

)(
a

b

)
=

(
v1

v2

)
,

(
W̄ 2

1 W̄ 1
1

W̄ 2
2 W̄ 1

2

)(
ã

b̃

)
=

(
v̄1

v̄2

)
. (2.54)

We have defined the integrals of the cut differentials on the cycles of the worldsheet torus

in (2.34). The solutions for a, b, ã, b̃ are as follows

a =
W 2

2 v1 −W 2
1 v2

|W |
, b =

−W 1
2 v1 +W 1

1 v2

|W |
,

ã =
W̄ 1

1 v̄2 − W̄ 1
2 v̄1

|W̄ |
, b̃ =

W̄ 2
2 v̄1 − W̄ 2

1 v̄2

|W̄ |
. (2.55)

Substituting these in the solutions (2.53) and then evaluating the action (2.52) we encounter

the following area integrals.

I1 =

∫
d2z|ω1|2, I2 =

∫
d2z|ω2|2. (2.56)

To perform these integrals we use the method developed in [19] and [18]. Let us focus on

the integral I1. The area integral is carried out over the shaded domain d shown in figure 1.

In this domain, there exists an analytic function f(z)

f(z) =

∫ z

z0

dt ω1(z), (2.57)

such that df(z) = ω1(z). Substituting this in the expression for I1 we obtain

I1 =
1

2i

∫
dz ∧ d̄z ∂

∂z
(f(z)ω̄1(z̄)). (2.58)

We can now use Green’s theorem to write the area integral as an integral over the contour

whose boundary is the usual parallelogram representing the torus along with the thin
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Figure 1. Simply connected domain of the area integral.

neck as shown in the figure 1. The integral along the cuts vanishes. This is because the

combination f(z)ω̄1(z) does not jump across the cut. The simplest way to see this is to

take z0 = z1 and then one sees that the monodromy of ω1(z) cancels that of ω̄1(z). Thus

the integral I1 can be written as

I1 =
1

2i
(W̄ 1

1W
1
2 −W 1

1 W̄
1
2 ). (2.59)

With a similar analysis we can show that

I2 =
1

2i
(W 2

1 W̄
2
2 − W̄ 2

1W
2
2 ). (2.60)

Now substituting these results in the classical action we obtain

Scl =
1

4π det(W ) det(W̄ )

(
|v1|2Im(W 2

2W
1
2 det(W̄ )) + |v2|2Im(W 2

1W
1
1 det(W̄ ))

. − (v1v̄2 + v̄1v2)Im(W 1
2W

2
1 det(W̄ ))

)
. (2.61)

We will further simplify the classical action as well as the quantum contribution Zquk,n after

we examine the integrals of the cut differentials.

2.3 Integrals of the cut differentials

There are four integrals of the cut differentials along the two cycles of the worldsheet torus.

To simplify the integrals further we choose the points of insertions of the twist and the

anti-twist operators to be at z1 = y and z2 = 1− y (where 0 ≤ y ≤ 1
2) as shown in figure 2.

We will also choose the modular parameter of the worldsheet torus to be purely imaginary,

that is

τ = iβ. (2.62)
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Figure 2. Fundamental domain of the torus lattice showing the location of the interval.

From now onwards in this paper we will work with these choices. Then the following

properties of these integrals can be shown5

(W 1
1 )∗ = W 2

1 , (W 1
1 )∗ = W 1

1 , (W 1
2 )∗ = −W 1

2 , (W 1
2 )∗ = W 2

2 . (2.63)

These identities imply that

• W 1
1 and W 2

1 are purely real.

• W 1
2 and W 2

2 are purely imaginary.

• det(W ) and det(W̄ ) are purely imaginary. det(W ) = 2i Im(W 1
1W

2
2 ).

Thus it is sufficient to examine the integrals W 1
1 and W 2

2 . An important result which

emerges during the proof of these relations is that the integral along the cut vanishes∫ 1−y

y
dz ω1(z) = 0. (2.64)

Thus the contribution of the W 1
1 integral arises only from the intervals [0, y] and [1− y, 1].

Therefore we can write

W 1
1 =

∫ y

0
dz ω1(z) +

∫ y

1−y
dz ω1(z). (2.65)

Let us define

L = 1− 2y, (2.66)

the separation between the two insertions of the twist operator. We will also keep track

of the dependence of the integrals on the interval L and the modular parameter of the

worldsheet torus τ . The integrals along the two cycles are related by the following equation

W 2
2 (L, τ) = τW 1

1 (−L, τ). (2.67)

5See appendix B for the proofs.
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It can be seen from term by term expansion of W 1
1 that

W 1
1 (L, τ) = W 1

1 (−L, τ). (2.68)

Therefore we have

W 2
2 (L, τ) = τW 1

1 (L, τ). (2.69)

Using modular transformation we can obtain the high temperature expansions of the inte-

gral W 2
2 from the relation

W 2
2 (L, τ) = τe

iπL2

τ
k
n

(1− k
n

)W 1
1 (L/τ,−1/τ). (2.70)

Once the high temperature expansion of W 2
2 is known, the high temperature expansion of

W 1
1 can be obtained by the relation (2.69). All these relations are systematically proved

in appendix B. The high-temperature expansion of W 2
2 is derived in appendix B and is

given by

W 2
2 (L, τ)k,n

= ie
π
β
k
n (1− k

n )L2

β

×
[
1− 2

n2

(
−k2+kn cosh

(
2πL(n− k)

nβ

)
+(k − n)

(
k cosh

(
2πL

β

)
−n cosh

(
2πkL

nβ

))
+kn−n2

)
q2

+
1

2n4

(
2n

(
3(k − n)

(
k2 − kn+ 2n2

)
cosh

(
2πkL

n

)
+k

(
−3
(
k2−kn+2n2

)
cosh

(
2πL(n−k)

n

)
− (k−2n)(k−n) cosh

(
2πL(k+n)

n

)
+(k − n)(k + n) cosh

(
2πL(k − 2n)

n

)))
−4k(k − n)

(
k2 − kn+ 4n2

)
cosh

(
2πL

β

)
+ 3

(
k4 − 2k3n+ 7k2n2 − 6kn3 + 4n4

)
+k(k − n)(k + n)(k − 2n) cosh

(
4πL

β

))
q4 +O(q6)

]
. (2.71)

The high temperature expansion of W 1
1 can then be obtained by the relation in (2.69).

2.4 Rényi entropies of a compact boson

We are now ready to put the results together to obtain the Rényi entropies for a compact

boson. The classical action in (2.61) simplifies on using the reality conditions to the

following

Scl =
1

4πIm(det(W ))

(
|v1W

2
2 |2 + |v2W

1
1 |2
)
, (2.72)

We can now use the relation between W 1
1 and W 2

2 given in (2.69) to reduce the classical

action to

Scl =
1

8πτ2

(
|v1|2|τ |2 + |v2|2

)
. (2.73)

Thus Scl is independent of the interval. This simplification is the result of the choice of the

interval which is along one cycle of the torus as well as the fact that the spacetime torus
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is square and the worldsheet torus is rectangular. The lattice translations v1 and v2 are

given as follows [10, 17]

vj =
(

1− e
2πik
n

)
ξj , (2.74)

and ξj is a general lattice vector in Λ k
n

. This lattice is defined as follows

Λ k
n
≡

q = R

n−1∑
j=0

e
2πikj
n (mj,1 + imj,2); mj,1,mj,2 ∈ Z

 . (2.75)

Note that we are working with a square torus of radius R and this lattice results because

of the Fourier transformation involved from the replica fields to the eigenbasis in which the

shifts between replicas are represented by multiplication the phases e
2πik
n as given in (2.2).

Thus we can write

ξp = R

n−1∑
j=0

e
2πikj
n

(
m

(p)
j,1 + im

(p)
j,2

)
. (2.76)

The superscript (p) labels the two cycles of the worldsheet torus directions along which the

monodromies are evaluated. The rest of the analysis proceeds similar to the analysis done

in [10]. We have

|ξp|2 = R2

∑
q=1,2

[m(p)
q ]t · Ck/n ·m(p)

q +

n−1∑
r,s=0

(m
(p)
r,1m

(p)
s,2 −m

(p)
s,1m

(p)
r,2)(Sk/n)rs

 . (2.77)

Here, m
(p)
q ∈ Z and

(Ck/n)rs ≡ cos

[
2π
k

n
(r − s)

]
, (Sk/n)rs ≡

[
2π
k

n
(r − s)

]
. (2.78)

The classical action (2.73) can be written in terms of ξp as

Scl =
sin2(πkn )

2πτ2

(
|ξ1|2|τ |2 + |ξ2|2

)
. (2.79)

Thus the classical configurations are labelled by the integers m
(p)
j and we have to sum over

these classical configurations. The contribution of the sum over classical configurations to

the two point functions of the twist operator is therefore given by

Zcl =
n−1∏
k=0

Zclk,n,

=

[ ∑
m∈Zn

n−1∏
k=0

exp
{
−

(1 + |τ |2) sin2(πkn )

2πτ2
mt · Ck/n ·m

}]2

,

=

[ ∑
m∈Zn

exp
{
iπ[mt · Ω ·m]

}]2

(2.80)
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where we have defined

Ωrs =
i(1 + |τ |2)R2

2πτ2

n−1∑
k=0

sin2

(
πk

n

)
cos

(
2πk

n
(r − s)

)
, (2.81)

where the indices r and s run over 1, 2, · · · , n. The sum in (2.80) is however divergent since

Ω has a zero eigenvalue. Following [10], we can absorb this divergence in the normalization

factor. Essentially this leads to fact that r, s run from 1, 2, · · ·n − 1. Thus the partition

function can be written in terms of the Riemann-Siegel function as

Zcl = [Θ(0|ηΓ)]2 . (2.82)

Here

Θ(0|ηΓ) =
∑

m∈Zn−1

exp(iπmt · Γ ·m), η =
i

2

n(1 + |τ |2)

2πτ2
R2, (2.83)

and

Γrs =
4

n

n−1∑
k=1

sin2

(
πk

n

)
cos

(
2πk

n
(r − s)

)
= 2

(
δr,s −

1

2
δr,s+1 −

1

2
δr,s−1

)
. (2.84)

and r, s run from 1, 2, · · ·n−1. The above sparse matrix corresponds the Cartan matrix of

SU(n). The Riemann-Siegel function is then the partition function of the An−1 root lattice.

This can be conveniently expressed as the ϑ3-series [32]. The Riemann-Siegel function for

the matrix Γ given by (2.84) is thus given by

Θ(0|ηΓ) =

∑n−2
k=0 ϑ3( k

n−1 |η)n−1

(n− 1)ϑ3(0|(n− 1)η)
. (2.85)

The classical part (2.82) upto a normalization reduces to

Zcl =

[ ∑n−2
k=0 ϑ3( k

n−1 |η)n−1

(n− 1)ϑ3(0|(n− 1)η)

]2

. (2.86)

It can be easily seen from the above that in the decompactification regime R→∞, Zcl = 1.

The fact that we obtain the Riemann-Siegel theta function corresponding to the An−1

root lattice is a result of our special choice of the moduli. We have chosen a rectangular

worldsheet torus as well as a square spacetime lattice. Furthermore the cut — that is the

location of the twist operators — is along the spatial cycle of the torus. Due to these

choices we obtained several simplifications of the integrals of the cut differentials which

lead to the Riemann-Siegel theta function associated with An−1. For a generic choice of

the torus moduli or the location of the twist operators we do not expect this simplification.
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The full partition function

We can now write the full partition function taking contributions from the quantum (2.49)

and classical parts (2.82)

Z[n] =

n−1∏
k=0

2iτ2|W (k, n)|−1

(
ϑ1(z2 − z1|τ)

ϑ′1(0|τ)

ϑ1(z2 − z1|τ)

ϑ′1(0|τ)

)− k
n

(1− k
n

)


×

[ ∑n−2
k=0 ϑ3( k

n−1 |η)n−1

(n− 1)ϑ3(0|(n− 1)η)

]2

. (2.87)

The Rényi entropy can be derived from the above by using

Sn =
1

1− n
(logZ[n]− n logZ[1]) . (2.88)

Here, Z[1] is the CFT partition function on the original spacetime (i.e. a torus in our case)

and Z[n] is the partition function on the Zn orbifolded cover. Using the above expression

for Z[n] (and W (0, 1) = 2τ for any z2 − z1, which is shown in (B.6)), we can evaluate the

Rényi entropy to be

Sn =
1

1− n
log

∣∣∣∣∣
n−1∏
k=0

∣∣∣W (k, n)

2τ

∣∣∣−1
(
ϑ1(z2 − z1)

ϑ′1(0)

ϑ1(z2 − z1)

ϑ′1(0)

)− k
n

(1− k
n

)
∣∣∣∣∣

+
1

1− n
log

∣∣∣∣∣
[ ∑n−2

k=0 ϑ3( k
n−1 |η)n−1

(n− 1)ϑ3(0|(n− 1)η)

]2∣∣∣∣∣. (2.89)

We have thus obtained an exact analytical expression for the Rényi entropies of the free

boson on the torus. It will be interesting to study this expression in detail and especially

explore the dependence on the radius R. Compact bosons are related to several c = 1

statistical mechanical systems at criticality. Our result will be relevant to these systems.

3 Rényi entropies for a non-compact boson

For the rest of the paper we will study the Rényi entropies in the decompactification limit.

In the R→∞ only the quantum part contributes to the partition function. Therefore the

full partition function (2.87) reduces to

Z[n] =

n−1∏
k=0

∣∣∣W (k, n)

2τ

∣∣∣−1
(
ϑ1(z2 − z1)

ϑ′1(0)

ϑ1(z2 − z1)

ϑ′1(0)

)− k
n

(1− k
n

)
 . (3.1)

The Rényi entropy (2.89) is this regime is

Sn =− 1

1− n

n−1∑
k=0

k

n

(
1− k

n

)
log
∣∣∣ϑ1(z2 − z1)ϑ1(z2 − z1)

ϑ′1(0)2

∣∣∣− 1

1− n

n−1∑
k=0

log

∣∣∣∣∣W (k, n)

2τ

∣∣∣∣∣.
(3.2)
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Figure 3. (Left) Plots of the n = 2 Rényi entropies at β = 0.3, 0.5, 0.7 and 0.9. (Right) Plots of

the n = 2, 3, 4 and 5 Rényi entropies at β = 0.6.
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Figure 4. Plot of Rényi entropy extrapolated to n→ 1 at β = 0.3, 0.5, 0.7 and 0.9.

3.1 Plots

Although we have arrived at an expression for the Rényi entropy, the answer hides two

integrals (B.2) involving ϑ-functions. As shown in appendix B, these integrals can be

performed in the high temperature or the low temperature expansion and analytical answers

for the Rényi entropies can be obtained. However to get a picture of the behaviour of the

Rényi entropy as the function of the interval size and the temperature it is useful to evaluate

the integrals numerically and then plot the results.

In figure 3 we have plotted the n = 2 Rényi entropies at four different temperatures.

It can be seen that as the temperature increases the curve shifts higher. Also, the Rényi

entropies for n = 2, 3, 4 and 5 are plotted for β = 0.6. These plots are similar to those

obtained for the case of fermions on the torus [14, 15]. We have also numerically extrapo-

lated the answers for the Rényi entropies (n = 2, 3, · · · , 10) at four different temperatures

to n → 1 and obtained the entanglement entropy. The plot is shown the figure 4. Note

that for all these plots we have set the cut-off to unity.

As it can be seen the plots, the Rényi or entanglement entropy increases with rise in

temperature. This can be reasoned as follows: increasing the temperature makes the system

accessible to more excited states and thereby increases the Hilbert space we are tracing
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over. The peak at around L = 1 is the result of the fact that at this point the entanglement

entropy reduces to the thermal entropy which we now explore in the next subsection.

3.2 Thermal entropy from entanglement entropy

It is known that the entanglement entropy reduces to the thermal entropy when the size of

the interval equals the length of the full spatial circle. Since there are no partial traces to

perform, it is then given by the usual density matrix ρ = e−βH

Z . The entanglement entropy

is then

SE = lim
n→1

S(A)
n = − ∂

∂n
log(Tr(ρn))

∣∣∣
n=1

= − ∂

∂n

(
log(Tr(e−nβH))− n logZ

) ∣∣∣
n=1

= β〈H〉+ logZ = β(E − F ) = Sthermal, (3.3)

here ‘Tr’ indicates not the partial trace but the trace over the full Hilbert space of states.

In this section we shall calculate the entanglement entropy in this limit and verify that it

does match with the thermal entropy. A similar check for the case of fermions on the torus

was done in [14].

Entanglement entropy in the limit y → 0

Let’s define

S1 = − 1

1− n

n−1∑
k=0

k

n

(
1− k

n

)
log
∣∣∣ϑ1(z2 − z1)ϑ1(z2 − z1)

ϑ′1(0)2

∣∣∣,
=
n+ 1

6n
log
∣∣∣ϑ1(z2 − z1)

ϑ′1(0)2

∣∣∣2, (3.4)

S2 = − 1

1− n

n−1∑
k=0

log

∣∣∣∣∣W (k, n)

2τ

∣∣∣∣∣. (3.5)

It follows from these definitions that Sn = S1 + S2. We shall take the limit y → 0 in

which the length of the interval (L = 1− 2y) equals the size of the full spatial circle or the

system size (see figure 2). We can then extract the finite part of the entanglement entropy

as follows

Sfinite(L→ 1) = S(1− ε)− S(ε). (3.6)

In this section, the interval length is denoted as L and the full spatial circle (R) is taken

to be unity.

From (3.4) it can be seen that S1 captures the universal piece of the entanglement

entropy for n→ 1. The high-temperature expansion for S1 can be obtained by performing
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a S-modular transformation τ → −1/τ in equation (3.4)

S1(L)

∣∣∣∣∣
n=1

=
2

3
log
∣∣∣ϑ1(L|τ)

2πη(τ)3

∣∣∣, (3.7)

=
2

3
log
∣∣∣(−iτ)e−πL

2/β ϑ1(Lτ | −
1
τ )

2πη(− 1
τ )3

∣∣∣,
=

2

3
log
∣∣∣ β
2π

sinh

(
πL

β

)
e−πL

2/β
∣∣∣

+
2

3
log
∣∣∣ ∞∏
m=1

(1− e−2πm/β)(1− e−2πLm/βe−2πm/β)(1− e2πLm/βe−2πm/β)

(1− e−2πm/β)3

∣∣∣.
In both the limits L→ 1− ε and L→ ε this becomes

S1(1− ε or ε)

∣∣∣∣∣
n=1

=
2

3
log ε. (3.8)

So, there is no contribution from (S1(1−ε)−S1(ε))|n=1 to the finite part of the entanglement

entropy (3.6)

For S2 we have

S2(L) = − 1

1− n

n−1∑
k=0

log
∣∣∣W (k, n)

2τ

∣∣∣, (3.9)

with det(W ) = 2i Im(W 1
1W

2
2 ). The integrals of W 1

1 and W 2
2 in the limit y → 0 are evaluated

in appendix B. We get the following from (B.50) and (B.51).

W 1
1 =

ϑ1(− k
n)

ϑ′1(0)
, W 2

2 = τ
ϑ1(− k

n)

ϑ′1(0)
. (3.10)

det(W (k, n)) = 2τ
∣∣∣ϑ1( kn)

ϑ′1(0)

∣∣∣2. (3.11)

The expression for S2(1) then becomes

S2(1) = − 1

1− n

n−1∑
k=0

log
∣∣∣ϑ1( kn)

ϑ′1(0)

∣∣∣2. (3.12)

Since we are interested in the entanglement entropy, we take the n→ 1 limit of the above

expression.

S2(1)

∣∣∣∣∣
n=1

=
−1

1− n
log
∣∣∣ n−1∏
k=0

(
ϑ1(k/n)

ϑ′1(0)

) ∣∣∣2∣∣∣∣∣
n=1

,

=
∂

∂n

n−1∑
k=0

log
∣∣∣ϑ1(k/n)

ϑ′1(0)

∣∣∣2∣∣∣∣∣
n=1

. (3.13)
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On performing a S-modular transformation, since we are interested in the high temperature

expansion we get

S2(1)

∣∣∣∣∣
n=1

= 2
∂

∂n

n−1∑
k=0

log
∣∣∣ϑ1( k

nτ | −
1
τ )

ϑ′1(0| − 1
τ )

∣∣∣∣∣∣∣∣
n=1

+
∂

∂n

n−1∑
k=0

(
−2πik2

n2τ

) ∣∣∣∣∣
n=1

,

= − π

3β
+ 2

∂

∂n

n−1∑
k=0

log
∣∣∣ϑ1( k

nτ | −
1
τ )

ϑ′1(0| − 1
τ )

∣∣∣∣∣∣∣∣
n=1

. (3.14)

Let us now consider the second term above

s2 = 2
∂

∂n

n−1∑
k=0

log
∣∣∣ϑ1( k

nτ | −
1
τ )

ϑ′1(0| − 1
τ )

∣∣∣∣∣∣∣∣
n=1

, (3.15)

= 2∂n

n−1∑
k=0

log
∣∣∣ sinh

(
πk

nβ

) ∞∏
m=1

(1− e
2πk
nβ e

− 2πm
β )(1− e−

2πk
nβ e

− 2πm
β )

(1− e−
2πm
β )2

∣∣∣∣∣∣∣∣
n=1

,

= 2∂n

n−1∑
k=0

log
∣∣∣ sinh

(
πk

nβ

) ∣∣∣+ 2∂n

n−1∑
k=0

log
∣∣∣ ∞∏
m=1

(1− e
2πk
nβ e

− 2πm
β )(1− e−

2πk
nβ e

− 2πm
β )

(1− e−
2πm
β )2

∣∣∣∣∣∣∣∣
n=1

.

The second term in the last line of the above equation can be written as

−8∂n

n−1∑
k=0

∞∑
m=1

∞∑
l=1

1

l
e−2πml/β sinh2

(
πkl

nβ

) ∣∣∣∣∣
n=1

. (3.16)

Performing the sums over m and k we get

− 8∂n

∞∑
l=1

1

l

e−2πl/β

1− e−2πl/β

1

4

(
sinh( πlβn(2n− 1))

sinh( πlβn)
− 2n+ 1

)∣∣∣∣∣
n=1

,

=4

∞∑
l=1

1

l

e−2πl/β

1− e−2πl/β

(
1− πl

β
cot

(
πl

β

))
. (3.17)

Therefore, the final expression for S2 in the n→ 1 limit is given by

S2(1)

∣∣∣∣∣
n=1

= − π

3β
+2∂n

n−1∑
k=0

log
∣∣∣ sinh

(
πk

nβ

) ∣∣∣∣∣∣∣∣
n=1

+4

∞∑
l=1

1

l

e−2πl/β

1−e−2πl/β

(
1−πl

β
cot

(
πl

β

))
,

= − π

3β
+

(
π

β
− 4π

β

∞∑
l=1

1

e2πl/(nβ) − 1

)
+4

∞∑
l=1

1

l

e−2πl/β

1− e−2πl/β

(
1−πl

β
cot

(
πl

β

))
,

=
2π

3β
− 4π

β

∞∑
l=1

1

e2πl/(nβ) − 1
+ 4

∞∑
l=1

1

l

e−2πl/β

1− e−2πl/β

(
1− πl

β
cot

(
πl

β

))
. (3.18)

It can be checked that for L = ε we have W (k, n) = τ = W (0, 1). Therefore, S2(ε) is zero

from (3.9).

Thus, the finite contribution to the entanglement entropy (3.6) at L→ 1 is

Sfinite(L→ 1) =
2π

3β
− 4π

β

∞∑
l=1

1

e2πl/(nβ)−1
+ 4

∞∑
l=1

1

l

1

e2πl/β−1

(
1−πl

β
cot

(
πl

β

))
. (3.19)
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Thermal entropy of free bosons on a torus

We shall now calculate the thermal entropy for free bosons on a circle at finite temperature

and verify whether it matches with (3.19). For a free complex boson on a circle the

contribution to the partition function from the oscillator modes is given by [33]

Zosc =
1

|η(τ)|4
. (3.20)

On performing a modular transformation we get

Zosc = β−2e
π
3β

∞∏
n=1

∣∣∣1− e−2πn
β

∣∣∣−4
. (3.21)

In addition to the oscillator modes we also need to take into consideration the contribution

from the zero modes or the momenta. The contribution of these modes to the partition

function is given by

Zkin =

[∫ ∞
−∞

dp1dp2e
−β(p21+p22)

]2

=

(
2π

β

)2

. (3.22)

The full partition function is then given as a product

Z = ZoscZkin. (3.23)

The thermal entropy can therefore be calculated as follows

S = β2∂β(−β−1 logZ),

=
2π

3β
− 4

∞∑
n=1

log
∣∣∣1− e−2πn

β

∣∣∣− 8π

β

∞∑
n=1

n

e2πn/β − 1
. (3.24)

The above expression matches with (3.19). This can be seen from the following identities
∞∑
l=0

1

l

1

1− e−2πlβ
= −

∞∑
n=0

log
∣∣∣1− e−2πn/β

∣∣∣,
∞∑
l=1

1

e2πl/β − 1
cot

(
πl

β

)
= 2

∞∑
m=1

m

e2πm/β − 1
−
∞∑
m=1

1

e2πm/β − 1
.

This verifies the claim that the entanglement entropy reduces to the thermal entropy in

the limit of the interval size equalling the size of the full spatial circle.

4 Finite size corrections to Rényi entropies

In this section we set up a high temperature expansion of the Rényi entropies in order to

extract finite size corrections to the universal part. We first do this for bosons and then

for then for the fermions. Let’s define the following6

Sn = S
(n)
1 + S

(n)
2 ,

S
(n)
1 = − 1

1−n

n−1∑
k=0

k

n

(
1− k

n

)
log
∣∣∣ϑ1(z2−z1)ϑ1(z2−z1)

ϑ′1(0)2

∣∣∣ =
n+1

6n
log
∣∣∣ϑ1(z2−z1)

ϑ′1(0)

∣∣∣2, (4.1)

6These are same definitions as in (3.4) but with the extra (n) superscript.
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S
(n)
2 = − 1

1− n

n−1∑
k=0

log
∣∣∣W (k, n)

2τ

∣∣∣. (4.2)

In order to evaluate the entanglement entropy we should take the n→ 1 limit of the above.

We get

S
(1)
1 =

2

3
log
∣∣∣ϑ1(z2 − z1)

ϑ′1(0)

∣∣∣, (4.3)

S
(1)
2 = ∂n

(
n−1∑
k=0

log
∣∣∣W (k, n)

2τ

∣∣∣) ∣∣∣∣∣
n=1

. (4.4)

High temperature expansions of Rényi and entanglement entropies

We are now interested in the high-temperature expansion. We shall retain just the leading

order terms which will facilitate the comparison with the holographic computation. The

high-temperature expansion of W 2
2 (k, n) is obtained in (4.7). The interval of length L(=

1 − 2y) is now defined by z1 = y = 1−L
2 and z2 = 1 − y = 1+L

2 . The expressions for the

Rényi and entanglement entropy are

S
(n)
1 =

n+ 1

3n
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∞∏
m=1

(1− e2πL/βqm)(1− e−2πL/βqm)

(1− qm)2

∣∣∣, (4.5)

=
n+ 1

3n
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∣∣∣− n+ 1

3n

∞∑
m=1

∞∑
l=1

qml

l
4 sinh2

(
πLl

β

)
,

=
n+ 1

3n
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∣∣∣− 4(n+ 1)

3n
e−2πT sinh2 (πLT ) +O(e−4πT ),

S
(1)
1 =

2

3
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∣∣∣− 8

3
e−2πT sinh2 (πLT ) +O(e−4πT ). (4.6)

Now using the fact that det(W ) = 2iIm(W 1
1W

2
2 ) and W 2

2 = τW 1
1 as shown in appendix B)

we obtain

S
(n)
2 = − 1

1− n

( ∞∑
k=0

log |W 1
1 (k, n)|+

∞∑
k=0

log
∣∣∣W 2

2 (k, n)

β

∣∣∣) ,
= − 1

1− n

(
2

∞∑
k=0

log
∣∣∣W 2

2 (k, n)

β

∣∣∣) , (4.7)

S
(1)
2 = ∂n

(
2

∞∑
k=0

log
∣∣∣W 2

2 (k, n)

β

∣∣∣) . (4.8)

The expression for W 2
2 is given by

W 2
2 =

∫ τ

0
dz̄

ϑ1(z̄ − 1
2 −

L
2 + kL

N )

ϑ1(z̄ − 1
2 + L

2 )k/nϑ1(z̄ − 1
2 −

L
2 )1−k/n . (4.9)

The high temperature expansion of the above integral (in powers of e−2πT ) is given in

appendix B in equation (B.47). We can then do the sum over k, take the logarithm and
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take the limit n→ 1 to obtain the following quantities

n−1∑
k=1

log
∣∣∣W 2

2 (k, n)

β

∣∣∣ =
π(n2 − 1)L2

6β

+

[
2

(
n− sinh2(πL/β)

n sinh2(πL/(nβ))

)
+

2(n2 − 1)

3n
sinh2(πL/β)

]
e−2π/β

+O(e−4π/β), (4.10)

∂n

n−1∑
k=1

log
∣∣∣W 2

2 (k, n)

β

∣∣∣ =
πL2

3β
+

[
10

3
+

2

3
cosh(2πL/β)− 4πLT coth(πL/β)

]
e−2π/β

+O(e−4π/β). (4.11)

4.1 Bosons

In this sub-section we put together the high temperature expansions of S
(n)
1 and S

(n)
2 to

obtain the Rényi entropies. From (4.1) and (4.6) we have the following7

S
(n)
1 =

n+ 1

3n
log
∣∣∣ R
πT

e−πTL
2/R sinh (πLT )

∣∣∣− 4(n+ 1)

3
e−2πTR sinh2 (πLT )

+O(e−4πTR), (4.12)

S
(1)
1 =

2

3
log
∣∣∣ R
πT

e−πTL
2/R sinh (πLT )

∣∣∣− 8

3
e−2πTR sinh2 (πLT ) +O(e−4πTR). (4.13)

Substituting (4.10) and (4.11) in (4.7) and (4.8) we get

S
(n)
2 =

π(n+ 1)L2

3β
+ 2

[
2

n− 1

(
n− sinh2(πLT )

n sinh2(πLT/n)

)
+

2(n+ 1)

3n
sinh2(πLT )

]
e−2πTR

+O(e−4πTR), (4.14)

S
(1)
2 =

2πTL2

3R
+ 2

[
10

3
+

2

3
cosh(2πLT )− 4πLT coth(πLT )

]
e−2πTR +O(e−4πTR)

=
2πTL2

3R
+

8

3
sinh2(πLT )e−2πTR + 8 [1− πLT coth(πLT )] e−2πTR +O(e−4πTR).

(4.15)

By adding the two parts above we get the Rényi/entanglement entropy to be

Sn =
n+ 1

3n
log
∣∣∣ R
πT

sinh (πLT )
∣∣∣+

4

n− 1

[
n− sinh2(πLT )

n sinh2(πLT/n)

]
e−2πRT +O(e−4πTR),

(4.16)

SE =
2

3
log
∣∣∣ R
πT

sinh (πLT )
∣∣∣+ 8 [1− πLT coth(πLT )] e−2πTR +O(e−4πTR). (4.17)

7So far we had been working in units where the length of the spatial circle R is set to unity. We shall

now restore R by L→ L/R and β → β/R.
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One can keep track of terms upto any arbitrary order in e−2πTR. The expression for the

entanglement entropy upto O(e−6πTR) is

SE =
2

3
log
∣∣∣ R
πT

sinh (πLT )
∣∣∣+ 8 [1− πLT coth(πLT )] e−2πTR

+

(
49

5
+

14

15
cosh(2πLT ) +

4

15
cosh(4πLT )− 21

2
πLT csch(πLT )sech(πLT )

− 1

2
sech2(πLT )− 6πLT sinh(2πLT )sech2(πLT )

+
1

2
πLT tanh(πLT )sech2(πLT )

)
e−4πTR +O(e−6πTR). (4.18)

The low temperature expansion of the Rényi and entanglement entropies can be obtained

directly starting from the low temperature expansions of the twist correlators and the

integrals of the cut differentials or by the following replacements in (4.16) and (4.18)

R→ i

T
, T → − i

R
. (4.19)

These replacements implement the modular transformation relating the low and high tem-

perature expansions. The derivative of the Rényi entropy in the limit n → 1 is universal

in a zero temperature CFT and is proportional to the central charge [34]. However we

see that for a finite temperature finite size system of free bosons the derivative of Rényi

entropy is given by

S′n

∣∣∣
n→1

=− 1

3
log
∣∣∣ R
πT

sinh(πLT )
∣∣∣

− 4e−2πTR
(

1 + 2π2L2T 2 + πLT
(
3πLT csch2(πLT )− 4 coth(πLT )

) )
+O(e−4πTR). (4.20)

Therefore there are finite size corrections to this universal property of the Rényi entropy.8

4.2 Fermions

We would like to consider the entanglement entropy of fermions on a circle and then check

whether the finite size corrections can be reproduced by one-loop calculations in the bulk.

The entanglement and Rényi entropies were calculated in [14, 15]. We quote the answers

here. The high temperature expansion of the Rényi entropy is given by

S(n) = S
(n)
1 + S

(n)
2 (4.21)

S
(n)
1 =

n+ 1

6n
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∞∏
m=1

(1− e2πL/βqm)(1− e−2πL/βqm)

(1− qm)2

∣∣∣ (4.22)

S
(n)
2 =

n+ 1

6n

πL2

β
− 2

1− n

∞∑
j=1

(−1)νj

j

1

sinh(πj/β)

(
sinh(πjL)

sinh(πjL/(nβ))
− n

)
(4.23)

8We thank Aninda Sinha for raising this point.
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where ν(= 1, 2, 3, 4) denotes the spin structure. We shall work with ν = 2 or (R,NS)

fermions, which has the boundary conditions

ψ(z + 1) = ψ(z) , ψ(z + τ) = −ψ(z) .

To a first few leading orders the Rényi entropy is

S(n) =
n+ 1

6n
log
∣∣∣ R
πT

sinh

(
πL

β

) ∣∣∣− 2(n+ 1)

3n
e−2πRT sinh2(πLT )

− 4

1− n

(
sinh(πL)

sinh(πLT/n)
− n

)
e−πRT − 2

1− n

(
sinh(2πL)

sinh(2πLT/n)
− n

)
e−2πRT

+O(e−3πRT ) . (4.24)

The EE given as the sum SE = S1 + S2.

S1 =
1

3
log
∣∣∣β
π
e−πL

2/β sinh

(
πL

β

) ∞∏
m=1

(1− e2πL/βqm)(1− e−2πL/βqm)

(1− qm)2

∣∣∣ (4.25)

here, q = e2π/β. The leading order behaviour at high-temperatures is then (the circumfer-

ence of the circle R is restored)

S1 =
1

3
log
∣∣∣ R
πT

sinh

(
πL

β

) ∣∣∣− πTL2

3R
− 4

3
e−2πRT sinh2(πLT ) +O(e−3πRT ) . (4.26)

The expression for S2 is as follows

S2 =
πTL2

3R
− 2

∞∑
i=1

1

l

[
1− πLl

β
coth

(
πLl

β

)]
1

sinh
(
πl
β

) . (4.27)

The leading order behaviour of S2 is

S2 =
πTL2

3R
− 4 [1− πLT coth (πLT )] e−πRT − 2 [1− 2πLT coth (2πLT )] e−2πRT

+O(e−3πRT ) . (4.28)

Thus, the entanglement entropy at the first few leading orders at high-temperatures is

SE =
1

3
log
∣∣∣ R
πT

sinh

(
πL

β

) ∣∣∣− 4 [1− πLT coth (πLT )] e−πRT

− 2 [1− 2πLT coth (2πLT )] e−2πRT − 4

3
e−2πRT sinh2(πLT ) +O(e−3πRT ) . (4.29)

Note that just as in the case of bosons, the low temperature expansions for the fermions

can be obtained by the replacements given in equation (4.19) in the expressions for the

Rényi entropies and entanglement entropies (4.24) and (4.29).

In the next section we shall show that the leading order one-loop corrections calcu-

lated from the bulk exactly reproduce these finite size corrections in (4.16), (4.18), (4.24)

and (4.29).
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5 Finite size corrections from holography

As mentioned before, in order to evaluate the Rényi entropies we use the replica trick

which involves finding the partition function Zn on the n-sheeted cover or a Riemann

surface Σ = C/Γ with genus g. In the dual gravitational theory, we need to evaluate the

partition function on a quotient AdS3/Γ which has Σ as its conformal boundary [23, 24, 26].

It was shown in [26] that in order to obtain the one-loop contribution from the bulk we need

to find the Schottky uniformization of the corresponding branched cover (Σ = C/Γ) and

then calculate the one-loop partition function in the bulk quotient AdS3/Γ. In this section

we shall first review the setup for the computation developed in [26] and then utilize it

to calculate the one-loop corrections to the entanglement entropy for bosons and fermions

from the bulk.

Holographic computation of Rényi entropies for one interval on a torus

Since we are interested in a system at finite temperature we require to Euclideanize the

temporal direction with a period having the inverse temperature. The spatial direction is

also periodic. This gives a torus with two different periodicities. If z is the coordinate on

the torus we then have the following doubly-periodic identifications

z → z +RZ +
iZ
T
. (5.1)

Note that this identification is invariant under the exchange

R→ i

T
, T → − i

R
.

This property turns out to be useful while obtaining high-temperature expansions from

low-temperature ones (and vice-versa) of modular invariant quantities.

Our first task is to find the discrete group Γ by which we can form AdS3/Γ which has

Σ = C/Γ as its conformal boundary. Every compact Riemann surface (Σ) can be obtained

as C/Γ with Γ being the Schottky group. The Schottky group is a discrete sub-group of

PSL(2,C). For of a genus g Riemann surface, it is generated by g loxodromic generators,

Li where i = 1, 2, · · · , g. It was shown in [26] that for the case of the torus the differential

equation for Schottky uniformization is

ψ′′(z) +
1

2

2∑
i=1

(
∆℘(z − zi) + γ(−1)i+1ζ(z − zi) + δ

)
ψ(z) = 0. (5.2)

where γ is the accessory parameter, ∆ = 1
2(1− 1

n2 ), ℘ is the Weierstrass elliptic function and

ζ is the Weierstrass zeta function. The generators of the Schottky group can be obtained

by solving the monodromy problem of the solutions ψ of the above equation. This will be

outlined below.

The derivative of the entanglement entropy is given in terms of accessory parameter as

∂SE
∂zi

= − lim
n→1

cn

6(n− 1)
γi. (5.3)
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Classical result

In order to obtain the classical contribution we need to find the accessory parameter in the

torus differential equation (5.2) and then use (5.3). Expanding in ε(≡ n− 1)

ψ(z) = ψ(0) + εψ(1) , ∆ = ε , γ = εγ(1) , δ = −(πT )2 + εδ(1). (5.4)

The zeroth and first order solutions are obtained as

ψ(0)(z) = AezπT +Be−zπT , (5.5)

ψ(1)(z) =
e−zπT

2πT

∫ z

0
exπTm(x)ψ(0)(x)dx− ezπT

2πT

∫ z

0
e−xπTm(x)ψ(0)(x)dx, (5.6)

where

m(z) =
1

2

2∑
i=1

(
∆℘(z − zi) + γ(1)(−1)i+1ζ(z − zi) + δ(1)

)
. (5.7)

By demanding that the first order solution has trivial monodromy around the time circle,

one can find the value of the accessory parameter to be

γ(1) = 2πT cothπT (z2 − z1). (5.8)

Using (5.3) we get the entanglement entropy

SE =
c

6
log
∣∣∣ sinh2 πT (z2 − z1)

∣∣∣+ const. (5.9)

One-loop corrections

One-loop determinants on quotients of AdS3 have been obtained in [31]. The steps followed

in order to obtain the one-loop corrections to the entanglement entropy is as follows.

1. The Schottky group Γ corresponding to n-sheeted cover is found. This is done by

solving the monodromy problem and then finding the loxodromic generators Li of

the group.

2. The set of representatives of the primitive conjugacy classes (γ ∈ P) of Γ are then

found by forming non-repeated words from the Li and their inverses upto conjugation

in Γ.

3. Largest eigenvalues of the words (qγ) in each primitive conjugacy class γ are then

computed and substituted into the expressions for the one-loop determinants. We

then sum over all primitive conjugacy classes

logZ[n]
∣∣∣
one-loop

=
∑
γ∈P

logZ(qγ). (5.10)

where Z(q) is the one loop determinant of the bulk fields in thermal AdS3 with

modular parameter q.
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4. The one-loop correction to the Rényi entropy can found using

Sn

∣∣∣
one-loop

=
1

1− n

(
logZ[n]

∣∣∣
one-loop

− n logZ[1]
∣∣∣
one-loop

)
. (5.11)

The correction to the entanglement entropy is then obtained by taking the n→ 1 of

the above answer.

We shall choose the interval as [−y, y] i.e. the length of the interval is L = 2y. We

shall calculate the one-loop correction in the high-temperature limit. We define a new

coordinate u as

u ≡ e−2πTz (5.12)

Defining uy = e2πTy, uR = e2πTR and f(u) = u+ u−1 we can write the Weierstrass elliptic

function as

℘(z ± y) =
∞∑

m=−∞

4π2T 2

f(uu±1
y umR )

−
∑
m6=0

4π2T 2

f(umR )
+
π2T 2

3
, (5.13)

and a similar expression for ζ(z ± y).

The torus differential equation is then solved for one spatial period −R/2 ≥ Re z ≥
R/2. The ansatz for the solutions is taken as

ψ± =
1√
u

(u− uy)∆±

(
u− 1

uy

)∆∓ ∞∑
m=−∞

ψ±(m)(uy, uR)um, (5.14)

where ∆± = 1
2(1 ± 1

n) and the solutions are normalized as ψ±(0) = 1. The coefficients

ψ±(m) are then expanded in a power series in uR in the following form

ψ±(m)(uy, uR) =
∞∑

k=|m|

ψ±(m,k)(uy)u
k
R. (5.15)

The differential equation (5.2) is then expanded in u and uR. The coefficients ψ±(m,k) can

then be determined. Also one can obtain γ and δ upto any order in uR

γ = πT (1 + u2
y)

[
1− n2

n2(u2
y − 1)

+
(n2 − 1)2(u2

y − 1)3

6n4u4
y

u2
R +O(u4

R)

]
, (5.16)

δ =
π2T 2

n2(u2
y − 1)

{1

6

[
(n2 − 1)(u2

y + 1) log(uy)− (7n2 − 1)(u2
y − 1)

]
+O(u2

R)
}
. (5.17)

The classical Rényi entropy can then be obtained using (5.3)

Sn =
c(n+ 1)

12n

[
log sinh2(2πTy)+const.− (n2 − 1)

6n2
[cosh(8πTy)− 4 cosh(4πTy)] e−4πTR

]
.

(5.18)
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The solutions to the first few orders in uR is

ψ+(u) =
1√
u

(u− uy)∆+

(
u− 1

uy

)∆−
[

1 +
(n2 − 1)(u2

y − 1)2u2
R

24n3u2u3
y

×

u((n+ 1)u2 + n− 1)u2
y + u((n− 1)u2 + n+ 1)− n(u4 + 1)uy +O(u3

R)

]
. (5.19)

The solution for ψ− is same as the above with u→ 1/u. The monodromy matrices, L1 can

then be found by (
ψ+(u/uR)

ψ−(u/uR)

)
= L1

(
ψ+(u)

ψ−(u)

)
. (5.20)

To the lowest few orders we get matrix elements to be

(L1)11 =
nu

1−1/n
y

(1− u2
y)
√
uR

{
1−

[(n+ 1)u2
y + n− 1]2

4n2u2
y

+O(u2
R)

}

(L1)11 =
nuy

(1− u2
y)
√
uR

{
1−

[(n+ 1)u2
y + n− 1][(n+ 1)u2

y + n+ 1]

4n2u2
y

+O(u2
R)

}
(L1)21 = −(L1)12 , (L1)22 = (L1)11|n→n. (5.21)

The other Schottky generators Li, i = 2, 3, · · · , n can be obtained by conjugating L1 by

M2 around z2 = y

Li = M i−1
2 L1M

−(i−1)
2 , M2 =

(
e2πi∆+ 0

0 e2πi∆−

)
. (5.22)

Words of length k can then be constructed as follows

Lσ1k1L
σ2
k2
· · ·Lσmkm =

[
nuy

(1− u2
y)
√
uR

]m m−1∏
j=1

σj

(
u
−σj/n
y − e2πi(kj−kj+1)/nu

σj+1/n
y

)
×

(
σmu

−σm/n
y σme

2πikm/n

−σme−2πik1/mu
(σ1−σm)/n
y −σme2πi(km−k1)/nu

σσ1/n
y

)
+O(u

−m/2+1
R ). (5.23)

here j = 1, 2, · · · ,m and σj = ±1. The larger eigenvalue of the above word can then be

found out to be

q−1/2
γ =

[
nuy

(1− u2
y)
√
uR

]m ∞∏
j=1

σj

(
u
−σj/n
y − e2πi(kj−kj+1)/nu

σj+1/n
y

)
+O(u

−m/2+1
R ). (5.24)

here m + 1 → 1. One can then substitute the above expression into the formulae for

one-loop partition functions in 3-d gravity and then sum over primitive conjugacy classes

(i.e. over all possible non-repeated words) (5.10). The corrections to the entanglement

entropy can be obtained by using

SE |one-loop = lim
n→1

Sn|one-loop = lim
n→1
− 1

n− 1

(
logZ[n]|one-loop − logZ[1]|one-loop

)
. (5.25)
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5.1 One-loop corrections: bosons

In the CFT we used the replica trick to evaluate the Rényi entropies. This essentially is

the partition function of the CFT on the n-sheeted cover of the CFT on the torus. As

we have argued in the introduction we expect the leading finite size corrections to the

Rényi entropies of the free boson CFT should agree with the one-loop determinant of the

corresponding bulk field evaluated in the handlebody geometry dual the n-sheeted cover

of the CFT on the torus. In this section we will evaluate the one-loop determinant of bulk

fields in the handlebody geometry dual to the n-sheet cover of the CFT and show that

the leading finite size corrections evaluated in the CFT agree precisely with that from the

one-loop determinants.

The free real scalar in 1+1 dimensions is not a good primary. The well defined primary

with dimension (∆, ∆̄) = (1, 0) or (0, 1) are conserved currents constructed from the scalar.

If φ(z, z̄) is a real scalar field, the two conserved currents are then given by

J(z) = (∂zφ)(z) , J(z̄) = (∂z̄φ)(z̄). (5.26)

The conservation law is then guaranteed by the equations of motion: ∂z̄∂zφ(z, z̄) = 0. The

presence of these (anti-)holomorphic currents in the CFT is equivalent to the presence of

two U(1) Chern-Simons gauge fields in the bulk. The one-loop determinant for such a

spin-1 field in thermal AdS3 can be calculated by using heat kernel methods [37, 38] and

is explicitly shown in appendix C.

Zone-loop
spin-1 =

( ∞∏
n=1

1

(1− qm)1/2(1− q̄m)1/2

)2

. (5.27)

Note that we have taken the square because the the free boson of interest is complex,

therefore there are 4 Chern-Simons fields in the bulk. Using (5.24) we get

q
−1/2
1 =

nuy(u
−1/n
y − u1/n

y )

(1− u2
y)
√
uR

+O(
√
uR). (5.28)

Using (5.24) and the expression for the one-loop partition function (5.27), we can obtain

the one-loop partition function for the n-sheeted cover from (5.10). We need to sum only

over all single-letter words to obtain corrections upto the leading order

logZn|one-loop =
∑
γ∈P

Re[2qγ +O(q2
γ)] =

4 sinh2(2πTy)

n sinh2(2πTy/n)
e−2πTR +O(e−4πTR). (5.29)

The one-loop correction to the Rényi entropy is

Sn =
4

n− 1

[
n− sinh2(πTL)

n sinh2(πTL/n)

]
e−2πTR +O(e−4πTR). (5.30)

Finally, using (5.25) we can calculate the one-loop correction to the entanglement entropy

SE |one-loop = 8(1− πTL coth(πTL))e−2πTR +O(e−4πTR). (5.31)

(where L = 2y). This matches precisely with the leading order correction to the universal

part of the entanglement entropy obtained in (4.18).
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5.2 One loop corrections: fermions

In this sub-section we repeat the analysis of the comparison of one-loop determinants in

the handlebody geometry to the finite size corrections evaluated in the CFT for the case

of free fermions. We will see that the leading and the next-to leading finite size corrections

agree evaluated in the CFT agree with the bulk one-loop determinant. Demonstrating

this involves summing over two letter words to evaluate the bulk determinant. Since

(i/∂)2 = −∇2
(1/2), the one-loop partition function for the spin-1

2 fermion is

Zone-loop
spin-1/2 = det(i/∂) =

√
det(−∇2

(1/2)). (5.32)

Determinants of laplacians for fermions in the BTZ black hole were calculated using quasi-

normal modes and also by integrating the heat-kernel in [39]. The one-loop partition

function of the bulk field dual to operators of conformal dimension (∆, ∆̄) = (1
2 , 0) and

(0, 1
2) reads

Zone-loop
spin-1/2 =

∞∏
n=0

|1− qn+1/2|2(n+1). (5.33)

The high temperature expansion of the one-loop determinant on the n-sheeted cover (5.10)

reads as

logZn|one-loop =
∑
γ∈P

Re
[
−2q1/2

γ − qγ +O(q2
γ)
]
. (5.34)

We have kept the first two leading orders in the high-temperature expansion. At O(e−πRT ),

the contribution is just from the sum over single letter words. However at O(e−2πRT ), there

is one contribution from the sum over two-letter words from −2q
1/2
γ and another from the

sum over the squares of the single letter words from −qγ .

While summing over 2-letter words (Lσ1k1L
σ2
k2

) we need to keep the following constraints

in mind

1. Since the sum is over primitive conjugacy classes (or non-repeated words), we need to

impose k1 6= k2. Another way to say this is that, we would be summing over squares

of single-letter words if k1 = k2 which is already taken care of by terms in one-loop

partition function which are higher order in qγ .

2. We need to ensure that each (k1, k2) pair in the sum is counted only once. This is

because Lσ1k1L
σ2
k2

and Lσ2k2L
σ1
k1

are simply related by conjugation and hence belong to

the same conjugacy class.

3. Words and their inverses cannot be related by conjugation and need to summed over

separately.

The high-temperature expansion can then be written as (the prime on the k2 sum indicates

the constraints above)

logZn|one-loop = −2
n−1∑
k=0

Re[q
1/2
k ]− 2

n−1∑
k1=0

n−1∑′

k2=0

∑
σ1,σ2

Re[(qσ1,σ2k1,k2
)1/2]

−
n−1∑
k=0

Re[qk] +O(e−3πRT ). (5.35)
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Let us now list eigenvalues of all possible 2-letter words. The 2-letter words are of the

form Lσ1k1L
σ2
k2

with σ1,2 = ±1 and k1,2 = 0, 1, · · · , n− 1.

(q±±k1,k2)−1/2 =
n2

(u−1
y − uy)2uR

(
u−1/n
y − e2πi(k1−k2)/nu1/n

y

)(
u−1/n
y − e−2πi(k1−k2)/nu1/n

y

)
+O(1),

(q±∓k1,k2)−1/2 = − n2

(u−1
y − uy)2uR

(
1− e2πi(k1−k2)/n

)(
1− e−2πi(k1−k2)/n

)
+O(1). (5.36)

The sums over the two-letter words in (5.35) are done in appendix D. We then have the

following result for the one-loop partition function.

logZn|one-loop =− 4
sinh(2πTy)

sinh(2πTy/n)
e−πTR − 2

[
sinh(4πTy)

sinh(4πTy/n)
− sinh2(2πTy)

n sinh2(2πTy/n)

]
e−2πTR

+
2(n2 − 1)

3n
sinh2(2πTy)e−2πTR − 2 sinh2(2πTy)

n sinh2(2πTy/n)
e−2πTR +O(e−3πTR).

(5.37)

The first term on the r.h.s. is the single letter word contribution from the q
1/2
k sum. The

second and third term arises from the two-letter word sums (q±±k1,k2)1/2 and (q±∓k1,k2)1/2 re-

spectively. The fourth term is the single letter word sum over qk. Upon simplification,

we get

logZn|one-loop =− 4
sinh(2πTy)

sinh(2πTy/n)
e−πTR − 2

sinh(4πTy)

sinh(4πTy/n)
e−2πTR

+
2(n2 − 1)

3n
sinh2(2πTy)e−2πTR +O(e−3πRT ). (5.38)

The one-loop correction to the Rényi entropy can then be calculated to be

Sn|one-loop =− 1

n− 1

[
4

(
n− sinh(2πTy)

sinh(2πTy/n)

)
e−πRT + 2

(
n− sinh(4πTy)

sinh(4πTy/n)

)
e−2πRT

]
− 2(n+ 1)

3n
sinh2(2πTy)e−2πRT +O(e−3πRT ). (5.39)

Taking the n → 1 limit, we can calculate the one-loop correction to the entanglement

entropy

SE |one-loop =− 4[1− πTL coth(πTL)]e−πRT − 2 [1− 2πLT coth (2πTL)] e−2πRT

− 4

3
e−2πRT sinh2(πTL) +O(e−3πRT ). (5.40)

Again, these one-loop contributions to the Rényi and entanglement entropies agree precisely

with the leading order correction to the universal part for the fermion case (4.24) and (4.29).
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5.3 Discussion

At the first sight it might seem surprising that the one-loop corrections to the Rényi

entropies from holography, which usually describes strongly coupled physics, exactly re-

produces the leading order finite size corrections of free bosonic and fermionic CFT’s. But

as discussed in the introduction, one loop corrections of bulk fields in the handlebody ge-

ometries are sensitive to only the quantum numbers of the spectrum in the bulk and are

insensitive to interactions. The one loop corrections in the bulk can be obtained just by

summing the contributions over the spectra in the bulk. The one loop determinant of the

Chern-Simons field in the handlebody geometries can be obtained by substituting (5.27)

into (5.10) as we have done in subsection 5.1. Similarly the corresponding equation for

the Dirac fermion are given by substituting (5.34) into (5.10). Note that these one-loop

determinants organize into representations of Virasoro characters. The leading finite size

expansions of the one-loop contributions given in (5.30) and (5.39) for the Chern-Simons

field and for the Dirac fermions respectively. The contribution to finite size corrections

from the classical part of the action given in (5.18) is clearly sub-leading to the leading

terms from the one-loop terms. The one loop contribution to the partition function is in-

dependent of the central charge or the 3-dimensional Newton’s constant and just depends

on the quantum numbers of the spectrum. Therefore from the usual rules of AdS/CFT,

as summarized in the equality of the partition functions in equation (1.6) we expect the

leading terms in (5.30) for the Chern-Simons field and (5.39) for the Dirac field to agree

with the leading finite size corrections evaluated in the CFT given in (4.16) and (4.24). We

have shown in this paper by explicit computation of these correction both from the bulk

and in the CFT that this expectation is borne out. This agreement is certainly a non-trivial

test of the methods proposed by [26] to evaluate finite size corrections in the bulk.

Note that the 1/c corrections to the partition functions in the bulk which occur at

higher loops are sensitive to the OPE’s of the dual CFT and certainly finite size corrections

from these would not in general agree with the free boson or the free fermion CFT [31].

Another point worth mentioning is that we expect the leading classical contribution to the

Rényi entropies from the bulk which is proportional to c for which few terms were evaluated

in (5.18) to be universal for large c interacting CFT’s. The reason is that this term just

depends on just on the classical action of the handlebody geometry or in other words the

metric of the background. It will be interesting to reproduce the classical action including

the finite size corrections from this term by studying large c CFT’s using methods similar

to [41]. This work obtained the universal features of the Rényi entropies of two intervals

in large c CFT’s and showed that it reduces to the method proposed by [23] in the bulk.

6 Conclusions

In this paper we have calculated the Rényi entropies for the free boson on a circle at

finite temperature using two point correlation functions of twist field operators. The an-

swer (2.89) is expressed in terms of Jacobi elliptic theta functions and the Riemann-Siegel

function which can be written as the An−1 lattice sum. We have also obtained the entangle-

ment and Rényi entropies in the decompactification regime and have numerically plotted
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them. The behaviour of the entanglement entropy was then analysed in the limit of large

intervals (equalling the size of the system) and it was shown to match with the thermal

entropy as expected. We have then set up a systematic high temperature expansion for the

Rényi entropies and have extracted the leading order finite-size corrections to the univer-

sal part of the Rényi and entanglement entropies in the high temperature expansion. As

discussed in the introduction and also in section 5.3 these leading corrections from the free

boson CFT are expected to agree with the leading finite size contributions to the Rényi

entropies from the one-loop determinant of the Chern-Simons field in the handlebody ge-

ometries dual to the CFT on n-sheeted Riemann surfaces. These corrections were evaluated

from the bulk using methods developed recently in [26] and were shown to agree precisely

with that from the free boson CFT. We have also investigated the case of fermions in

which the Rényi and entanglement entropies were calculated previously in [14, 15]. We

have shown that the leading and the next to leading order finite size corrections to the

universal piece agree with that obtained from holography. This involved an agreement up

to two letter words composed out of the Schottky generators.

The above analysis of free bosons along with the one for free fermions in [15] gives re-

sults for the entanglement entropy on the torus for two of the most well-studied and simplest

conformal field theories in 1+1 dimensions. These results will be useful to find entanglement

and Rényi entropies of superconformal field theories in 1+1 dimensions like the D1/D5 sys-

tem which is one of the well studied examples of AdS3/CFT2. In fact it will be interesting to

figure out how the dependence on the size of the target space torus R can be seen in the bulk.

These results also serve as a test for the holographic methods using Schottky uni-

formization developed in [23, 26] for the case of finite temperature CFT’s with a compact

spatial direction. The calculation of Rényi entropies require the evaluation of partition

functions of CFT’s on higher genus surfaces. Therefore, as emphasized in the introduction

our results also test the proposals of [30, 31] for the evaluation of one-loop contributions

to partition functions of bulk fields in handlebody geometries.

The result for Rényi entropies for the free boson CFT can also be applied to a wide

class of one-dimensional statistical models at criticality which are described by c = 1 or

bosonic CFT’s. Examples include one-dimensional Bose gases, Heisenberg spin chains,

the 4-state Potts model and Z4 parafermions. In this regard the dependence on the size

of the spacetime torus R will play an important role. These results might also serve as

approximations in more realistic systems of bosons in 1-dimension at the critical point

like trapped cold atoms, superfluids in nanopores and superconducting wires [40]. These

systems are of both theoretical and experimental interest in recent times.

We end with some future directions and some open questions. One can hope to gener-

alize the results of this work for the case of two or more disjoint intervals and then extract

meaningful quantities like the mutual information. In fact correlators involving arbitrary

insertions of bosonic twist fields on the torus have been evaluated in [18]. Another useful di-

rection is to obtain exact results for the entanglement entropy for the free boson in presence

of chemical potentials along the similar lines of what is done for the case of fermions [15].

Holographic studies of the situation with chemical potentials and generalization to CFT’s

in higher dimensions is also an interesting direction to explore [42, 43].
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A Jacobi theta functions

In this appendix we shall list some identites involving Jacobi theta functions which are

used throughout the paper. The basic theta functions are defined by the series

ϑ(z|τ) =

∞∑
n=−∞

exp
(
πin2τ + 2πinz

)
. (A.1)

The product representations for theta functions with different characteristics or spin struc-

tures are:

ϑ1(z|τ) = 2eπiτ/4 sin(πz)

∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm), (A.2)

ϑ2(z|τ) = 2eπiτ/4 cos(πz)

∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm), (A.3)

ϑ3(z|τ) =
∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm), (A.4)

ϑ4(z|τ) =

∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm), (A.5)

where q = e2πiτ and y = e2πiz is used.9

The functions have the following (quasi-)periodicity properties

ϑν(z + 1|τ) = ϑν(z|τ), (A.6)

ϑν(z + τ |τ) = e−πiτ−2πiz ϑν(z|τ) for ν = 1, 2, 3, 4. (A.7)

9Note that Mathematica uses the older convention for the nome, q = eπiτ in EllipticTheta.
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The S-modular transformation identities are

ϑ1(z|τ) = −i(−iτ)−1/2e−πiz
2/τ ϑ1

(
z

τ

∣∣∣− 1

τ

)
, (A.8)

ϑ2(z|τ) = (−iτ)−1/2e−πiz
2/τ ϑ4

(
z

τ

∣∣∣− 1

τ

)
, (A.9)

ϑ3(z|τ) = (−iτ)−1/2e−πiz
2/τ ϑ3

(
z

τ

∣∣∣− 1

τ

)
, (A.10)

ϑ4(z|τ) = (−iτ)−1/2e−πiz
2/τ ϑ2

(
z

τ

∣∣∣− 1

τ

)
. (A.11)

These functions also have the following half-periodicity properties

ϑ2(z|τ) = −ϑ1(z − 1/2|τ), (A.12)

ϑ3(z|τ) = −y−1/2q1/8 ϑ1(z − 1/2− τ/2|τ), (A.13)

ϑ4(z|τ) = iy−1/2y1/8 ϑ1(z − τ/2|τ). (A.14)

The Dedekind eta function is

η(τ) = eπiτ/12
∞∏
m=1

(1− qm). (A.15)

B Evaluating W 1
1 and W 2

2

Reality properties

In this subsection we make the following claims regarding the elements of the matrix W

and prove them.

(W 1
1 )∗ = W 2

1 , (W 1
1 )∗ = W 1

1 , (W 1
2 )∗ = −W 1

2 , (W 1
2 )∗ = W 2

2 . (B.1)

These identities imply

• W 1
1 and W 2

1 are purely real.

• W 1
2 and W 2

2 are purely imaginary.

• det(W ) and det(W̄ ) are purely imaginary. det(W ) = 2i Im(W 1
1W

2
2 ).

We now proceed to a proof of (B.1). We list the explicit integral forms of W j
i on

choosing z1 = y and z2 = 1− y with 0 ≤ y ≤ 1
2 . We also define yM = (1− 2k

n )y + k
n .

W 1
1 (k, n) =

∫ 1

0
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ), (B.2)

W 2
1 (k, n) =

∫ 1

0
dz̄ ϑ1(z − ȳ)−k/nϑ1(z̄ − 1 + y)−(1−k/n)ϑ1(z̄ + yM ), (B.3)

W 1
2 (k, n) =

∫ τ

0
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ), (B.4)
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W 2
2 (k, n) =

∫ τ

0
dz̄ ϑ1(z̄ − y)−k/nϑ1(z̄ − 1 + y)−(1−k/n)ϑ1(z̄ + yM ). (B.5)

It can then be easily seen that

det(W (0, 1)) = 2i Im(W 1
1 (0, 1)W 2

2 (0, 1)) = 2τ (B.6)

Observe that there exists a branch cut from [y, 1− y] see figure 5. Let us first calculate the

value of the integral along this branch cut.

I =

∫ 1−y

y
dz ϑ1(z − y)pϑ1(z − 1 + y)qϑ1(z − yM ), (B.7)

where, p and q are some rational fractions. Taking a contour ‘around’ this branch cut and

calling the contribution to be J we have

J =

(∫ 1−y+iε

y+iε
−
∫ y−iε

1−y−iε

)
dz ϑ1(z − y)pϑ1(z − 1 + y)qϑ1(z − yM )

= Sum of residues (= 0) (B.8)

It can be seen that∫ 1−y+iε

y+iε
dz ϑ1(z − y)pϑ1(z − 1 + y)qϑ1(z − yM ) = eiqπI, (B.9)

and ∫ y−iε

1−y−iε
dz ϑ1(z − y)pϑ1(z − 1 + y)qϑ1(z − yM ) = ei(2p+q)πI. (B.10)

It can then be immediately seen that for p = −(1 − k/n) and q = −k/n that I = 0

from (B.8). We thus have the following result∫ 1−y

y
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ) = 0. (B.11)

Similarly, it can be also be checked that∫ 1−y

y
dz̄ ϑ1(z̄ − y)−k/nϑ1(z̄ − 1 + y)−(1−k/n)ϑ1(z̄ + yM ) = 0. (B.12)

So, for W a
1 which involves integration along the real line with this branch cut we conclude

that they are real.

Now, consider the following integral over the spatial cycle

W 1
1 =

∫ 1

0
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM )

=

(∫ y

0
+

∫ 1−y

y
+

∫ 1

1−y

)
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ). (B.13)
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Figure 5. The deformable contour on the torus.

Note that z is a real variable. The second integral vanishes as we had just shown. Using

the double periodicity property ϑ1(z) = ϑ1(z + 1), the third integral can be set from −y
to 0. So, we have

W 1
1 =

(∫ y

0
+

∫ 0

−y

)
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ). (B.14)

Similarly,

W 2
1 =

(∫ y

0
+

∫ 0

−y

)
dz̄ ϑ1(z̄ − y)−k/nϑ1(z̄ − 1 + y)−(1−k/n)ϑ1(z̄ + yM ). (B.15)

Again z̄ is real. On changing variables in the above integral z̄ = −z and using the fact

that ϑ1(−z) = −ϑ1(z) it can be seen that

W 1
1 = W 2

1 . (B.16)

We have thus proved the first two relations in (B.1).

Let us now consider the integrals over the temporal cycle. The integration is now over

a purely imaginary variable. We also have τ = iβ.

W 1
2 =

∫ τ

0
dz ϑ1(z − y)−(1−k/n)ϑ1(z − 1 + y)−k/nϑ1(z − yM ). (B.17)

Changing variables z = iw (w is real), we have

W 1
2 =

∫ β

0
idw ϑ1(iw − y)−(1−k/n)ϑ1(iw − 1 + y)−k/nϑ1(iw − yM ). (B.18)

On complex conjugation this becomes

(W 1
2 )∗ =

∫ β

0
−idw ϑ1(−iw − y)−(1−k/n)ϑ1(−iw − 1 + y)−k/nϑ1(−iw − yM ). (B.19)
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On changing variables again u = −w we get

(W 1
2 )∗ =

∫ −β
0

idu ϑ1(iu− y)−(1−k/n)ϑ1(iu− 1 + y)−k/nϑ1(iu− yM ). (B.20)

We now use the property, ϑ1(i(u+ β)) = ϑ1(iu) to get

(W 1
2 )∗ =

∫ 0

β
idu ϑ1(iu− y)−(1−k/n)ϑ1(iu− 1 + y)−k/nϑ1(iu− yM )

= −W 1
2 . (B.21)

On performing the same analysis it can be shown that (W 2
2 )∗ = −W 2

2 .

Now let’s consider the following integral

W 2
2 =

∫ τ

0
dz̄ ϑ1(z − y)−k/nϑ1(z̄ − 1 + y)−(1−k/n)ϑ1(z̄ + yM ). (B.22)

Changing variables z = iw or z̄ = −iw, with w being real, we get

W 2
2 =

∫ β

0
−idw ϑ1(−iw − y)−k/nϑ1(−iw − 1 + y)−(1−k/n)ϑ1(−iw + yM ). (B.23)

Using ϑ1(−z) = −ϑ1(z), we get

W 2
2 = −

∫ β

0
idw ϑ1(iw + y)−k/nϑ1(iw + 1− y)−(1−k/n)ϑ1(iw − yM )

= −W 1
2 = (W 1

2 )∗. (B.24)

The second and third equalities follow from (B.21). This completes the proofs of all rela-

tions in (B.1).

Relating W 1
1 to W 2

2

In this subsection we shall relate W 1
1 and W 2

2 . Choosing the interval as
[

1−L
2 , 1+L

2

]
the

expressions are

W 1
1 =

∫ 1

0
dz

ϑ1(z − 1/2 + L/2− (kL)/n)

ϑ1(z − 1/2 + L/2)1−k/nϑ1(z − 1/2− L/2)k/n
, (B.25)

W 2
2 =

∫ τ

0
dz̄

ϑ1(z̄ − 1/2− L/2 + (kL)/n)

ϑ1(z̄ − 1/2− L/2)1−k/nϑ1(z̄ − 1/2 + L/2)k/n
. (B.26)

The integrands of the above are clearly related by L→ −L. Defining

w(z, L) =
ϑ1(z − 1/2− L/2− (kL)/n)

ϑ1(z − 1/2 + L/2)1−k/nϑ1(z − 1/2− L/2)k/n
, (B.27)

we can write

W 1
1 =

∫ 1

0
dz w(z, L) , W 2

2 =

∫ τ

0
dz̄ w(z̄,−L). (B.28)
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Since w(z, L) is constructed purely of theta functions, motivated by (A.1) let us now

consider its Fourier series expansion

w(z, L) = a0(L) +
∑
m 6=0

am(L) e2πimz. (B.29)

It is assumed that am has an implicit τ dependence.

It can be seen from (B.27) that the function w(z, L) is invariant under z → z + τ . We

thus have the following identity relating the Fourier coefficients.∑
m6=0

am(L) e2πimz =
∑
m6=0

am(L) e2πim(z+τ). (B.30)

Performing a indefinite integral over z to the above relation, we get

∑
m6=0

am(L) e2πimz

2πim
=
∑
m6=0

am(L) e2πim(z+τ)

2πim
. (B.31)

The form of the integral for W 2
2 is

W 2
2 =

∫ τ

0
dz w(z,−L) =

∫ τ

0
dz

a0(−L) +
∑
m6=0

am(−L) e2πimz


=

a0(−L)z +
∑
m6=0

am(−L) e2πimz

2πim

τ
0

, (B.32)

which upon using (B.31) is simply

W 2
2 = a0(−L)τ. (B.33)

One can however perform an explicit integration of W 2
2 order by order in q(= e−2π/β) and

then verify that W 2
2 is an even function in L (see equation (B.47) below). We therefore

conclude that a0(L) = a0(−L) and

W 2
2 = a0(L)τ. (B.34)

Similarly, the W 1
1 integral (B.28) can be easily done and we get

W 1
1 = a0(L). (B.35)

Comparing (B.34) and (B.35) we have the following relation

W 2
2 = τW 1

1 . (B.36)

The expression for W 2
2 can be also related to the W 1

1 in another way.

W 2
2 =

∫ τ

0
dz̄

ϑ1(z̄ − 1/2− L/2 + kL/n)

ϑ1(z̄ − 1/2 + L/2)k/nϑ1(z̄ − 1/2− L/2)(1−k/n)
. (B.37)
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Performing a S-modular transformation to the above integrand we get

W 2
2 = e

πL2

β
k
n

(1− k
n

)
∫ τ

0
dz̄

ϑ1( z̄−1/2−L/2+kL/n
τ | − 1

τ )

ϑ1( z̄−1/2+L/2
τ | − 1

τ )k/nϑ1( z̄−1/2−L/2
τ | − 1

τ )(1−k/n)
. (B.38)

Now, changing the integration variable from z̄ to w = −z̄/τ and then shifting the range of

integration from [−1, 0] to [0, 1] (which is allowed by periodicity of the integrand) we get

W 2
2 = τe

πL2

β
k
n

(1− k
n

)
∫ 1

0
dw

ϑ1(w + 1/2+L/2−kL/n
τ | − 1

τ )

ϑ1(w + 1/2−L/2
τ | − 1

τ )k/nϑ1(w + 1/2+L/2
τ | − 1

τ )(1−k/n)
. (B.39)

We can now use the periodicity properties of ϑ1(z/τ | − 1/τ) and shift the argument by

−1/τ in the above integrand to get

W 2
2 = τe

πL2

β
k
n

(1− k
n

)
∫ 1

0
dw

ϑ1(w + −1/2+L/2−kL/n
τ | − 1

τ )

ϑ1(w + −1/2−L/2
τ | − 1

τ )k/nϑ1(w + −1/2+L/2
τ | − 1

τ )(1−k/n)
.

(B.40)

The integral appearing above is the that of W 1
1 with the replacements: L → L/τ and

τ = −1/τ . We finally have the following result10

W 2
2 (L, τ) = τe

πL2

β
k
n

(1− k
n

)
W 1

1 (L/τ,−1/τ) . (B.41)

High temperature expansions of W 1
1 and W 2

2

We have

W 2
2 =

∫ τ

0
dz̄

ϑ1(z̄ − 1
2 −

L
2 + kL

n )

ϑ1(z̄ − 1
2 + L

2 )k/nϑ1(z̄ − 1
2 −

L
2 )1−k/n . (B.42)

Using the periodicity property of the ϑ1(z|τ)

ϑ2(z|τ) = −ϑ1(z − 1/2|τ), (B.43)

we get

W 2
2 =

∫ τ

0
dz̄

ϑ2(z̄ − L
2 + kL

n )

ϑ2(z̄ + L
2 )k/nϑ2(z̄ − L

2 )1−k/n . (B.44)

Performing a S-modular transformation to the above integrand

W 2
2 = e

π
β
k
n

(1− k
n

)L2
∫ τ

0
dz̄

ϑ4( z̄−L/2+kL/n
τ | − 1

τ )

ϑ4( z̄+L/2τ | − 1
τ )k/nϑ4( z̄−L/2τ | − 1

τ )1−k/n
. (B.45)

10In the arguments of ϑ1 in the integrand of W 1
1 1/2 gets replaced by 1/(2τ). This can be thought of as

the length of the spatial circle R being replaced by R/τ .
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Changing variables to w, where z = iw and w ∈ R since the integral is along the negative

imaginary axis

W 2
2 = −ie

π
β
k
n

(1− k
n

)L2
∫ −β

0
dw

ϑ4(−iw−L/2+kL/n
τ | − 1

τ )

ϑ4(−iw+L/2
τ | − 1

τ )k/nϑ4(−iw−L/2τ | − 1
τ )1−k/n

. (B.46)

We can now expand the above integral in powers of q = e−2π/β,

W 2
2 (k, n)

= e
π
β
k
n (1− k

n )L2

τ

×
[
1− 2

n2

(
−k2+kn cosh

(
2πL(n−k)

nβ

)
+(k − n)

(
k cosh

(
2πL

β

)
−n cosh

(
2πkL

nβ

))
+kn−n2

)
q2

+
1

2n4

(
2n

(
3(k − n)

(
k2 − kn+ 2n2

)
cosh

(
2πkL

n

)
+k

(
−3
(
k2 − kn+2n2

)
cosh

(
2πL(n− k)

n

)
− (k−2n)(k−n) cosh

(
2πL(k+n)

n

)
+(k − n)(k + n) cosh

(
2πL(k − 2n)

n

)))
−4k(k − n)

(
k2 − kn+ 4n2

)
cosh

(
2πL

β

)
+ 3

(
k4 − 2k3n+ 7k2n2 − 6kn3 + 4n4

)
+k(k − n)(k + n)(k − 2n) cosh

(
4πL

β

))
q4 +O(q6)

]
. (B.47)

As remarked earlier it can be clearly seen that the above expression is a even function in

L. The high-temperature expansion of W 1
1 can be obtained by using the relation (B.36).

W 1
1 and W 2

2 in the y → 0 limit

Using the results of the previous subsections above we shall exactly evaluate the integrals

W 1
1 and W 2

2 in the large interval or y → 0 limit. For y = ε we have

W 1
1 =

∫ 1

0
dz ϑ1(z − ε)−(1−k/n)ϑ1(z − 1 + ε)−k/nϑ1(z − yM ), (B.48)

here, yM = (1− 2k
n )ε+ k

n . The above integral can be written as

W 1
1 =

(∫ ε

0
+

∫ 1−ε

ε
+

∫ 1

1−ε

)
dz ϑ1(z − ε)−(1−k/n)ϑ1(z − 1 + ε)−k/nϑ1(z − yM ). (B.49)

The branch cut here is in the interval [ε, 1− ε]. It was seen in (B.11) that there is no

contribution to the integral from this region. We thus have

W 1
1 =

(∫ ε

0
+

∫ 1

1−ε

)
dz ϑ1(z − ε)−(1−k/n)ϑ1(z − 1 + ε)−k/nϑ1(z − yM )

= 2

∫ ε

0
dz

ϑ1(z − yM )

ϑ1(z − ε)(1−k/n)ϑ1(z − 1 + ε)k/n

' lim
ε→0

2ε

(
1

2

ϑ1(−k/n)

ϑ1(ε)

)
=
ϑ1(−k/n)

ϑ′1(0)
. (B.50)
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Note that here we have used the fact that integrand is real in the interval [0, ε] and [1−ε, 1].

We have multiplied the integral by 1/2 to take into account the contribution per unit cell.

Using (B.36) we have

W 2
2 ' τ

ϑ1(−k/n)

ϑ′1(0)
. (B.51)

C One-loop determinant for the Chern-Simons gauge field

In this subsection we shall calculate the one-loop determinant for the Chern-Simons spin-1

field. We present this calculation in detail since we did not find an explicit discussion of

this in the literature. The one-loop determinant is given in terms of the product of the

one-loop determinants of the scalar and the transverse vector Laplacian [44].

Zone-loop = det 1/2(−∆(0)) det−1/4(−∆A⊥ − 2). (C.1)

The scalar and A⊥ one-loop determinants are as follows

1

2
log det(−∆(0)) = −

∞∑
m=1

|q|2m

m|1− qm|2
,

−1

4
log det(−∆A⊥ − 2) =

1

2

∞∑
m=1

qm + q̄m

m|1− qm|
. (C.2)

Adding the contributions from the two terms above we get

logZone-loop =

∞∑
m=1

1

2m|1− qm|2
(−2(qq̄)m + qm + q̄m)

=
∞∑
m=1

1

2m|1− qm|2
(2|1− qm|2 − (1− qm)− (1− q̄m))

= −
∞∑
m=1

1

m
+

1

2

∞∑
m=1

1

m(1− qm)
+

1

2

∞∑
m=1

1

m(1− q̄m)

=
1

2

∞∑
n=1

∞∑
n=1

qnm

m
+

1

2

∞∑
n=1

∞∑
n=1

q̄nm

m

= −1

2

∞∑
n=1

log |1− qn|2. (C.3)

So, the one-loop determinant of a single U(1) Chern-Simons gauge field is

Zone-loop =

∞∏
n=1

(
1

|1− qn|2

)1/2

. (C.4)
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D Sums involving 2-letter words

We need to do the sums over k1 and k2 over the reciprocals of the eigenvalues of the 2-letter

words given below.

q
−1/2
±± =

n2

(u−1
y − uy)2uR

(
u−1/n
y − e2πi(k1−k2)/nu1/n

y

)(
u−1/n
y − e−2πi(k1−k2)/nu1/n

y

)
+O(1)

(D.1)

q
−1/2
±∓ = − n2

(u−1
y − uy)2uR

(
1− e2πi(k1−k2)/n

)(
1− e−2πi(k1−k2)/n

)
+O(1) . (D.2)

The first sum is of the following form

n−1∑
k1=0

n−1∑′

k2=0

q
1/2
±± =

4 sinh2(2πTy)e−2πTR

n2e4πTy/n

n−1∑
k1=0

n−1∑′

k2=0

1

(1− rei(k1−k2)2π/n)(1− re−i(k1−k2)2π/n)

(D.3)

where r = u
2/n
y . Let us now do the sum above. Implementing the k1 6= k2 constraint by

removing the ‘diagonal’ k1 = k2 piece and counting (k1, k2) pairs only once we get

1

2

 n−1∑
k1=0

n−1∑
k2=0

1

(1− rei(k1−k2)2π/n)(1− re−i(k1−k2)2π/n)
− n

(1− r)2


=

1

2

 n−1∑
k1=0

n−1∑
k2=0

∞∑
l=0

rle2πil(k1−k2)/n
∞∑
s=0

rse−2πis(k1−k2)/n − n

(1− r)2

 (D.4)

=
1

2

 ∞∑
l=0

∞∑
s=0

rl+s
n−1∑
k1=0

e2πik1(l−s)/n
n−1∑
k2=0

e−2πik2(l−s)/n − n

(1− r)2

 .

The sums over k1,2 are non-zero only if l − s = Mn where M ∈ Z. So, one can write the

above sum as

1

2

( ∞∑
l=0

∞∑
s=0

rl+s
∞∑

M=0

(nδl−s,M )− n

(1− r)2

)
(D.5)

where

l = Mn+ s , s = Nn+ j

s ∈ {0, 1, 2, · · · } j ∈ {0, 1, 2, · · · , n− 1} n ∈ {0, 1, 2, · · · } (D.6)
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Also, l > 0 implies Mn + Nn + j > 0, which means M can take the lowest value −N .

Converting the above sum over l, s and M to N , M and j, we get

1

2

n2
∞∑
N=0

n−1∑
j=0

∞∑
M=−N

rMn+2(Nn+j) − n
∞∑
l=0

∞∑
s=0

rl+s


=

1

2

n2
∞∑
N=0

n−1∑
j=0

r2j+2Nn
∞∑

M=−N
rMn − n

(1− r)2


=

1

2

n2
∞∑
N=0

n−1∑
j=0

r2j+2Nn r
−Nn

1− rn
− n

(1− r)2


=

1

2

(
n2 1

(1− rn)2

1− r2n

1− r2
− n

(1− r)2

)
=

1

2

(
n2 r−1

r−1 − r
r−n/2 + rn/2

r−n/2 − rn/2
− n

(1− r)2

)

=
1

2

(
n2 e4πTy/n

2 sinh(4πTy
n )

coth(2πTy)− n e4πTy/n

4 sinh2(2πTy/n)

)
. (D.7)

Using this in (D.3) we get

∞∑
k1=0

∞∑′

k2=0

q
1/2
±± =

sinh(4πTy
n )

2 sinh(4πTy)
e−2πTR −

sinh2(2πTy
n )

2n sinh2(2πTy)
e−2πTR +O(e−4πTR) . (D.8)

The second sum (D.2) is

∞∑
k1=0

∞∑′

k2=0

q
1/2
±∓ = −4 sinh2(2πTy)e−2πTR

n2

× lim
r→1−

n−1∑
k1=0

∞∑′

k2=0

1

(1− rei(k1−k2)2π/n)(1− re−i(k1−k2)2π/n)
. (D.9)

Let us now do the sum above. Taking into account the constraints which were present

while doing the previous sum we have

1

2

 n−1∑
k1=0

n−1∑
k2=0

1

(1− rei(k1−k2)2π/n)(1− re−i(k1−k2)2π/n)
− n

(1− r)2


=

1

2

 n−1∑
k1=0

n−1∑
k2=0

∞∑
l=0

rle2πil(k1−k2)/n
∞∑
s=0

rse−2πis(k1−k2)/n − n

(1− r)2


=

1

2

 ∞∑
l=0

∞∑
s=0

rl+s
n−1∑
k1=0

e2πik1(l−s)/n
n−1∑
k2=0

e−2πik2(l−s)/n − n

(1− r)2


=

1

2

 ∞∑
l=0

∞∑
s=0

rl+s
n−1∑
k1=0

e2πik1(l−s)/n
n−1∑
k2=0

e−2πik2(l−s)/n − n

(1− r)2

 . (D.10)

– 48 –



J
H
E
P
0
4
(
2
0
1
4
)
0
8
1

The first term in (D.10) is the same as the one calculated in the previous sum (D.7). So,

the above sum becomes

1

2

(
n2 1

(1− rn)2

1− r2n

1− r2
− n 1

(1− r)2

)
. (D.11)

One can now take the limit r → 1−. We get

lim
r→1−

1

2n2

[
n2 1

(1− rn)2

1− r2n

1− r2
− n 1

(1− r)2

]
=

1

24n

(
n2 − 1

)
. (D.12)

Using the above in (D.9) we obtain

∞∑
k1=0

∞∑′

k2=0

q
1/2
±∓ = −(n2 − 1)

6n
sinh2(2πTy)e−2πTR +O(e−4πTR) . (D.13)

The above sums (D.8) and (D.13) are used in (5.35) in order to obtain (5.37).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[23] T. Faulkner, The Entanglement Rényi Entropies of Disjoint Intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[24] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[25] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929

[hep-th/0005106] [INSPIRE].

[26] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond

classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[27] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[28] B. Swingle, L. Huijse and S. Sachdev, Entanglement entropy of compressible holographic

matter: loop corrections from bulk fermions, arXiv:1308.3234 [INSPIRE].

[29] B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP 11 (2013) 164
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[arXiv:1308.1083] [INSPIRE].

[35] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions,

JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[36] M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS3, JHEP 02

(2011) 004 [arXiv:1009.6087] [INSPIRE].

[37] J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS3 and its

Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].

[38] J.R. David, M. Gaberdiel and R. Gopakumar, Heat kernels on AdS3, unpublished notes.

[39] S. Datta and J.R. David, Higher spin fermions in the BTZ black hole, JHEP 07 (2012) 079

[arXiv:1202.5831] [INSPIRE].

[40] M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac and M. Rigol, One dimensional bosons:

From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83 (2011) 1405

[arXiv:1101.5337].

[41] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[42] P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular

momentum and U(1) charge, JHEP 11 (2013) 052 [arXiv:1306.4974] [INSPIRE].

[43] A. Belin et al., Holographic Charged Rényi Entropies, JHEP 12 (2013) 059

[arXiv:1310.4180] [INSPIRE].

[44] J. Gegenberg and G. Kunstatter, The partition function for topological field theories, Annals

Phys. 231 (1994) 270 [hep-th/9304016] [INSPIRE].

– 51 –

http://arxiv.org/abs/hep-th/9108028
http://inspirehep.net/search?p=find+EPRINT+hep-th/9108028
http://dx.doi.org/10.1007/JHEP03(2014)117
http://arxiv.org/abs/1308.1083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1083
http://dx.doi.org/10.1007/JHEP02(2010)029
http://arxiv.org/abs/0712.0155
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0155
http://dx.doi.org/10.1007/JHEP02(2011)004
http://dx.doi.org/10.1007/JHEP02(2011)004
http://arxiv.org/abs/1009.6087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6087
http://dx.doi.org/10.1007/JHEP04(2010)125
http://arxiv.org/abs/0911.5085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5085
http://dx.doi.org/10.1007/JHEP07(2012)079
http://arxiv.org/abs/1202.5831
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5831
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://arxiv.org/abs/1101.5337
http://arxiv.org/abs/1303.6955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
http://dx.doi.org/10.1007/JHEP11(2013)052
http://arxiv.org/abs/1306.4974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4974
http://dx.doi.org/10.1007/JHEP12(2013)059
http://arxiv.org/abs/1310.4180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4180
http://dx.doi.org/10.1006/aphy.1994.1043
http://dx.doi.org/10.1006/aphy.1994.1043
http://arxiv.org/abs/hep-th/9304016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9304016

	Introduction
	Bosonic twist correlators on the torus
	Quantum contribution
	Classical contribution
	Integrals of the cut differentials
	Rényi entropies of a compact boson

	Rényi entropies for a non-compact boson
	Plots
	Thermal entropy from entanglement entropy

	Finite size corrections to Rényi entropies
	Bosons
	Fermions

	Finite size corrections from holography
	One-loop corrections: bosons
	One loop corrections: fermions
	Discussion

	Conclusions
	Jacobi theta functions
	Evaluating W(1)**1 and W(2)**2
	One-loop determinant for the Chern-Simons gauge field
	Sums involving 2-letter words

