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1 Introduction

A large class of N = 1 superconformal field theories arise from D3-branes transverse to

Calabi-Yau singularities. The near-horizon geometry is AdS5 × X where X is a Sasaki-

Einstein space, that is the base of a non-compact CY cone [1–4]. Particular attention has

been devoted to local orbifold and more general toric singularities, since the resulting quiver

theories admit an elegant description in terms of brane tilings and dimers, that encode their

low-energy dynamics and their moduli spaces [5–9]. Less is known about the inclusion of

orientifold planes and flavour branes, since both typically break superconformal invariance

(see [10] for previous work on unoriented brane tilings and dimers).

On the other hand, configurations with orientifold planes and flavour branes provide

us with concrete examples of semi-realistic models for particle physics [11–13] (see [14] for

a review and references therein). In the case where the brane system is located at the

fixed point of an orientifold involution, the low energy dynamics is governed by a local
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unoriented quiver theory whose quantum consistency relies on local tadpole cancellation

and admits a full-fledged world-sheet description.

Here we mainly focus on the case of C3/Zn singularities with fractional D3-branes,

non-compact D7-branes1 and Ω-planes of general type. We will rederive the various con-

sistency conditions, most notably the relation between twisted tadpoles and anomalies in

presence of flavour branes [18–20]. The gauge group will be a product of unitary, orthogonal

and symplectic groups. Matter will appear in fundamental, symmetric or anti-symmetric

representations. In particular, we show that the presence of flavour branes allows for a rich

pattern of quiver theories including new instances of N = 1 superconformal theories. We

will also discuss D-brane instanton corrections of both kinds, ‘gauge’ and ‘exotic’, related

to instantons sitting in an occupied or an empty node of the quiver, respectively [21–27].

Interestingly we find superconformal theories whereby instanton induced superpotentials

break conformal symmetry in a dynamical fashion. Finally we discuss aspects of the new

N = 1 strong-weak coupling duality, proposed by [28] as a remnant of N = 4 S-duality. In

particular we will identify new candidate dual pairs and propose that the duality relation

can be understood in purely geometric terms.

The plan of the paper is as follows. In section 2 we describe the spectrum of the quiver

theories and present general formulas for the one-loop anomalies and tadpoles entirely

written in terms of the intersection numbers codifying the singularity (quiver diagram). In

section 3 we show that the presence of flavour branes allows for new instances of N = 1

superconformal quiver gauge theories. Besides a number of truly superconformal quiver

theories we find an infinite class of theories where breaking of conformal symmetry shows

up only in the running of the coupling associated to an empty node. In section 4 we study

the effects of D-brane instantons of both kinds: ‘gauge’ and ‘exotic’. We show in particular

that conformal symmetry can be broken in a dynamic fashion via the generation of exotic

superpotentials. Finally in section 5 we propose an infinite series of new candidates for

N = 1 strong-weak pairs of dual quiver gauge theories. We collect in appendix A a self-

contained discussion of the Klein-bottle, Annulus and Moebius-strip one-loop amplitudes,

anomalies and tadpoles of C3/Zn orientifold theories.

Note added. While this paper was being typewritten a related interesting paper by

S. Franco and A. Uranga [29] appeared that discusses flavour D7-branes in general bipartite

field theories, yet without the inclusion of Ω-planes.

2 IIB on C3/Zn orientifolds

We are interested in unoriented quiver theories living on D3-branes at C3/Γ singularities

with Γ a discrete and abelian group. We start by considering the case Γ = Zn, the main

focus of our analysis. We denote by XI , I = 1, 2, 3, the complex coordinates of C3 and by

Θ the generator of the Zn orbifold group action

Θ : XI → waIXI , w = e
2πi
n , (2.1)

1Brane tilings with flavour have been recently considered in [15–17].

– 2 –



J
H
E
P
0
1
(
2
0
1
4
)
1
2
8

with aI integers satisfying the supersymmetry-preserving Calabi-Yau condition

3∑
I=1

aI = 0 (mod n). (2.2)

The orbifold action has a single fixed point at the origin. Before the inclusion of

D-branes and the Ω-plane, the local physics around the singularity is described by an

effective N = 2 supergravity theory with a certain number of hypermultiplets originating

from twisted sectors where all three internal coordinates XI are twisted (see appendix A

for details). They parametrize the sizes and shapes of the compact exceptional cycles at

the singularity [30, 31]. Twisted sectors where some of the XI are untwisted preserve larger

supersymmetry and contribute non-localised states that are irrelevant to the local physics.

N = 1 theories are obtained by the quotient of the orbifold theory by an orientifold

involution involving world-sheet parity Ω combined with a space-time reflection and some

additional Z2 symmetry (eg (−)FL). The inclusion of Ω-planes projects hypermultiplets

localised at the singularity onto chiral multiplets describing the sizes of the compact ex-

ceptional cycles. Fixed points of the reflection define an orientifold plane inverting the

orientations of both closed and open strings (to be described next). We denote the orien-

tifold action generically by Ωε with ε = (ε0, εI) four signs satisfying
∏3
I=1 εI = −1. These

specify the orientation and the charge of the Ω-plane. In particular

Ω3± : (±−−−)

Ω7± : (∓+ +−) (2.3)

represent an Ω3, an Ω7 plane along the (1 2)-planes and so on. The ε0 = ± sign specifies

the Sp/SO projection, with + conventionally taken for the Sp-projection on D-brane stacks

coincident with a given Ω-plane. In a dimer description of the orientifold [10], these signs

specify the charges of the orientifolds at the four fixed points of the quotiented dimer.

2.1 Quiver gauge theories

Next, we consider the inclusion of D-branes at the C3/Zn orientifold singularity. Compati-

bly with the N = 1 supersymmetry preserved by the Ω-planes, we consider the insertion of

N ‘fractional’ D3-branes as well as M ‘flavour’ D7-branes passing through the singularity

and extending along four non-compact directions inside C3/Zn. The dynamics of D7-D7

open strings is irrelevant for the local physics. On the other hand open strings connecting

D3 and D7 are localized at the singularity and provide fundamental matter. For definiteness

we will consider D7 wrapped along the complex planes I = 1, 2, i.e. along the non-compact

divisor X3 = 0. One should keep in mind that additional D7 branes wrapped along the

non-compact divisor X1 = 0 or X2 = 0, or superpositions thereof, can be considered.

To find the field content of the unoriented quiver theory at the singularity we proceed

in two steps. Starting from the N = 4 theory living on the D3-branes in flat space-time,

we first perform the orbifold projection to an oriented quiver theory with flavour and then

perform the unoriented projection to an unoriented quiver theory with flavour.

– 3 –
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In the N = 1 language the N = 4 theory is given by a vector multiplet and three chiral

multiplets all in the adjoint of U(N). In flat space-time D3-D7 open strings contribute 2M

chiral multiplets (M hypermultiplets) rotated by a U(M) flavour group. We denote by V

and C a vector and a chiral multiplet of N = 1 supersymmetry, respectively. One can then

write the field content in the N = 1 language as

Hflat = (V + 3C) + C (M̄× + M× ). (2.4)

Here and in the following we denote by ( ) the (anti)fundamental representation of a

gauge group and by its dimension M (M̄) the (anti)fundamental representations of the

flavour group. The orbifold group breaks the gauge and flavour groups down to
∏
a U(Na)

and
∏
a U(Ma) respectively. Here Na and Ma denote the number of D3 and D7 branes

transforming in the a-representation of Zn with a = 0, 1 . . . n− 1. Explicitly, the action of

the orbifold group generator on Chan-Paton indices breaks the fundamental representations

of U(N) and U(M) according to (see appendix for details)

Θ : → ⊕awa a , M→ ⊕awa Ma , (2.5)

where we denote by a and Ma the fundamental representations of U(Na) and U(Ma)

respectively. In addition, the spacetime action of Θ on the field components reads

Θ : V→ V, CI → waICI , Cȧ → wsCȧ, (2.6)

where by CI and Cȧ (ȧ = 1, 2) we denote the chiral multiplets coming from D3-D3 and D3-

D7 strings respectively. The former transforms in the fundamental of the SU(3) rotation

group of C3 while the latter as a chiral spinor of the rotation group of the C2 along the

D7. A consistent orbifold group action on D3-D7 fields requires s = a1+a2
2 ∈ Z. For n odd

this is not a restriction since one can always redefine aI by adding n.

Combining (2.5) and (2.6) and keeping invariant components in (2.4) one finds the

field content of the oriented quiver gauge theory with flavour

Horbifold =

n−1∑
a=0

(
V a a + C

[
3∑
I=1

( a, a+aI ) + Ma a+s + M̄a+s a

])
. (2.7)

More precisely, states in the vector multiplets will be given by N × N block diagonal

matrices, D3-D3 chiral multiplets ΦI by N ×N matrices with non trivial components for

the Na × Na+aI blocks, D3-D7 chiral fields Q by N ×M matrices with Na ×Ma+s non-

trivial blocks and D7-D3 fields Q̃ by M ×N matrices with Ma ×Na+s non-trivial blocks.

Here and henceforth all subscripts will be always understood mod n. The superpotential

is cubic and follows directly from that in flat spacetime

Wpert = Tr
(
gΦ1[Φ2,Φ3] + h1 Φ3QQ̃+ h2Q〈Φ3

77〉Q̃
)
, (2.8)

after replacing the matrices by their orbifold invariant block form. The last term, involving

the vev of some of the non-dynamical D7-D7 fields can be viewed as a mass terms in the
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Figure 1. The C3/Z3, C3/Z4 and C3/Z5 orientifold theories for aI = (1, 1,−2).

low energy effective action. The dimensionless constants g, h1, h2 measure the strength of

the various interactions.

In the absence of D7-branes, tadpole/anomaly cancellation requires Na = Nb for any

a and b, corresponding to N copies of the ‘regular’ representation of Zn. The resulting

quiver theory is superconformal in the IR, where anomalous U(1)’s decouple or become

global (baryonic) symmetries. The mesonic branch of the moduli space is SymmN (CY).2

The near-horizon geometry is AdS5 × S5/Zn. Including D7-branes generically spoils su-

perconformal invariance but makes tadpole/anomaly cancellation easier to achieve even

without Ω-planes. In particular one can embed the (SUSY) standard model in a flavoured

Z3 quiver [32–35].

Let us consider the unoriented projection that identifies ingoing open strings ending

on a brane with the outgoing open strings starting from the image brane transforming in

the complex conjugate representation

Ωε : a ↔ n−a , Ma ↔ M̄n−a , (2.9)

Strings connecting a brane and its image are projected onto symmetric and antisymmetric

representations according to the signs (ε0, εI) specifying the orientifold. Keeping invariant

components from (2.7) under (2.9) one finds

Horientifold = V

 ∑
a=0,n

2

2
a,ε0 +

p∑
a=1

a a

+ C

p∑
a=0

(
M̄a+s a + Ma a+s

)
+

+C
∑
I

n−1∑
a=0

{
1
2( a, a+aI ) a 6= −a− aI

2
a,−ε0εI a = −a− aI

(2.10)

with p = [n−1
2 ] and 2

a,± denoting the symmetric and antisymmetric representations of

the gauge group at node a. In (2.10) the identifications a = n−a and Ma = M̄n−a
are understood. In particular, one can check that bifundamentals in the last line appear

2This is almost self-evident for N = 1, since n ‘fractional’ D3-branes combine into a ‘bulk’/regular brane

that can wander in CY. A proof for N > 1 remains elusive.
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Figure 2. The C3/Z6 theory, aI = (1, 1,−2), with two different orientifolds, defined in (2.9)

and (2.11) respectively.

always twice leading to integer multiplicities as expected. Examples of unoriented quiver

diagrams with flavour are displayed in figures 1, 2 3 and 4. The spectrum for n = 3, 4, 5, 6

and ε0 = −1 is displayed in table 1.

For even order orbifold groups n = 2k it is also possible to choose another unoriented

projection

Ω̂ε : a ↔ n
2
−a , M̄a ↔Mn

2
−a , (2.11)

which corresponds to an orientifold identifying the node 0 with the node n/2. In table 1

we focus on the first new example, the Z6 orbifold with this second orientifold projection.

The corresponding unoriented quiver diagram is in figure 2 on the right. The cases with n

multiple of four are equivalent to the previous orientifold projection (2.9).

Note that symplectic groups require an even number of (fractional) branes, and this

condition applies both to gauge and flavour groups. Since consistency requires Ω planes to

act with the opposite projections on D3 and D7, one must for instance pay attention to the

fact that a theory with an SO(N0) gauge group must have even M0, since the associated

flavour group is Sp(M0).

When n is even, the orbifold group also contains the spatial Z2 involution Θ
n
2 . As a

result, ΩΘ
n
2 is also an orientifold involution leading an equivalent orientifold group. This

leads to the following identifications

Ω3± = Ω7∓ (n even),

Ω̂3± = Ω̂7± (
n

2
odd).

(2.12)

2.2 Tadpoles and anomalies

For generic choices of Na and Ma, the unoriented quiver gauge theories obtained in the last

section are chiral and therefore potentially anomalous. Sp and SO gauge groups are free

of anomalies since, barring spinorial representations that are not realised in perturbative

– 6 –
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Gauge Group Chiral multiplets & anomalies

Z3 SO(N0)×U(N1)

3( , ) +
∑

I(·, 2
εI

) + M̄1( , ·)
+M0 (·, ) + M̄1(·, )

M0 =
∑3

I=1(N1 −N0 + 4εI) +M1

Z4 SO(N0)×U(N1)×SO(N2)

2( , , ·) + 2(·, , ) + ( , ·, ) + (·, 2
ε3 , ·)

+(·, 2
ε3 , ·) + M̄1( , ·, ·) + M̄2(·, , ·)

+M0(·, , ·) + M1(·, ·, )

M0 = −2N0 + 2N2 +M2

Z5 SO(N0)×U(N1)×U(N2)

2( , , ·) + 2(·, , ) + ( , ·, ) + (·, , ) + (·, 2
ε3 , ·)

+(·, ·, 2
ε1) + (·, ·, 2

ε2) + M̄1( , ·, ·) + M̄2(·, , ·)
+M0(·, , ·) + M1(·, ·, ) + M2(·, ·, )

M0 = −2N0 +N1 +N2 + 4ε3 +M2

M1 = N0 − 3N1 + 2N2 + 4(ε1 + ε2) +M2

Z6

2( , , ·, ·) + 2(·, , , ·) + 2(·, ·, , ) + ( , ·, , ·)
+(·, , ·, ) + (·, 2

ε3 , ·, ·) + (·, ·, 2
ε3 , ·)

SO(N0)×U(N1) +M0(·, , ·, ·) + M̄1( , ·, ·, ·) + M̄2(·, , ·, ·)
×U(N2)× SO(N3) +M1(·, ·, , ·) + M2(·, ·, ·, ) + M̄3(·, ·, , ·)

M0 = −2N0 +N1 + 2N2 −N3 +M2 + 4ε3

M1 = N0 − 2N1 −N2 + 2N3 +M3 − 4ε3

Z6, Ω̂ U(N0)×U(N1)×U(N5)

2( , , ·) + 2( , ·, ) + ( , , ·) + ( , ·, ) + (·, , )

+2(·, 2
εi , ·) + 2(·, ·, 2

εi) + M̄0(·, ·, ) + M0(·, , ·)
+M̄1( , ·, ·) + M1(·, , ·) + M̄5(·, ·, ) + M5( , ·, ·)
M1 = 3N0 − 2N1 −N5 − 4(ε1 + ε2) +M0

M5 = 3N0 −N1 − 2N5 − 4(ε1 + ε2) +M0

Table 1. Matter content for some C3/Zn orientifold theories, with aI = (1, 1,−2) and ε0 = −1.

The field content for Ω projections of Sp(N) type (corresponding to ε0 = 1) follows by flipping all

antisymmetric into symmetric representations and vice-versa, i.e. εI → −εI . The constraints on Mi

come from the tadpole cancellation conditions.

open string contexts, all representations are self-conjugate. For U(N) gauge groups the

anomaly is computed by the formula

IU(N) = ∆nF + ∆nA(N − 4) + ∆nS(N + 4), (2.13)

with ∆nF , ∆nA and ∆nS the differences between the number of chiral and anti-chiral N =

1 multiplets in the fundamental, symmetric and antisymmetric representations respectively.

Higher rank (anti-)symmetric tensors are not realised in perturbative open string contexts.

– 7 –
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Taking into account the field content of the unoriented quiver gauge theory one finds

Ia = IU(Na) =

n−1∑
b=0

(IabNb + JabMb) + 4ε0Ka (2.14)

with

Iab =

3∑
I=1

(δa,b−aI − δa,b+aI )

Jab = δa,b−s − δa,b+s

Ka =
3∑
I=1

εI(δ2a,aI − δ2a,−aI ) (2.15)

codifying the “intersection numbers” of the exceptional cycles at the singularity. More

concretely, Iab counts the number of times D3 branes of type “a” and “b” intersect, Jab the

intersections of D3a and D7b branes and Ka the intersections of a D3a brane and its image

D3′a under the orientifold action. This can be read off directly from the quiver diagram

counting the number of arrows connecting the various nodes with plus or minus signs

depending on the direction of the arrow. We notice that Iab and Jab are anti-symmetric

matrices while Ka = −Kn−a. Explicitly for aI = (1, 1,−2) the non-trivial components are

Z3 Ia,a+1 = −Ia+1,a = 3, Ja,a+1 = −Ja+1,a = 1, K2 = −K1 =
∑
I

εI , (2.16)

Zn6=3 Ia,a+1 = −Ia+1,a = 2, Ia+2,a = −Ia,a+2 = 1, Ja,a+1 = −Ja+1,a = 1,

Kn+1
2

= −Kn−1
2

= (ε1 + ε2), Kn−2
2

= −Kn+2
2

= −K1 = Kn−1 = ε3. (2.17)

For the even n cases with orientifold projection Ω̂ε, defined in (2.11), the previous

expression for Ka is replaced by

K̂a =
3∑
I=1

εI(δ2a,aI+n
2
− δ2a,n

2
−aI ), (2.18)

with the same meaning of intersections between a D3a brane and its image. In the following

sections we will mainly focus on the cases with the Ωε projection defined in (2.9).

We remark that equation (2.14) can be thought of as the components of the vector equation

Nb πD3b +Mb πD7b + 4ε0 πO = 0 (2.19)

with πD3b, πD7b, πO the cycles wrapped by the D3b, D7b and Ω-planes respectively. Equa-

tion (2.14) follows from (2.19) after multiplying it by πa and identifying

Iab = πD3a ◦ πD3b, Jab = πD3a ◦ πD7b, Ka = πD3a ◦ πO. (2.20)

We would like to stress that the above ‘intersection numbers’ are completely coded in the

various contributions to the one-loop Klein bottle, Annulus and Moebius strip amplitudes.

– 8 –
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The interested reader can find all the details in the appendix. As already observed long

time ago [19, 20], chiral anomalies are associated to tadpoles of twisted RR fields localized

at the singularity and thus belonging to sectors with non-vanishing Witten index, i.e. giving

rise to an N = 1 (chiral) spectrum. Tadpoles of RR fields belonging to the untwisted sector

or to twisted sectors with vanishing Witten index i.e. giving rise to an N = 4, 2 (chiral)

spectrum, do not contribute to chiral anomalies in D = 4 and can thus be discarded in the

low-energy dynamics of the local unoriented quiver gauge theory. Additional constraints

arise when one looks for a global embedding of these models. We will not address these

important issues here since we are focussing on the local models. For recent work see [33].

2.3 C3/
∏

i Zni-singularities

Although in explicit examples we have mostly focused on the Zn case with aI = (1, 1,−2),

formulae in the previous section apply to the general case aI 6= (1, 1,−2) and to the case

of type IIB orientifolds on C3/
∏
i Zni . The singularity is now codified in the choice of the

vectors ~aI = {a(i)
I } satisfying

3∑
I=1

a
(i)
I = 0 (mod ni) (2.21)

for each i separately. The spectrum, anomalies and tadpoles are given by the same formulae

as before with intersection numbers I
~a~b

, J
~a~b

, K~a, where we define ~a = (a(1), a(2), . . .) ∈ Zn1×
Zn2 × . . . The resulting intersection matrices are the tensor product of those of each single

Zni factor. As an example, let us consider C3/Z2 × Z3 with the following actions on C3:

a
(1)
I = (1,−1, 0), a

(2)
I = (0,−1, 1). (2.22)

The nodes of the quiver are labeled by ~a = (a(1), a(2)) with a(1) = 0, 1 and a(2) = 0, 1, 2,

so we have six nodes. One can then see that this orbifold action is precisely identical to

C3/Z6 with a
(1)
I = (1, 3, 2).

At the cost of being pedantic, there is a single fixed point, the origin, in C3/
∏
i Zni

and closed string (chiral) amplitudes with N = 4, 2 supersymmetry do not contribute to

tadpole, since the corresponding (un)twisted fields are not localised at the singularity but

de-localised along non-compact cycles.

3 Conformal theories

Although generically the presence of flavour D7-branes and Ω-planes tends to spoil super-

conformal invariance, judicious choices of the numbers and types of D7’s may lead to N = 1

superconformal quiver gauge theories, thus opening up a completely new class of gauge the-

ories of this kind that are amenable to a reliable description in terms of open strings.

The prototype is the class of N = 2 superconformal gauge theories arising from N

D3’s in the presence of 4 D7’s and an Ω7− plane [36–38]. The resulting gauge group is

Sp(2N), the flavour symmetry is SO(8) acting on the 8 half hypermultiplets in the funda-

mental representation. In addition there is a flavour singlet hypermultiplet transforming

in the anti-symmetric representation. The one-loop β-function of the Sp(2N) gauge theory

– 9 –
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vanishes and since for a theory with N = 2 supersymmetry no anomalous dimensions are

generated for hyper-multiplets, one can safely argue that the theory is (super)conformal.

Here we consider N = 1 theories obtained as orbifold projections of N = 2 theories, so it

is reasonable to believe that again anomalous dimensions for the fundamental fields be not

generated. Indeed, superpotential interactions are always cubic so chiral fields come with

their naive dimension one, as long as vev’s of the non-dynamical D7-D7 fields appearing

in (2.8) vanish. To look for a superconformal theory one can then scan for models with

vanishing one-loop β-function.3

With this proviso, the one-loop β function for a general N = 1 gauge theory is

β =
1

2

(
3`(Adj)−

∑
C

`(RC)

)
, (3.1)

with the sum running over the chiral multiplets and `(R) denoting the index of the repre-

sentation R. In our conventions

`( ) = 2N, `( 2
ε ) = `( 2

ε ) = N + 2ε, `( ) = `( ) = 1. (3.2)

For the quiver gauge theories under consideration one finds

βa =

 3Na + ε0K
+
a − 1

2

(
I+
abNb + J+

abMb

)
(SU)

3
2Na + 3ε0 + 1

2ε0K
+
a − 1

4

(
I+
abNb + J+

abMb

)
(SO/Sp)

(3.3)

in terms of

I+
ab =

3∑
I=1

(δa,b−aI + δa,b+aI ), J+
ab = δa,b−s + δa,b+s, K+

a =
3∑
I=1

εI(δ2a,aI + δ2a,−aI ), (3.4)

counting the number of arrows (independently of their orientations) in the quiver dia-

gram connecting D3-D3, D3-D7 and D3-D3′ branes respectively. Using (3.3) it is indeed

straightforward to impose the vanishing of the one-loop beta function coefficients, obviously

together with the tadpole cancellation conditions.

We distinguish between two classes of solutions: theories where βa = 0 for all nodes

a, and theories which have non-conformal but empty nodes (βa 6= 0 for Na = 0). For

C3/Zn models with n = 3, . . . 6 and Ω3 or Ω7 planes, we have found seven new conformal

models, whose properties are summarized in table 2. The C3/Z′5 case corresponds to

aI = (1, 3, 1), so that the structure of the flavour representations is changed since in this

case s = (a1 + a2)/2 = 2. Its quiver diagram is depicted in figure 4

If we choose one node of the quiver to be empty, Na = 0, and relax the associated

constraint βa = 0 for conformal invariance, it turns out to be much easier to find new

conformal models. For brevity, we only provide few examples in table 3 for the Z3 orbifold

with Ω3 and Ω7 planes. One can easily find many more models for other orbifolds and/or

3We remark that these arguments can be easily adapted even to non-supersymmetric models of the

class [39, 40] where each individual sector preserves some supersymmetry and therefore no tadpoles for the

dilation and other NS-NS fields are generated.
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Figure 3. The C3/Z′
6 theory (aI = (1, 3, 2)) with the two different orientifolds Ω and Ω̂.

Ω plane Conformal theories Flavour branes

Z3 Ω7− Sp(N)×U(N + 1) M0 = 2, M1 = 3

Z4 Ω3+/Ω7− Sp(N)2 ×U(N + 3− p) M0 = M2 = 4− 2p, M1 = 2p, p = 0, 1, 2

Z′5 Ω7− Sp(N)×U(N + 1)2 M0 = 0, M1 = 1, M2 = 3

Z′6 Ω3+/Ω7− Sp(N)2 ×U(N + 3)2 M0 = M3 = 4, M1 = M2 = 0

Z′6 Ω̂3−/Ω̂7− U(N)×U(N + 1)2 M0 = 4, M1 = M5 = 0

Table 2. Examples of superconformal unoriented quiver gauge theories.

Ω plane Conformal theories Flavour branes

Z3 Ω3+ Sp(N) M0 = 18, M1 = 3N + 6

Ω7− Sp(N) M0 = 2, M1 = 3N + 6

Ω3− SO(0)×U(N) M0 = 3(N − 1), M1 = 9 (N odd)

Ω7− Sp(0)×U(N) M0 = 3N − 1, M1 = 3

Table 3. Conformal theories found for the Z3 orbifold with one non-conformal empty node.

allowing for more than one non-conformal empty node. Looking at tables 2 and 3, we see

that all solutions require the presence of (fractional) D7 flavour branes to compensate for

the superconformal breaking Ω-plane contribution.

It is particularly interesting to note that all models in table 2 can be seen as N = 1

truncations of the N = 2 Sp(N) superconformal theories discussed in [36–38]. Indeed, not

only all these models have a Ω7− plane, but also the total number of D7 branes is always

4, reproducing the (local) setup of the F-theory solution of [36].4

It would be interesting to study whether these superconformal unoriented quiver the-

ories admit a holographic dual. One would expect a gravity dual on AdS5 ×X with X a

4One must keep into account that D7 branes on top of the orientifold are counted twice.
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Figure 4. The C3/Z5 theory with aI = (1, 3, 1).

deformation of the Einstein space S5/Zn accounting for the presence of the fractional and

flavour branes (see [41, 42] for previous works in this direction). In this context, tadpole

conditions translate into constraints on the volumes of the various non-trivial cycles (faces

of the dimer) of X. One can take the complementary attitude and exploit the world-sheet

description of the brane system to study the ‘holographic’ dual gravity solution of the RG

flow triggered by the disk ‘dilaton’ tadpoles along the lines of [39, 40, 43–47].

4 Instanton induced superpotentials

We now turn our attention to non-perturbative effects generated by D-brane instantons in

unoriented quiver theories with flavour. As by now customary, we start from the oriented

case and then consider the effect of the unoriented projection and the inclusion of flavour

branes.

In flat space-time as well as in AdS (near horizon geometry), D-instantons behave as

instantons for the N = 4 SYM on a stack of D3-branes [21, 48, 49]. In the quiver gauge

theories, just like fractional D3-branes correspond to D5 ad D7-branes wrapping vanishing

cycles at the singularity, instantons can be realized in terms of fractional D(-1)-branes,

i.e. Euclidean D1 and D3-branes wrapping the same set of vanishing cycles. The orien-

tifold projection restricts these choices to configurations with zero net D5-brane charge.

Unoriented D-brane instantons have been considered for their crucial role in generating

phenomenologically interesting couplings in the superpotential [22, 23, 50, 51]. For a re-

cent review see [25–27] and references therein. Lately the analysis has been extended to

(fluxed) E3-branes in F-theory [52–55].

In (unoriented) N = 1 quiver theories, instanton induced superpotentials W are com-

puted by means of the instanton partition function

SW =

[n2 +1]∏
a=1

Λkaβaa

∫
dM eSinst =

∫
d4x d2θW (Φ), (4.1)

with M the ADHM moduli space realized in terms of open strings with at least one end

on the D-instanton (d4x d2θ is the center of mass super-volume form). Λa, βa, ka are the

scales, beta functions and instanton numbers associated to the gauge group at node a and

Sinst is the instanton moduli space action.
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There are two distinct classes of instantons: gauge and exotic instantons. Gauge

instantons are associated to a single D(-1) brane (and its image) occupying a non-empty

node of the quiver (i.e. wrapping the same vanishing cycle as a physical stack of branes) and

generate Affleck-Dine-Seiberg like superpotentials. Exotic instantons arise from a single

D(-1) brane occupying a Sp empty node and generate polynomial superpotential terms.5

4.1 Gauge instantons

Let us first consider ‘gauge’ instantons. The instanton fermionic moduli space can be

splitted into two classes according to whether the zero mode corresponds to the gaugino

(vector multiplet) or to matter fermions (chiral multiplets). We denote the total number

of them for k = 1 by nλ0 and nψ0 respectively. Index theorems yield

nλ0 = `(Adj), nψ0 =
∑
C

`(RC), (4.2)

with the sum running over the chiral multiplets and `(R) given in (3.2). The beta function

of the gauge theory is given by

β =
1

2
(3nλ0 − nψ0). (4.3)

A single instanton can generate a superpotential à la Affleck-Dine-Seiberg if nλ0−nψ0 = 2,

like in SQCD with Nf = Nc − 1. In this case all fermionic zero modes, except for the

two θ’s parametrizing the superspace coordinates, can be soaked by bilinear terms in the

fermion zero-modes arising from Yukawa couplings. Plugging this condition into (4.3), one

concludes that a superpotential can be generated if the beta function of the gauge theory

satisfies the condition

β = `(Adj) + 1 =


2N + 1 U(N)

N + 3 Sp(N)

N − 1 SO(N)

(4.4)

The generated superpotential can be written in the form

Wgauge =
Λβ

Φβ−3
, (4.5)

where Φβ−3 is some gauge and flavour invariant composite operator, whose ‘refined’ ex-

pression in terms of the chiral matter super-fields takes into account the exact number of

zero-modes of each kind, i.e. for Z3 with no flavour branes and gauge group SU(4), β = 9

and Φβ−3 = det3×3 εu1...u4φ
u1u2
I φu3u4J [22].

It is now easy to scan table 1 for unoriented quiver gauge theories with flavour admit-

ting nodes such that the beta function satisfies (4.4). In these cases a superpotential term

can be induced by gauge instantons. In table 4 we collect the quiver gauge theories exhibit-

ing superpotentials of this type. For the Z3 and Z5 orbifolds the number of solutions is

5The effect of E3 instantons associated to flavour nodes vanishes in the strict non-compact limit but

may resurrect when the local unoriented quiver is embedded in a consistent global context.
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Gauge theories Flavour branes

Z3 Sp(2p)∗ M0 = 4(3− p), M1 = 2p p = 0, . . . , 3

Sp(2p)∗ ×U(1) M0 = 4(3− p), M1 = 2p− 3 p = 2, 3

Sp(6)∗ ×U(2) M0 = M1 = 0

SO(0)×U(4)∗ M0 = M1 = 0

Z4 Sx(N0)∗×U(N1)×Sx(N2) M1 = N0−N2−2N1−2(1−ε0) N0 ≥ 2(1-ε0)+2N1+N2

M2 = M0 + 2N0 − 2N2

Sx(N0)×U(N1)×Sx(N2)∗ M1 = N2−N0−2N1−2(1−ε0)

M0 = M2 + 2N2 − 2N0 N2 ≥ 2(1-ε0)+2N1+N0

Table 4. Chiral gauge theories at the Zn, n = 3, 4, orientifold singularities admitting instanton

contributions. The node where the instanton sits is indicated by a ∗. We use the symbol Sx≡SO,

Sp for ε0 = −1, +1 respectively. Recall that for ε0 = −1 M0 and M2 must be even.

finite. In particular for the Z3 case these solutions extend the gauge theories Sp(6)∗×U(2)

and U(4)∗ found in [22] without D7 branes. The ∗ indicates the gauge group where the

instanton sits.

We conclude this section by remarking that instantons may generate different dynam-

ical effects. Indeed for gauge theories with β = `(Adj) one finds that, like for QCD with

Nf = Nc, the moduli space can get deformed at the scale Λ (see for instance [24, 56]). On

the other hand, there may be other non-perturbative effects, that may be related to instan-

tons after Higgsing, leading to dynamical super potentials. In particular β = `(Adj) − 1

is a necessary condition for S-confinement [57–60] , like in QCD with Nf = Nc + 1. For

example, for the Z4 quiver one can find gauge theories with:

• Sp(2p)∗ × U(0) × Sp(2p)∗: two types of instanton superpotentials are generated at

each of the two non empty gauge theory nodes with scales Λ0 and Λ2.

• Sp(2p + 2)∗ × U(N1) × Sp(2p) with N1 = 0, 1: a superpotential is generated by a

gauge instanton at node 0 while the theory S-confines at node 2 .

4.2 Exotic instantons

Exotic instantons originate from a single D(-1) occupying an empty Sp node and carrying

an O(1) symmetry. For this choice the instanton moduli space contains (besides the two

universal fermionic zero modes and the four positions) only fermionic zero modes coming

from D(-1)-D3 or D(-1)-D7 strings. Assuming that the D(-1) sits in node 0, the number of

fermionic zero modes is summarized in the following table

type modes U(Nb) dimMF

D(-1)-D(-1) xµ, θα • 2

D(-1)-D3 µI aI

∑
I NaI

D(-1)-D7 µ′ Ms × • Ms

– 14 –



J
H
E
P
0
1
(
2
0
1
4
)
1
2
8

Figure 5. The C3/Z4 U(3− p) (left) and C3/Z3 U(N) (right) models admitting exotic instanton

contributions.

For a D(-1) instanton at node n
2 , a similar spectrum is found with aI → n

2 +aI and s→ s+n
2 .

A non-perturbative superpotential arises whenever it is possible to saturate the integration

over the charged moduli µI , µ′ and again the superpotential can be written in the form

Wexotic = Λβ Φ3−β, (4.6)

with β ≤ 3 the putative beta function of the Sp(0) node

β = 3− 1

2

(∑
I

NaI +Ms

)
. (4.7)

Examples

In the following, we discuss two examples of instanton induced superpotentials in N = 1

superconformal unoriented quiver gauge theories.

As a first example, consider the U(3 − p) conformal theory that one can obtain from

the second row of table 2 setting N = 0, p = 0, 1, 2, in the C3/Z4 orbifold. Since nodes 0

and 2 are both empty, there are two exotic (one-)instanton contributions that add up to

give the full non-perturbative superpotential. The field content of the theory as well as the

charged modes of the D(-1) are displayed in figure 5 for the instanton contribution coming

from node 0. The couplings of matter fields with the instanton modes read:

Scharged ∼ µiSµi + µ′Mµ′, (4.8)

where M is the expectation value of a non-dynamical D7-D7 field, transforming in the

antisymmetric representation of the SU(2p) (flavour) group at node 1. Notice that the

non-dynamical fieldsM and M̃ do not produce any effect at the pertubative level because

the nodes 0 and 2 are empty. Hence, vev’s of these fields are perturbatively allowed without

breaking conformal invariance. For p = 0 both M and µ′ are absent. The contribution to

the effective action takes the schematic form:

Sn.p. ∼
∫
d4x d2θ

∫
d6−2pµ d2pµ′ e−Scharged . (4.9)
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There is only one way to saturate all fermion modes, which is to bring down a term

Mp S3−p. Taking into account the analogous one-instanton correction arising from node

2, one finds:

Wexotic ∼MpS3−p + M̃pS̃3−p. (4.10)

For p = 0 formula (4.10) produces Yukawa couplings preserving conformal invariance. For

p = 1, 2, conformal invariance is dynamically broken at the scales set by M and M̃. For

p = 2 a Polony-like term is generated inducing supersymmetry breaking, too. It’s im-

portant to note that the absence of a Λ mass scale in (4.10) reflects the vanishing of the

putative one-loop beta function coefficients of the two empty nodes: β0 = β2 = 0.

As a second example, we consider a conformal gauge theory in a Z3 quiver with an

empty non-conformal node. The model is displayed in the last row of table 3. It admits

an exotic instanton contribution arising from the empty ‘Sp(0)’ node. The matter content

and D(-1) modes are again depicted in figure 5 and the couplings with charged modes are

as follows (we separate µI = (µi, µ̃) with i = 1, 2; Ai, S sit in the antisymmetric and

symmetric representations respectively):

Scharged ∼ µiµiS + µ̃µiAi + µ̃µ′Q+ µ′µ′M. (4.11)

Similarly to the previous example, the mass scaleM is the expectation value of the D7-D7

field transforming in an antisymmetric representation of the SU(3) flavour group associ-

ated with D7 branes in node 1. When N is even or N = 1 there is no contribution to the

superpotential. For odd N ≥ 3 one finds that there are two ways to saturate all fermion

zero-modes, leading to

Wexotic ∼ Λ
3
2

(1−N)

0

(
Q3AN−3S(N+3)/2 +MQAN−1S(N+1)/2

)
. (4.12)

We notice that, unlike in the previous example, the exotic superpotential that breaks con-

formal symmetry is generated even when the vev of the D7-D7 fieldM is set to zero. The

presence of an overall scale Λ0 in (4.12), responsible for the breaking of conformal symme-

try, reflects the fact that in this example the putative one-loop beta function of the empty

node is non-zero: β0 = 3
2(1−N).

Another interesting possibility is to have both gauge and exotic instanton contribu-

tions. Looking at table 4, we can see for instance that in the Z4, ε0 = +1 models it’s possible

to set N2 = 0 and obtain theories that exhibit one-instanton superpotential contributions

both from a gauge instanton in the Sp(N0) node and an exotic instanton at the Sp(0) node.

4.3 Scales and closed string moduli

As remarked above the scales Λ’s entering the superpotentials carry an explicit dependence

on the closed string moduli Ta describing the complex Kähler deformations of the singular-

ity. Their imaginary parts parametrize Fayet-Illiopolous terms for the gauge theory at the

corresponding node of the quiver. (Twisted) complex structure moduli Uα, if present, are

associated to 3-form fluxes and generate mass deformations of the quiver gauge theory.6

6We are currently analysing this issue [61].
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The explicit form of the tree-level (disk) gauge kinetic functions fa(Th) and thus of the RG

invariant scales Λa depends on the node where the ‘fractional’ brane sits

Λa = Me2πfa(Tb), (4.13)

where M is some (holomorphic) mass-scale. The fields ImTb transform under U(1)a ⊂
U(Na) according to

δaImTb = Na(w
ab − w(n−a)b)αa (no sum), (4.14)

when

δaA
b
µ = δba ∂µαa (no sum). (4.15)

The axionic shifts (4.14) compensate for the transformation properties of the chiral fields

entering in the superpotential. i.e. the shift symmetry of the RR-axion ImTa is gauged by

the ‘anomalous’ U(1) vector boson Abµ. As a result of the linear dependence of fa on Tb

fa =

n−1∑
b,c=0

Ia,bw
bc Tc , (4.16)

the gauging of the axionic shifts induces the following transformations of the holomorphic

gauge kinetic functions

δafb = Na(Ia,b − In−a,b)αa . (4.17)

For the first few n one finds

n = 3 : δ1f1 = 3N1α1,

n = 4 : δ1f1 = −N1α1, (4.18)

n = 5 : δafb =

(
N1α1 N1α1

−3N2α2 2N2α2

)

and so on.

5 S-dual quiver gauge theories

In a recent paper [28], a new duality relating N = 1 unoriented quiver theories that is

based on S-duality of the parent N = 4 unoriented theory has been proposed.

Indeed S-duality of type IIB theory can be used to relate the dynamics of different

unoriented projections of (quiver) gauge theories living on D3-branes. In flat space-time

the U(N) N = 4 SYM governing the low-energy dynamics of a stack of D3-branes is self-

dual. The same is true for the SO(2N) N = 4 SYM governing the low-energy dynamics

of a stack of D3-branes on top of a ‘standard’ Ω3− plane. If one however consider ‘exotic’

Ω3-planes carrying non trivial (but quantized [62–64]) 2-form fluxes7 the situation changes.

Ω3+ carrying (B2, C2) = (1/2, 0) and giving rise to Sp(2N) is conjectured to be S-dual to

7Recall Π2(S5/Z2) = Z2 [49].
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Ω3− carrying (B2, C2) = (0, 1/2) and giving rise to SO(2N + 1). Finally Ω3+ carrying

(B2, C2) = (1/2, 1/2) and giving rise to Sp(2N) is self-dual [49]. The last two are usually

referred to as Ω̃3±.

In [28] the duality between SO and Sp orientifolds have been extended to N = 1

settings including the C3/Z3 unoriented quiver as well as non-orbifold toric singularities.

The duality proposal has been substantiated by a precise matching not only of the gauge-

invariant degrees of freedom and the anomalies of global symmetries but also of dynamical

effects taking place on the two sides of the duality. Here we extend the analysis to the

whole C3/Zn series and propose an infinite sequence of new SO/Sp dual pairs of unoriented

quiver gauge theories without flavour. We support the duality by matching the spectra

of gauge invariant operators on the two sides of the duality. In particular, we show that

Ω3+-plane can be replaced by Ω3−-plane plus certain number of fractional D3-branes de-

termined by a simple geometric relation. We restrict ourselves to the case with no D7

branes (nor Ω7-planes). Adding D7-branes would naively spoil the duality since D7-branes

transform non-trivial under S-duality.8

For concreteness we take C3/Zn with n odd. We look for SO/Sp orientifold quiver

dual pairs in presence of a single Ω3 plane, i.e. εI = (−−−). We denote by N = {Na}
the number of fractional branes in the Sp gauge theory and by Ñ = {Ña} that in the SO

gauge theory. Cancellation of anomalies in the two gauge theories requires

I ·N + 4K = I · Ñ− 4K = 0. (5.1)

The two equations are solved by

N = c+ v − 4 I−1
⊥ ·K

Ñ = c− v + 4 I−1
⊥ ·K, (5.2)

with v = (1, 1, . . .) and c± arbitrary. By I−1
⊥ we denote the inverse of I in the space or-

thogonal to v. We notice that terms proportional to v in (5.2) do not contribute to (5.1)

since I · v = 0, or in other words anomaly equations are not modified by the addition of

regular branes. To fix c± we recall that before the orbifolding Ω3+ = Ω3− + 1D3 and so

the total number of fractional branes in the SO gauge theory should exceed by one that

in the Sp theory, i.e. v · (Ñ −N) = 1, which translates into c− − c+ = 1
n . In addition,

one should require that N and Ñ are made of integers. The solution is parametrized by

an integer p and can be written as

c± = p+
1

2
∓ 1

2n
. (5.3)

One can easily check that N and Ñ given by (5.2) are always integers and positive for p

large enough. The resulting gauge theory for n = 3, 4, 5 are displayed in table 5. The case

n = 3 reproduces the series of dual pairs studied in [28].

8It would be interesting to explore similar duality relations in presence of S-duality invariant configura-

tions of mutually non-local 7-branes.
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Gauge theories d.o.f.

Z3

Sp(2p+ 4)×U(2p) νI = 9p+ 6p2,

SO(2p− 1)×U(2p+ 3) ν0 = 10 + 9p+ 6p2

Z5

Sp(2p+ 2)×U(2p+ 2)×U(2p− 2) ν1,2 = 1 + 5p+ 10p2,

SO(2p− 1)×U(2p− 1)×U(2p+ 3) ν3 = ν1,2 − 6, ν0 = ν1,2 + 10

Z7

Sp(2p+ 8)×U(2p+ 4)2 ×U(2p) ν1,2 = 48 + 49p+ 14p2,

SO(2p− 1)×U(2p+ 3)2 ×U(2p+ 7) ν3 = ν1,2 − 6, ν0 = ν1,2 + 20

Table 5. Examples of Sp/SO dual models, with Na ≥ 1.

In the rest of this section we collect some evidences for the duality between SO/Sp

quiver gauge theories with fractional brane content (5.2) on a general C3/Zn orientifold

singularity. The main check relies on the comparison of the spectra of the two gauge

theories. To this aim, we organize the states of the two gauge theories according to their

charges with respect to the global U(1)3 symmetries. U(1)3 is the Cartan of the SO(6)

R-symmetry of the parent N = 4 theory and it is therefore part of the global symmetry

of any orientifold theory. There are three types of chiral multiplets CI , each one charged

respect to one U(1)I ∈ U(1)3. We denote by νI the number of degrees of freedom of each.

Gauge invariant degrees of freedom are built out of traces involving these fields. This leads

to
∑

I νI − dimG mesonic/baryonic degrees of freedom. In the Sp gauge theory one finds

CI : νI =
∑
a

(NaNa+aI + εNaδa+aI ,−a) ,

dimG : ν0 = −

(
1

2

∑
a

N2
a +

1

2
εN0

)
, (5.4)

with ε = +. The spectrum of the SO gauge theory on the other hand is given by the same

formulas with ε = − and Na → Ña. The difference of degrees of freedom between the two

gauge theories is

∆νI =
∑
a

(Na + Ña)
(
Ña+aI −Na+aI − δa+aI ,−a

)
= 0,

∆ν0 = −1

2

∑
a

(Ña +Na)(Ña −Na) +
1

2
(N0 + Ñ0) = 0, (5.5)

where in the right hand side we used (5.2), to write Ña +Na = (2p+ 1)v, (Ñ−N) ·v = 1.

We notice that the matching between the degrees of freedom νI automatically ensures the

matching of anomalies involving the U(1)3 symmetries and therefore is a strong support of

the claimed duality relation between the SO and Sp gauge theories. In the last column of

table 5 we display the number of degree of freedom for the first few candidates of dual pairs.

We remark that the relation between the SO and Sp gauge theories can be translated

into a purely geometric identification between the cycles wrapped by the Ω3+ and Ω3−

planes in the two theories. Indeed, it corresponds to the identification

Ω3+ = Ω3− + (Ña −Na)D3a, (5.6)
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with (Ña −Na) such that the cycles wrapped by the two Ω3-planes coincide:

4πΩ3 = −4πΩ3 + (Ña −Na)πD3a. (5.7)

Multiplying (5.6) and using (2.20) one finds agreement with (5.1). In addition, one requires

that
∑

a(Ña −Na) = 1 to match the duality in the parent theory in flat spacetime.

Although the matching of the dof’s, including their non-anomalous flavour charges,

seems to be only a necessary condition, we believe this is equivalent to matching all tri-

angle anomalies as carefully done in [28] for the Z3 case. Indeed, matching of νI and

ν0 implies that the number of gauge invariant operators matches on the two sides of the

duality. In particular chiral operators that contribute to the superconformal index should

match [65–67]. We observe that the matching of gauge invariant degrees of freedom can be

traced in the analogous matching before the orbifold projection. If we denote by ΦI and

Φ̃I the 3 chiral multiplets in the adjoint of Sp(2N) and SO(2N + 1) (before the orbifold

projection) one can see that the number of singlets one can built at each dimension in the

two gauge theories matches perfectly. This implies the correspondence

Tr(ΦI1ΦI2 . . .ΦIk)↔ Tr(Φ̃I1Φ̃I2 . . . Φ̃Ik). (5.8)

In the quiver gauge theory, gauge invariant operators are given again by (5.8) with ΦI and

Φ̃I now given by block matrices satisfying the orbifold invariant conditions. Moreover the

basis of gauge invariant operators has
∑

I νI − ν0 elements for the two dual gauge theories.

Further dynamical checks of duality, including but not limited to a detailed comparisons of

the superconformal indices, may help identifying the class of unoriented quiver dual pairs.

6 Conclusions

We have discussed unoriented quiver theories with flavour that govern the low-energy dy-

namics of D3-branes at orbifold singularities in the presence of (exotic) Ω planes and D7-

branes wrapping non-compact cycles. The presence of a net number of ‘fractional’ branes,

as compared to the case without Ω planes and D7-branes, makes the theories intrinsically

chiral, generically non superconformal and thus phenomenologically more promising than

theories with only ‘regular’ D3-branes.

In the recent past oriented quivers for D3-branes at toric singularities that admit a

dimer description have received a lot of attention. Although orientifolds of dimers have

already been analysed in [10], here we have tackled the problem from a world-sheet per-

spective in the restricted context of non-compact Zn orientifolds.

We have rederived the relation between tadpole and anomalies, taking into account

the flavour branes, identified the locally consistent embeddings of the D7 and the various

allowed unoriented projections.

We have then recognized the conditions for restoring superconformal invariance in the

presence of D7 and Ω planes, focusing on two classes of models with βa = 0 at all nodes and

with βa = 0 at all but one ‘empty’ node. We have relied on previous analyses of ‘dilaton’

tadpoles and RG flows, in order to argue that no anomalous dimensions are expected for
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the matter fields that would require consideration of the NSVZ ‘exact’ β function rather

than our simple-minded one-loop β function.

We have also classified quiver theories that receive non-perturbative corrections to the

superpotential from unoriented D-brane instantons of the ‘gauge’ or ‘exotic’ kinds. In par-

ticular we have found a theory where both kinds of corrections are present and conformal

theories where the conformal symmetry is broken dynamically via the generation of exotic

superpotentials.

We have finally turned our attention on to the recently proposed N = 1 duality, which

is a remnant of the N = 4 S-duality between Sp(2N) and SO(2N + 1) gauge groups.

We have identified candidate dual pairs and given further evidence for the validity of the

duality in the orbifold context.

It would be interesting to study the effect of 3-form NSNS and RR fluxes on the gauge

theory dynamics. In particular, this can result in moduli stabilisation and topology changes.

Indeed one can show that some orbifold singularities with vector-like matter can be con-

nected to more general non-orbifold singularities. Work on this issue is in progress [61].

Another issue is related to the global embedding of the unoriented quivers with flavour.

The consistent gauging of the D7-brane flavour symmetry requires the absence of chiral

anomaly, and thus of global tadpoles, as well as other subtler, K-theoretic, issues that have

been recently addressed for instance in [33] for the case of two oriented quiver theories with

flavour on Z3 singularities exchanged by an orientifold projection.
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A String partition function

In this appendix we review the computation of the string partition function for a system of

unoriented closed and open strings on C3/Zn. See [68] and references therein for a general

review on open and unoriented strings .
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A.1 Torus amplitude

Closed string states organize into g-twisted sectors defined by the boundary conditions

XI(σ + 2π, τ) = wgaIXI(σ, τ), (A.1)

with similar conditions for fermions. The torus partition function can be written as
∫
d2τ2
τ22

times9

T =
n−1∑
g,h=0

Tg,h =
1

n

n−1∑
g,h=0

|ρ[gh](τ)|2Λ[gh](τ, τ̄), (A.2)

with

Λ[gh] =

∫
dp e−πτ2p

2〈p|Θh|p〉 (A.3)

the contribution of zero modes momenta (along the plane invariant under Θg) and

ρ[gh](τ) = Trg−twisted

[(
1 + (−)F

2

)
Θh qL0−a

]
q = e2πiτ (A.4)

the oscillator part of the h-projected chiral partition function in the g-twisted sector. Ex-

plicitly

ρ[gh](τ) =
1

2

1∑
a,b=0

(−)a+b+ab
3∏
I=0

ϑ

[
a+

2gaI
n

b+
2haI
n

]
ϑ

[
1+

2gaI
n

1+
2haI
n

] ∏
I∈Cg,h

2 sin

(
πhaI
n

)

= −
(
ϑ1

η3

)N ∏
I∈Cg,h

2 sin

(
πhaI
n

)
. (A.5)

The product in the second line runs over all I’s such that gaI ∈ nZ but haI /∈ nZ. We

denote this set by Cg,h. The terms 2 sin(πhaI) cancel the zero mode part of the correspond-

ing theta functions in the denominator. N counts the number of complex planes invariant

under both Θg and Θh, i.e. those planes I satisfying gaI , haI ∈ nZ. We notice that N is

also the number of supersymmetries preserved by the Θg,Θh twists. In the second line

of (A.5) we used the Jacobi identity to perform the spin structure sum. Notice that only

fermionic zero modes contribute to (A.5), since ϑ1 ≈ (1−1)η3. Here and below indices a, b

are understood modulo n, e.g. δa,0 means a ∈ nZ, and so on.

On the other hand the bosonic zero mode contribution is given by

Λ[gh] =
1

τN2

∏
I∈Cg,h

∫
d2pI e

−πτ2p2I 〈pI |Θh|pI〉 =
1

τN2

∏
I∈Cg,h

∫
d2pIδ(pI − whaIpI)

=
1

τN2

∏
I∈Cg,h

1

|1− whaI |2
. (A.6)

9For simplicity we normalize to one the infinite volumes of each complex plane.
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Plugging (A.5) and (A.6) into (A.2) one finds that bosonic and fermionic zero mode con-

tributions cancel against each other and one is left with the result

Tg,h =
1

τN2

∣∣∣∣ϑ1

η3

∣∣∣∣2N . (A.7)

Remarkably, the result (A.7) depends only on the number N of supersymmetries preserved

by the twists and not on the details of g, h. The torus amplitude can then be written in

the simple form

T =
1

n

∑
N=1,2,4

∑
[gh]∈OrbN

1

τN2

∣∣∣∣ϑ1

η3

∣∣∣∣2N , (A.8)

where we denote by OrbN the set of twists g, h leaving invariant N out of the four com-

plex coordinates. We are interested in the physics localized around the singularity. States

localized around the singularity come from N = 1 sectors where all three coordinates XI

are twisted, i.e. gaI /∈ Z for any I. States in N = 2, 4 sectors are non normalizable and

will be discarded in the following.

We notice also that the result (A.8) is modular invariant since ϑ1
η3

is invariant under T

and transforms as

S :
ϑ1

η3
→ 1

τ

ϑ1

η3
(A.9)

under the S-modular transformation.

Helicity traces

In this paper we deal with partition functions of supersymmetric theories that are always

zero due to the matching between the number of bosonic and fermionic degrees of freedom

in these theories. In particular, the partition function in sectors with N supersymmetries

vanishes as (1− 1)N , indicating that multiplets in these theories contain 2N−1 bosons and

2N−1 fermionic states. It is often convenient to resolve this degeneracy by counting states

weighted by their helicity on a plane. In this way one can distinguish between vector and

chiral multiplets in N = 1 or vector and hypermultiplets in N = 2 theories. To define the

helicity trace of string states one can simply replace the chiral partition functions ρgh by

the character value function

ρgh(x) = 2 sinπx
ϑ1(x2 )

ϑ1(x)

3∏
I=1

(2 sin
πhaI
n

)δgaI ,0 ϑ
[

1+
2gaI
n

1+
2haI
n

]
(x2 )

ϑ

[
1+

2gaI
n

1+
2haI
n

]
(0)

 . (A.10)

In particular, for g = h = 0 one finds

N = 4 : ρ[00] ∼ sin4
(πx

2

)
+O(q) = e2πix + e−2πix + 6− 4(eπix + e−πix) +O(q), (A.11)

reproducing the helicity content of an N = 4 multiplet. Similarly, for [g0] ∈ OrbN with

N = 1, 2 one finds

N = 2 : ρ[g0] ∼ sin2
(πx

2

)
+O(q) ∼ 2− eπix − e−πix +O(q),
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N = 1 : ρ[g0] ∼ sin
(πx

2

)
+O(q) ∼ 1− eπix +O(q), (A.12)

reproducing the helicity content of the N = 2 hyper and N = 1 chiral multiplets re-

spectively. We will mainly focus on N = 1 sectors proportional to ϑ1(x2 ) ∼ sin
(
πx
2

)
. The

coefficient of ϑ1 should be interpreted as the net number of chiral fields, i.e. as the difference

between spinors of left and right moving chirality in the open string spectrum.

A.2 Klein bottle amplitudes

We now consider the inclusion of an Ω-plane at the singularity. This corresponds to quoti-

enting the type IIB string theory at the singularity by an action Ωε involving a worldsheet

parity and a reflection specified by four signs (ε0, εI) satisfying
∏3
I=1 εI = −1.

The Klein bottle amplitude is given by the insertion of Ωε in the torus amplitude.

It is important to notice that only Ω-unpaired states can contribute to the Klein bottle

amplitude. In particular, g-twisted sectors combine left moving states with their complex

conjugate and therefore can contribute to the Klein only if they come in real representa-

tions i.e. either for g = 0 or g = n
2 in the case of even n. Inserting Ωε in the momentum

integral (A.6) one finds

ΛΩ[gh] =
1

τN2

∏
I∈Cg,h

∫
d2pIe

−πτ2p2I 〈pI |εIwaIhpI〉 =
1

τN2

∏
Ig,h

1

|1− εIwaIh|2
. (A.13)

Combined with contributions coming from the diagonal part ρ[gh](2it) one finds

K0,h = −
3∏
I=1

(1− w2aIh)

(1− εIwaIh)2

∫
dt

t3
ϑ1

η3
(2it),

Kn
2
,h = −

∏
I: aI even

(1− w2aIh)

(1− εIwaIh)2

∫
dt

t3
ϑ1

η3
(2it), (A.14)

for the Θh-projected amplitudes in the g = 0 and g = n
2 twisted sectors respectively and

zero otherwise.

A.3 Annulus and Moebius strip amplitudes

Finally we consider the inclusion of fractional D3 and D7-branes at the singularity. Frac-

tional branes are classified by the representations Ra of Zn with a = 0, . . . n − 1. We

denoted by Na(Ma) the number of fractional D3(D7) branes of each type and by N(M) the

total number. We are interested in the low energy of the four-dimensional theory localized

at the singularity described by open string states with at least one end on D3 branes. The

dynamics of these states is described by an effective N = 1 supersymmetric quiver gauge

theory. We orient D7 branes along the I = 1, 2 planes.

The action on Chan-Paton indices. The full action of the orbifold and orientifold

projections gives the following identifications for the Chan-Paton matrices λ associated to

D3-D3 and D3-D7 fields:

Θh : λV = γΘ,D3λVγ
−1
Θ,D3 λCI = waIγΘ,D3λCIγ

−1
Θ,D3 λCȧ3,7

= wsγΘ,D3λCȧ3,7
γ−1

Θ,D7

(A.15)
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Ω : λV = −γΩ,D3λ
T
Vγ
−1
Ω,D3 λCI = εIγΩ,D3(λCI )

Tγ−1
Ω,D3 λCȧ3,7

= γΩ,D3(λCȧ7,3
)Tγ−1

Ω,D7.

(A.16)

Up to some choices of phases and conventions, one can write the explicit embedding of the

projections in the Chan-Paton group:

γΘ,D3 =


1N0

w 1N1

w2 1N2

. . .

 , (A.17)

γΩ,D3 =



∆N0

0 · · · · · · 0 c1N1

... c1N2 0

... . .
. ...

0 c∗1N2

...

c∗1N1 0 · · · · · · 0


,

∆Na =

{
1Na ε0 = −1

iJNa ε0 = +1

c =

{
1 ε0 = −1

i ε0 = +1

where JNa is the (real, antisymmetric) quadratic invariant of Sp(Na). When n is even, the

central entry of the antidiagonal block in γΩ,D3 corresponds to the second SO/Sp node of

the quiver and therefore is of the form ∆Nn/2 . In the case of n even and n/2 odd, there is

another inequivalent projection, corresponding to the identification of the node 0 with the

node n/2. The first example of this kind is Z6, where we can write:

γΩ,D3 =



0 · · · 0 c1N0

... c1N1 0

0 c∗1N1

...

c∗1N0 0 · · · 0

0 c1N5

c∗1N5 0


(A.18)

These matrices satisfy the consistency condition

γTΩ,D3 = −ε0γΩ,D3, (A.19)

which can be obtained applying (A.16) twice. This choice of sign combined with (A.16)

provides the correct gauge group and matter field projections in the D3-D3 sector. Con-

sistency also requires that the D7-D7 sector exhibits the opposite unoriented projection:

γTΩ,D7 = ε0γΩ,D7, (A.20)

which means that the same expressions (A.17) can be used for γΘ,D7, γΩ,D7 after replacing

Na →Ma and ε0 → −ε0. In the following we will use the shorter notation γh ≡ γhΘ,Dp and

γΩh ≡ γΩ,Dp γ
h
Θ,Dp.
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The annulus amplitude. Let us first consider the annulus amplitude. There are three

types of open strings depending on the boundary conditions at the two ends of the open

string. Contributions from D3-D3 and D7-D7 open strings are proportional to the untwisted

amplitude ρ[0h]. Finally D3-D7 open strings are twisted along the four-dimensional plane

with mixed Neumann-Dirichlet boundary conditions and therefore have neither bosonic

nor fermionic zero modes along this plane. Collecting the various contributions one finds

Ah = −
3∏
I=1

(1− waIh)

[
trD3γh −

w−
a3
2
htrD7γh∏2

I=1(1− waIh)

]2 ∫
dt

t3
ϑ1

η3

(
it

2

)
. (A.21)

The three terms in the expansion of the square origin from D3-D3, D3-D7 and D7-D7 open

strings respectively. w-dependent terms in the numerator and denominators come from

contributions from fermionic and bosonic zero modes respectively. Finally ϑ1
η3

comes from

bosonic and fermionic excitations transverse to the singularity. The Chan Paton traces are

trD3γh =
n−1∑
a=0

Naw
ah, trD7γh =

n−1∑
a=0

Maw
ah. (A.22)

The Moebius amplitude. The insertion of Ωε in the D3-D3 and D7-D7 annulus leads

to the Moebius amplitudes

Mh =

3∏
I=1

(1 + εIw
aIh)

[
trD3(γ−1

Ωhγ
T
Ωh) +

w−a3htrD7(γ−1
Ωhγ

T
Ωh)∏2

I=1(1− w2aIh)

]∫
dt

t3
ϑ1

η3

(
it

2
+

1

2

)
, (A.23)

with

trD3(γ−1
Ωhγ

T
Ωh) = −ε0trD3γ2h, trD7(γ−1

Ωhγ
T
Ωh) = ε0trD7γ2h (A.24)

for the unoriented projection defined by (A.17).

The spectrum of open string states. The spectrum of the quiver gauge theory is

codified in the Annulus and Moebius amplitudes. States in vector multiplets come from

open strings connecting D3 branes of the same type and realize the gauge symmetry with

orthogonal and symplectic gauge groups for nodes a = 0, n2 and unitary groups otherwise.

Chiral multiplets come from open strings connecting D3 branes of different types or

D3-D7 strings. They are summarized in the open string partition function

1

2n

n−1∑
h=0

Ah,D3D3+D3D7 = −
n−1∑
a,b=0

(
1

2
IabNaNb + JabNaMb

)∫
dt

t3
ϑ1

η3

(
it

2

)
,

1

2n

n−1∑
h=0

Mh,D3 = −ε0
n−1∑
a=0

1

2
KaNa

∫
dt

t3
ϑ1

η3

(
it

2
+

1

2

)
, (A.25)

with

Iab =

3∑
I=1

(δa,b−aI − δa,b+aI ),
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Jab = δa,b−s − δa,b+s,

Ka =

3∑
I=1

εI(δ2a,aI − δ2a,−aI ) (A.26)

codifying the intersection numbers of the exceptional cycles at the singularity. In deriv-

ing (A.25) we repeatedly used the identity

3∏
I=1

(1 + εIw
aIh) =

3∑
I=1

εI(w
aIh − w−aIh). (A.27)

Using the fact that ϑ1 ∼ 1− 1 counts the degrees of freedom of an N = 1 chiral multiplet

(a vector multiplet is non-chiral) we conclude that the spectrum of chiral multiplet for the

quiver can be written as

Hopen
chiral =

n−1∑
a,b=0

(
1

2
Iab a b + JabMb a

)
+ ε0

n−1∑
a=0

1

2
Ka a. (A.28)

A.4 Tadpole cancellation

Odd n. The Klein, Annulus and Moebius amplitudes can be rewritten as cylinder am-

plitudes representing the exchange of a closed twisted string state between Ω-planes and

D-branes. We denote by K̃0,h, Ãh, M̃h the corresponding amplitudes. The length ` of the

cylinder is related to the one-loop modulus t via ` = ( 1
2t ,

2
t ,

1
2t) for (K,A,M) respectively.

The K and A direct and transverse amplitudes are related by an S modular transformation

while the Moebius amplitudes are linked by P = TST 2S. Using

S :
ϑ1

η3

(
−1

τ

)
=

1

τ

ϑ1

η3
(τ),

P :
ϑ1

η3

(
i

2τ2
+

1

2

)
=

1

iτ2

ϑ1

η3

(
i τ2

2
+

1

2

)
,

(A.29)

one finds

K̃h = i 22
3∏
I=1

(1− w2aIh)

(1− εIwaIh)2

∫
d`
ϑ1

η3
(i`),

Ãh = i 2−2
3∏
I=1

(1− waIh)

[
trD3γh −

w−
a3
2
htrD7γh∏2

I=1(1− waIh)

]2 ∫
d`
ϑ1

η3
(i`), (A.30)

M̃h = i 2 ε0

3∏
I=1

(1 + εIw
aIh)

[
trD3γ2h −

w−a3htrD7γ2h∏2
I=1(1− w2aIh)

]∫
d`
ϑ1

η3

(
i`+

1

2

)
.

Collecting the massless contributions from (A.30) one finds that K̃h + Ã2h + M̃h form a

complete square proportional to(
3∏
I=1

(1− w2aIh)trD3γ2h + (w−2sh − w2sh)trD7γ2h + 4 ε0

3∏
I=1

(1 + εIw
aIh)

)2

. (A.31)

– 27 –



J
H
E
P
0
1
(
2
0
1
4
)
1
2
8

Using (A.22) and (A.27) one can rewrite the combination inside the brackets in (A.31) as

K̃h + Ã2h + M̃h ∼

[
n−1∑
a=0

w2ahIa

]2

, (A.32)

with

Ia =
n−1∑
b=0

(IabNb + JabMb) + 4ε0Ka . (A.33)

We notice that Ia is precisely the anomaly associated to the gauge group U(Na) and is

zero for a = 0, n2 . This shows that cancellation of local tadpoles Ia = 0 and of irreducible

anomalies boil down to the same set of conditions

IabNb + JabMb + 4ε0Ka = 0 (A.34)

for all a.

Even n. When n is even, we must distinguish between the tadpoles for fields T2h in the

even twisted sectors, which propagate through the Klein, Moebius and Annulus amplitudes,

and the odd ones T2h+1 which only propagate along the Annulus. Collecting all amplitudes

contributing to the same tadpole one finds

K̃0,h + K̃0,h+n/2 + K̃n/2,h + K̃n/2,h+n/2 + Ã2h +M̃h +M̃h+n/2 = 0, Ã2h+1 = 0. (A.35)

The two equations can be re-expressed as perfect squares:[
3∏
I=1

(1− w2aIh)trD3γ2h + (w−2sh − w2sh)trD7γ2h +

+ 4 ε0

( 3∏
I=1

(1 + εIw
aIh) +

3∏
I=1

(1 + εIw
aI(h+n/2))

)]2

∼

n/2−1∑
a=0

w2ah(Ia + Ia+n/2)

2

= 0, (A.36)

[
3∏
I=1

(1− waI(2h+1))trD3γ2h+1 + (w−s(2h+1) − ws(2h+1))trD7γ2h+1

]2

∼

n/2−1∑
a=0

wa(2h+1)(Ia − Ia+n/2)

2

= 0, (A.37)

where we used the fact that Ka = Ka+n/2. Again cancellation of local tadpoles Ia = 0

matches the cancellation of anomalies in the quiver gauge theory.

For even n another different orientifold projection can be achieved, called Ω′ε in the

main text. This corresponds to the identification N̄a = Nn
2
−a, M̄a = Mn

2
−a. The cases

– 28 –
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with n a multiple of four are in some sense “trivial”, since this Ω̂ε coincides with the same

orientifold projection previously described. The (A.24) is now replaced by

trD3(γ−1
Ωhγ

T
Ωh) = −ε0(−1)h trD3γ2h = −ε0w

n
2
h trD3γ2h ,

trD7(γ−1
Ωhγ

T
Ωh) = +ε0(−1)h trD7γ2h = +ε0w

n
2
h trD7γ2h ,

(A.38)

which can be easily checked for example in the Z6 case with γΩ explicitly given by (A.18).

Such choice is allowed because the extra phase squares to unity. This is a necessary

condition to write again the sum of the transverse amplitudes as a perfect square, since the

contributions to the Klein and Annulus remain unchanged. By performing the same steps

as above, we recover the same identification of tadpole cancellation conditions with anomaly

cancellation, as in (A.36), but with a different expression for the orientifold contributionKa:

K̂a =
3∑
I=1

εI(δ2a,aI+n
2
− δ2a,n

2
−aI ). (A.39)

The example of this second projection on C3/Z6 was given in the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[50] L. Ibáñez and A. Uranga, Neutrino Majorana masses from string theory instanton effects,

JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

[51] R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string

vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113

[hep-th/0609191] [INSPIRE].
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