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In this paper we study certain case which is left open in the recent work of
Timmesfeld [3]. This is necessary for the completion of the “extraspecial
problem.” More precisely, we prove the following

TueoreM. Let G be a finite group which possesses an involution z such that
the centralizer M of z in G satisfies the following conditions:

(1) The subgroup Q = Oy (M) is an extraspecial group of order 2° and
C(Q) € 0.
(i) MO~ 2X; X dgor Ty X 2.

Then G is not simple.

According to [3] we set M = M/(z)> and M = M/Q and we use the “bar
convention.” Further we write C(X) = Cy(X) and N(X) = Ny(X) for any
subset X of G. The other notation is fairly standard.

1. Sovt ProrerTIES OF M

From now on we assume that G is a finite simple group. We first prove some
properties of M which shall be used in the proof of the theorem.

By [1] we can assume that & is conjugate in G to some involution 2 in Q - (2.
Let L = Q(Q, N M) where O, = 0,(C(a)). Then by (3.11) [3], L is of order 23
and by (7.6) [3], Lsgp> ~Zy X A . Set My, = {Lgz>. Let M, be the inverse
image of M, in M, then M : 3, | < 2. Put M, = Fy X F, where Fy ~ %, and
F, ~ A, . Let x, be an element of order 3 of M, such that &, € F, , then N, ({xg>)
covers M. By [2], M acts irreducibly on 0, thus Ny (<xg>) N QO = {z). Set
X = Ny({xd) N My, then X = XN ed~Z; x 4s. Put X =X, x X,
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with X; ~ 2, and X, ~ 4. Let X, and X, (resp.) be the inverse image of
X, and X, in X. We have X, N X; = ¢2). Let P, = {p,> be the Sy-subgroup
of X, and P, be an S;-subgroup of X . Then P, is elementary abelian of order 5.
Let 7; be a 2-element of X, — (). Then pjp = pg* and pjp = o forall pef 1

We now prove that if Cy(p) 5= (2> for some p = Py*, then Cylp) ~ Fs ~ Ox

Suppose that Co(p) = Qg = Qg , then either B = [0, {p,T =~ Qg = Qg < Qs or
B~ Q. If B~Q4yxQg=0s, then B = Cylpop). Calra’e) 2s (pop)s = p55
and py , p act fixed-point-free on B, thus Cy(pep) N Cy{pg'p) = {2), contradicting
Cy(ps) = 1. If B ~ Qy, then 7, centralizes B as [r, , p] = i. Frcm the structure
of X, there exists an element p* of P, of order 3 such that P, = {p, p*, and
p ~y, £% then B* = [0, {p*)] =~ Q3 and BN B* = (z). Furtker

e -
“Colp) ™ Colp™) = 2° and 0 = Cy(p) N Co(p™} X B x B*. Now #, cent=ai-

izes B ard B* and Co(p) N Cyp™) is Tc-invariaflt thus | Cp{fy) = 2° whick
contradicts | Cy(7p)' < 2% as 7, inverts j, and 7, acss fixed-point-free on §.
Hence we I‘ave shown Co(p) == Qg = Og if Cy(p) 5= {2~ for pe Py™ Sudpcsn
that p* does not centralize B = [0, {p)] ~ Qg ~ O3, then Cp(p™) ~ Q5 as
Celp™) =~ Qg > Qg , thus P; acts faithfully on B. On the other hand r, centraiizes

P, , so #; centralizes Cy(p*) and [B, {p*)], hence 7, centralizes B, thus | C 5%,
== 2%, a contradiction. Therefore p™ centralizes B and C,{p) = "0, {p*} ~
P A?RP . /i =

Qg > Qs aﬂd [0, {p>] = Colp*} ~ Qg < Qg and gp*> acs Sxed-point-free cr. .
as

Acting with {py,pp*> on Q we see that O = Colpere™). Colpg'or™)
{popp™Y'o = (05 'pp*). Moreover Colpopp™) =~ Cofpg ae™) = Qs < Q5 . This im-
N e

plies that Cylry) is elementary abelian of order 23 and Cylm} = Cs(5;. Now
Co,(#) = {2> X K where K~ Dg = Dg = Dg and Q. N Q@ = E is elemenzary
abelian of order 25, so KN QG = KN Eis of order 2% By the structure of K.
there exists an elementary abelian subgroup D of order 22 such that X =
(KnE)y'D,soQNnD=1andL =0Q-D. This implies that the coser Or,
contains invelutions, hence 7, is an invoiution as CQ( 7o) == FEos . Let 7; be zn

iavolution in X, and r, be an inverse image of #, in X, . From he structure or
1 1 1
Y. we can assume that 7, inverts pp*. So (opep™}": = pep*p™ L. By ihe same
"

argument as before we conclude that Co(r;) ~ Ejs and Cplr;) = Cy(F,). Hence
7, is an involution. Therefore we have prove that X, = (2} X F, and X, =
(3> X F; with Fy ~ X; and F; ~ 4. In other words the group 1, splits ove:
Q. We Lave proved the following

ProzcsitioN 1. My =Q - (Fy X F)) with Fyr~ 2, and F. ~A,. Le:
P, = {py> be the Sy-subgroup of F,. Then P, acts ﬁud-pomt-jree on Q. There
exists tico elements py and p,, such that P, = {p, , ps, is an Sy-subgroup of F'. and
71 acts fixed-point-free on Q and Cy(p,) ~ Qg * Oy . Lei =, be an invslution inF, .

"

Then Cy(r) = Cg(Fo) and Colr,) is elementary abelian of order 25. Let = be an
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involution in Fy. Then Cy(r)) = Cy(7,) and Co(ry) is elementary abelian of
order 28,

Note that there exists an involution 7, in F; which acts invertingly on P, .
Set P = Py X Py = {py, p1,pe>- Then P[{py) acts faithfully on Cqy(p,) o~
Qg = Qg and O - P acts transitively on 18 non-central involutions of Cy(p,)-
Acting with <py , p,> on Q, we have Q = Co(pypy1) * Colpop1™) as (op1)™ = popr*
and fo,p; act fixed-point-free on . Further Cg(pypy) = [O) {popT™>] =
Qs * Qs and Colppr") =[Q, <pop1>] =~ Qs = Qs and P{pgpy) acts faithfully on
Colpop1) and Q - P acts transitively on 18 non-central involutions of Cy(pyp,). We

now consider the action of {p, , p,> on Q. Since (pyes)™ = pypz* and J, acts fixed-
— —~— "

point-free on §, we see that pgp, and pye;™* act fixed-point-free on Co(ps). As fy
N

and p, act fixed-point-free on [Q, {p,>] we have Cig,¢s51(pop2) = Cio,cs,51(Popz")
~ Qs. So Cqlpeps) = Colpopz") =~ Q3. Therefore we have proved that
911 Cy(t). for all involution #e Q — (2). Let R be an Sg-subgroup of F;.
Then R acts fixed-point-free on Q as [P, , R] = 1. This implies that 3 | | Cy(2)I.
Now the group .M contains two conjugate classes of subgroups of order 3 which
centralize some non-central involution of O with the representatives (p,> and
{popLy- Hence M has 2 conjugate classes of invelutions which are contained in
O — (&) with the representatives #; and t, where #, is centralized by {p,> and
ty by {popr)>. We have | M : Cyy(t;)i = 2% -32-5,a; =1 or2,i=1,2. The
both cases @; = 1 and a; = 2 occur. Itis easy to see that | Cy,(£,)/Co(t;) =2%-3
and | Cp{t,)/Cq(t)] =23 -3. Hence M :Cy(t)) =2-32-5=90 and
VM Cylt)f = 22 - 32 - 5 = 180. It follows from (3.11) [3] that #; ~g; 2. By
(3.13) [3] £, # 2 We have proved the following

PropositioN 2. The group M possesses precisely two comjugate classes of
involutions which are contained in Q — {z) with the represeniatives t; and i, .
We have |t | =2-52-5=090 and |[t, | =22 - 3% -5 = 180. Moreover
1y ~¢ 2 and ty g 2.

Let T be an Sy-subgroup of I containing 7, . By proposition 1 Cg(7g) is an
elementary abelian group of order 25. We set A = Cy(7y) X {7o). Then A is a
maximal elementary abelian subgroup of order 25 of T and A is self-centralizing
in M. It is easy to see that N,,(A)/4 is isomorphic to an elementary abelian
group of order 2¢ extended by the group W where W ~ A, or X according as
M = Myor M = M, . Suppose that A N Q = Cy(7,) contains an invelution v
which is conjugate in M to Z,. Then | Cy (4)(%)/Co(r). = 2° -3 and hence
| Naf4) : Cxppa(®)t = 2% - 3 - 5 = 60. This means that 4 N Q contains 60
conjugates of v, but this is not the case. Hence (4 N Q) — {z) contains only
the involutions which are conjugate in Af to #;. Let t (A4 N Q) — {2)> then
| Na(A4) : Cy ()i =2 + 3 - 5 = 30. Thus the group V,,(4) contains exactly
two conjugate classes of involutions which are contained in 4 N Q with the
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representatives & (1 conjugate) and ¢ (30 conjugates). Note that the coset 7,¢
contains precisely 2° involutions which are of form 7 with % € Cy(r) ané =,
is not conjugate to 7,2 under the action of Q. Hence 7,0 contains under the
action of Q precisely 2* conjugates of 7y and 2* conjugates of ryz. Let v € Q,,, - 31,
then 5* = 4. Since ACL = Q - (Q, N M), so A*CL* = Q, - (Q N C(a)).

Further as 4*C 31, 50 A*CL. Thus | A*NQ = 2%and so A*N({L N I}
= {2, hence we can choose y € 3, such that ¢¥ = Z(T N 3{), it follows <hat
A% < T. Since T is self-normalizing in G, so A = 4% Thus N{4d) T 37 We
have proved.

ProrosiTION 3. Let T be an Sy-subgroup of M containing . Then 4 =
Colmo) X 7oy is a maximal elementary abelian subgroup of T, A is self-centralizing
i G and A< T. The group N,,(A)l4 is isomorphic to an eiementary abeliar
group of order 2* extended by the group W where W ~ Ay or X, according a:
M = My or M #= My. AN Q contains under the action of N, [{(A)/A two con-
Jjugate classes of involutions with the representatives = (1 conjugate) and t (3C
conjugaies) and t ~ygt; . A — (A O Q) has under the action of Q tsvo conjugate
classes of incolutions with the representatives v, (16 conjugates, and ~yz (16 con-
Jugates). Furthermore N(A) T M.

2. PROOF OF THEORE::

By proposition 3 we have N(A4) € . Since N(d)'4 is isomorphic to a sub-
group of GL(6, 2). sc ' N(4) : Nyy(1) = 31 or 63, the length cf the orbit of 2
in N{A).

Suppese that N(d): Ny(d) = 31. Then "N(d)'d =27-32 3.3} or
28532 -5 3] according as W = M, or 3] = M. Let X, be an S;.-subgroup
of N(Ad}. Then by a Sylow’s theorem we have 9 N(X,;) N N(4). Hence
there is a subgroup R of order 3 in N(d) which centralizes X, . But [4, Xj,}
is of order 2° and {4, Xj,] is R-invariant, a contradiction. We have proved that

N{A) : Ny(d) = 63 = 32 - 7. Thus z is fused in N(.{) to other 62 invelutions
of . Now N(A)id =27-3*-5-Tor28-3" -5 -7 according as 3 = 1f,
or .M = 1l . Let X, be an S;-subgroup of N (). Then X acts fixed-point-free
on . In order to simplify the notation we set .V = N{d), ¥ = N{4)' 2nd
we use the ‘‘bar convention.” First of all we see that an S,-subgroup ¥, of
Cy(X;) acts fixed-point-free on 4, hence W is cyclic of order 9. Note ~ha:
541 N{X;). Let n; be the index in N of a 7-Svlow normalizer in X. Bv =

Svicw’s theorem we have the following possibilizies for 7, :

.3.26 5.33.28
.3.23 5.33.2—5
-3 5.33.22

First we show that n, = 5 - 3. Suppose that n, = 5 - 3.

(VIR I [}
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Let W, be an S,-subgroup of Ny(X;) and W5 = W, N Cy(X;). Then
W,: W§': <2 If W, = W, then Z(AW,)C 4 is of order 2 and is X,-

invariant which is not the case. So Wy: W¥| = 2. Since Z(AWSF)C A4 is
Xy -invariant, so , Z(AW3)i = 23, hence | Z(AW,), > 22 which contradicts the
fact that AW, is an Sy-subgroup of G. Hence we have 7, = 5 - 3. Now we have
Oy(N) =1, as N acts transitively on A. Further 7+ | O(N)|, otherwise an
Se-subgroup of N would normalize an S,-subgroup of ¥ which is not the case.
Since 51| Ng(X,)l, it follows that 5+ ; O(N). Thus O(N) is a 3-group if
ON) == 1. As | C(X,)ls <9 and 7+ GL43), it follows that X, centralizes
O(N) (here note that an Sy-subgroup X, of N is an Ss-subgroup of GLg(2) and
so X, is isomorphic to an Sy-subgroup of PSp,(3) and X; contains a unique
elementary abelian subgroup of order 27). So ' O(N), < 3?2 and O(N) is cyclic.
Since an S;-subgroup X of .V centralizes O(N) and [4, X;] ~ Es and O(N)
acts fixed-point-free on 4, it follows that O(N): < 3.

Suppose that O(N) = 3. Let C = Cx(O(N)). Then N :C: =2, as O(N)
acts fixed-point-free on A. Let C = C'O(N) and H be a minimal normal
subgroup of C. Then H is not solvable, otherwise / is an elementary abelian
2-group and C (H) ~ Eyx , as C(H)is X-invariant. On the other hand C (H)
is O(N)-invariant and O(N) acts fixed-point-free on 4 which is impossible.
So H is a direct product of isomorphic nonabelian simple groups. Since
[X;, Xs] == 1, for any subgroup X of order 5 of C, it follows that 5,7 | H .
From the order of C we conclude that H is simple. Hence we have the following
possibilities for H: H ~ A,, A, or Ly(4). If H ~ A, or Ay, then there exists
an element ¥ of order 3 of C — H which centralizes H, in particular % centralizes
X, and so an inverse image ¥ of ¥ in C is of order 9 and (#*) = O(V) and %
acts fixed-point-free on 4. Further ¥ centralizes an Sy-subgroup X of C and
C(X;) ~ E,» is Z-invariant, a contradiction. So we have H ~ L. 4). Since

Ng(X;)ls = 3, then m; = 5-3 - 28 or 5-3 - 22 Hence it follows from the
structure of Aut(Ly(4)) that there exists an element X in & — H of order 3 which
centralizes I. Again we have a contradiction in the same way as before. So we
have O(N) = 1. Let H be a minimal normal subgroup of N. Then H is simple
and we get the following possibilities for H: H ~ 4,, Ay, Ay or Ly(4). If
H~ 4,, then n, = 5 - 3% - 25 and Nz(X,) contains a diherdral group D of
order 14. On the other hand there exists an involution ¥€ N — H which cen-
tralizes D, thus | C (¥)' = 8 and C,(¥)is D-invariant, contradicting C (X;) = 1.

If H ~L,4), 4,, A, then in any case Cg(H)is a nontrivial solvable normal
subgroup of N, contradicting O,(N) = O(N) = 1. The proof is compiete.
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