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Abstract 

This paper presents a novel method for diagnosing faults using fault tree analysis and Bayesian networks (BN) to 
optimize system diagnosis. All minimal cut sets were generated via qualitative analysis of fault tree using an efficient 
zero-suppressed binary decision diagram (ZBDD), while the diagnostic importance factor (DIF) of components and 
minimal cut sets were calculated by mapping fault tree into equivalent BN. Also, these analysis results such as 
minimal cut sets and DIF were updated after receiving the evidence data from sensors and used to develop an 
efficient diagnostic decision algorithm. Furthermore, a diagnostic decision tree (DDT) was generated to guide the 
maintenance personnel to repair the system. Finally, a real example is given to demonstrate the efficiency of this 
method.
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1.Introduction 

Recent developments in technology have led to an increase in the complexity of systems. The failures 
within these systems can cause disruption to the operational functionality. Fault location has therefore 
become a first objective in engineering applications. Several techniques have focused on identifying 
faults. Obviously, effective diagnostic approaches can decrease downtime and consequently enhance 
operational functionality. A new classification framework for fault diagnosis was proposed in [1], which 
divided fault diagnosis approaches into qualitative analysis approaches and quantitative analysis 
approaches. The former which is very suitable for diagnosing complex system is automatic, independent 
on mass failure data and can make full use of some quantitative data and structural information 
performed within the system design phase. Some recent approaches have used reliability assessment tools 
such as failure modes and effects analysis, fault tree analysis and Bayesian network. In [2, 3] 
components’ DIF or minimal cut sets’ DIF was calculated based on the static fault tree analysis, which 
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determines the order of the system diagnosis. In [4] the ratio of efficiency to time for fault diagnosis was 
introduced to take into consideration the mean time to detection of each unit and find the best program to 
remove the faults. However, these methods determine the diagnostic sequence only by components’ DIF 
or minimal cut sets’ DIF alone, and usually causes minimal cut sets with a smaller DIF to be checked first 
[5]. To improve diagnostic efficiency, Assaf T. put forward an approach to incorporate evidence data 
from sensors into diagnostic process [6]. However the solution for dynamic fault tree was based on 
Markov model which has the infamous state space explosion problem. And, it hadn’t inference capability 
and couldn’t update the components’ posterior failure probability based on the evidence data from 
sensors, which affected the diagnostic accuracy and efficiency. In [7,  8] BN was used to diagnose faults 
and the posterior failure probability could be updated after receiving the evidence data. But it was 
difficult to model BN, which always needed domain experts or mass historical data, and also these 
methods neglected system qualitative structure to locate faults. 

To address these issues, we present a novel approach based on fault tree analysis and BN for fault 
diagnosis. It makes use of the advantages of the fault tree for modeling and BN for inference. The 
proposed method use fault tree model and need little expert knowledge. Also we present an efficient 
diagnostic decision algorithm based on the overall consideration of the fault tree analysis and BN 
inference and generate a DDT to guide the maintenance crew to make efficient decisions when trying to 
recover a system. 

2.The Framework for Fault Diagnosis 

The method for fault diagnosis uses system fault tree model. All minimal cut sets are generated using 
qualitative analysis of fault tree, while DIF is calculated via quantitative analysis. DIF is the corner stone 
of our methodology and provides an accurate measure of components’ relevance from a diagnosis 
perspective [9]. The DIF is defined conceptually as the probability that an event has occurred given the 
top event has also occurred. 

( ), ( )
n

MCS n C
DIF P MCS S DIF P C S

                 (1) 

MCSn: nth minimal cut sets, C: a component in system S. 
Due to the different complexity of components their test costs are different. A balance is needed 

between the DIF and test costs. Therefore, Ref. [2] proposed a new measure of importance called the cost 
and diagnostics importance measure (CDIF). This measure is simply the DIF per unit cost. The CDIF 
measure appears in (2). 

/C C CCDIF DIF C                                                (2) 

Cc: the test cost of the component c
Based on above analysis, a framework for fault diagnosis method is presented in Fig. 1. It uses fault 

tree model which can come from the system design phase for reliability analysis. We generate all minimal 
cut sets using qualitative analysis of fault tree and calculate DIF of components via mapping fault tree 
into BN. Meanwhile we update the sum of all minimal cut sets and the components’ posterior failure 
probability based on the evidence data from sensors. Also, based on these results we design an efficient 
diagnostic decision algorithm and generate an efficient DDT, which reduces dependence on engineering 
expertise. 
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Fig. 1 The framework for proposed fault diagnosis method. 

3.Fault Tree Analysis 

3.1.Qualitative Analysis of Fault Tree 

The algebraic minimization and Fussell-Vasely algorithm are the most effective method for 
generating minimal cut sets. But they are inappropriate to the complex system. For the complex system 
we can use BDD to solve all minimal cut sets. However, it’s very difficulty to decide the order of the 
basic event for BDD solution. ZBDD can overcome the shortcoming. The MCS generation algorithm is 
executed recursively during the depth-first left-most traversal of a fault tree. Let S1, S2 be the input of 
MCS-AND and MCS-OR respectively, the basic set operations are as follow [10]: 

1 2 1 1 2 2

1 2 1 2 3
, ,

c c c
S S S D S S D S S

U D D P D D D U P
                          (3) 

So the output of MCS-AND and MCS-OR are 
3OR c

MCS S D and
AND c

MCS S P  respectively. The 

MCS generation algorithm is executed recursively during the depth-first left-most traversal of a fault tree. 
It first generates the MCS of the inputs of a connection gate, and then performs a serial of set operations 
to combine the MCS of the inputs into the MCS of the output of the connection gate [10]. At last we can 
get all the minimal cut sets. 

3.2.Quantitative Analysis of Fault Tree 

Quantitative analysis for fault tree is used to calculate the minimal cut sets’ DIF and components’ 
CDIF. In [5] DIF values are calculated from marginal importance factors produced by the sensitivity 
analysis of fault trees solved via BDD. The complexity of calculation depends critically on the basic 
event ordering of the fault tree, and it doesn’t deal with the evidence data from sensors. So we map the 
fault tree into an equivalent BN and resort to its inference engine to calculate the posterior probability of 
components. Conceptually it is straightforward to convert a fault tree into a Bayesian network. Ref. [11, 
12] shows the conversion of an OR and an AND gate into equivalent nodes in a BN. Parent nodes are 
assigned prior probabilities, which coincident with the probability values assigned to the corresponding 
basic nodes in the fault tree, and child node is assigned its conditional probability table. 

Once the structure of a BN is known and all the probability tables are filled, we used an open source 
MATLAB toolbox: The Bayes Net Toolbox (BNT) to calculate DIF. We enter the evidence that the 

system has failed, ( ) 1
S

P state fault , and solving the BN using a clustering algorithm gives the 
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following posterior failure ( )
C

P state fault , which is the component’s DIF. If there are some evidence 

data from sensors, similarly, we set their probability as 1 and feed them into BN to update the 
component’s DIF. 

The DIF of minimal cut sets is calculated using (4). 

( ) / ( )
n

MCS n
DIF P MCS P S                                       (4) 

P(S): the unreliability of the system. 

3.3.Processing Evidence data 

When a system failure is observed, sometimes additional evidence can be observed too. We can make 
use of these evidence data. Since, examining a cut set that engendered the system to fail then repairing 
the bad components in the same cut set should recover the system, we can enhance diagnosis by reducing 
the number of cut sets examined. An efficient method for using evidence is developed to reduce the 
number of suspected minimal cut sets [6]. The cut sets under evidence (CUE) is introduced and it is the 
set of all essential minimal cut sets obtained after evidence eliminates some cut sets. In this paper, we not 
only update the CUE, but also update the DIF of components and CUE. The updating of components’ 
DIF is very simply, while the updating CUE’s DIF is calculated using (5). 

( , , )
( )CUE

E

P CUE E S
DIF

P S DIF
                                        (5) 

E: the variables with given evidence. 

3.4.Diagnostic Decision Algorithm 

As cut sets represent minimal sets of component failures that can cause a system failure, we should 
diagnose them one by one to find the reason of system failure. Only when we finish diagnosing a 
minimal cut set can we do next. The order by which cut sets are checked depends on the DIF ordering, 
while the order of components in the same minimal cut set is determined by their CDIF. The minimal cut 
sets with larger DIF are checked first. Accordingly, components with larger CDIF in a cut set are checked 
first. This assures a reduced number of system checks while fixing the system. Based on quantitative and 
qualitative data obtained from reliability analysis of fault tree as well as the algorithm in [5, 13], 
diagnostic decision algorithm is as follows: 
Step1. Rank all cut sets and select the cut sets with highest DIF value. 
Step2. Check the component C with highest CDIF in the cut sets. 
Step3. Split the cut sets into those with C and those without.  

If C failed test we take the set of cut sets that include C
Select the cut sets untested with highest DIF value. 
And recursively repeat Step2 - Step3. 

b) If C has not failed test we take the other set of cut sets 
Select the cut sets untested with highest DIF value. 
And recursively repeat Step2 - Step3. 

The diagnosis strategy can easily be captured in the graphical DDT. The DDT provides us with a map 
that allows us to recognize the failing components [2, 9]. Once the order of components is determined, 
we can generate the DDT. 
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4.A Case Study 

The system of aircraft engine oil pressure warning instructions is an important subsystem of the 
aircraft control system. It is composed of the oil pressure instructions part and oil pressure warning part. 
The fault tree for the engine damage is shown in Fig. 2 [5]. We generate 21 minimal cut sets via ZBDD. 
Assume a sensor monitors the failure of X1 and X3, and detects a failure; the following CUE function is 
generated: 

2 4 5 6 10 11 10 12CUE
F X X X X X X X X              (6) 

Fig. 2 Fault tree for the failure of oil pressure warning instructions system 

Now because engine damage, X1 and X3 have been set as evidence, their failure probability should be 
set as 1. Solving the BN using BNT tool gives the results of some importance factors in Table 1. For 
simplicity, we assume all components have a unit test cost. Based on the diagnostic decision algorithm 
above mentioned, we can generate its DDT which is shown in Fig. 3. Since sensor monitors the failure of 
X1 and X3, X1 and X3 should be checked prior to generating the DDT. The produced DDT demonstrates 
the advantage of evidence incorporation into the fault diagnosis. The reduction of the characteristic 
function into the FCUE as a result of evidence has produced a smaller DDT comparing with the result in 
[5]. 

TABLE I Diagnostic data for oil pressure warning instructions system failure. 

Order Cut sets Cut sets’ DIF Components’ DIF 

1 X2 0.653 0.653 
2 X5 0.348 0.348 
3 X10. X11 4.84e-5 1.95e-5, 1.2e-3 
4 X10. X12 4.03e-5 1.95e-5, 1e-3 
5 X4 4.35e-6 4.35e-6 
6 X6 2.17e-6 2.17e-6 
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Fig. 3 DDT for the failure of oil pressure warning instructions system 

5.Conclusions and Future Work 

A novel approach of fault tree and Bayesian networks for fault diagnosis has been proposed which 
there may be little expert knowledge. It makes full use of the advantages of both fault tree for modeling 
and BN for the inference ability. Using the proposed approach, we can acquire all minimal cut sets by 
zero-suppressed binary decision diagram, calculate the components’ DIF and update them after receiving 
the evidence data from the sensors by mapping the fault tree into equivalent BN. Furthermore, based on 
the reliability analysis data, we present an efficient diagnostic decision algorithm and generate a DDT to 
guide the maintenance crew to make more efficient decisions when trying to recover a system. Finally, 
we have tested our methodology on a real system to demonstrate its diagnostic efficiency. 

In the future work, we will focus on the sensors’ reliability as well as placement and improving the 
effectiveness of our algorithms. 
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