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Fibroblasts (Fibs) contribution to neoplastic progression, tumor growth, angiogenesis, and metastasis has
been recently reported by several research groups. In this study it was investigated if fibroblasts are the
source of brain-derived neurotrophic factor (BDNF), which plays a crucial role in the progression of oral
squamous cell carcinoma.

In a novel in vitro system oral Fibs were cultured with SCC-25 lingual squamous cell carcinoma cells for
7 days. Factors related with this interaction were investigated by quantitative PCR and western blot.

In the co-culture, fibroblasts were converted to carcinoma-associated fibroblasts (CAFs), which in
return initiated epithelial–mesenchymal transition (EMT) of SCC-25 cells. The induced CAFs produced
increased levels of BDNF, which interacted with the increased-expressed neurothrophin receptor B (TrkB)
on EMT-converted SCC-25 cells. Possible regulatory factors of BDNF expression (tumor necrosis factor-a
and interleukin-1-b) were detected both in CAFs and EMT-tumor cells. In CAFs: IL-1b-, in SCC-25 cells
TNF-a-gene-expression was significantly increased in co-culture conditions.

Activated fibroblasts (CAFs) and mesenchymal transitioned tumor cells might use the BDNF-TrkB axis
and its regulation to harmonize their interaction in the process of tumor progression.

� 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
Introduction

Fibroblasts and myofibroblasts often represent the majority of
the stromal cells within various types of human carcinomas, yet
the specific contributions of these cells to tumor growth are under
intensive investigation. Previous studies revealed that, mutual par-
acrine effects between tumor cells and stroma (myo)fibroblasts
lead to tumor cell proliferation and progression.1 An activated
mesenchymal cell population, named carcinoma-associated fibro-
blasts (CAFs), have been extracted from a number of invasive hu-
man carcinomas, which are competent to promote the growth of
carcinoma cells.2 A functional property of CAFs is the sustained
expression of stromal derived factor 1 (SDF-1),3 which plays a cen-
tral role in the local invasion of cancer.4 While the potential impor-
tance of CAFs in tumor progression is becoming clear, the
generation mechanisms of them from normal fibroblasts, or mes-
enchymal stem cells are currently under extensive investigation.
ax: +43 512 504 23175.
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Recently Mishra et al. described an experimental system where
CAFs were induced from mesenchymal stem cells by treatment
with carcinoma cells-derived medium.3 Dynamic interaction sys-
tems between carcinoma and mesenchymal cells are required to
understand the interaction between CAFs and tumor cells. It is ex-
tremely important to use human cells in these interaction systems,
since especially fibroblasts are different in mice in relationship to
cancer5 and to senescence.6

Accordingly, in the current study we describe a novel human
in vitro tumor–stroma interaction system, which is able to induce
CAFs from normal periodontal ligament (PDL) fibroblasts within
7 days.

In tumor cells, stroma microenvironment induces an epithelial–
mesenchymal transition (EMT), which is considered as a major bio-
logical process in epithelial tumor invasion, progression and
metastasis. During this process loss of epithelial cell polarity and
morphology is observed together with induction of a mesenchymal
phenotype.7,8

Interestingly, very recent studies provided evidence that neuro-
throphin receptor B (TrkB), a 145-kDa receptor tyrosine kinase and
its ligand: brain-derived neurotrophic factor (BDNF) may be co-
opted in the regulation of EMT in head and neck squamous cell car-
cinoma (HNSCC).9,10 In addition, altered TrkB expression, signaling
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and mutations have been found to be important in various other
cancer types, including carcinomas of the pancreas, lung, colon
and prostate, as well as neuroblastoma and multiple myeloma.11

Hypothesis

In this study we hypothesized that, the main ligand of TrkB:
BDNF is produced by CAFs, and the BDNF-TrkB axis is a regulatory
way in harmonization of induction of CAFs in the stroma and
induction of EMT in the tumor cells. For testing this hypothesis
an in vitro experimental system co-culturing periodontal ligament
fibroblasts with SCC-25 lingual squamous cell carcinoma cell line
was developed.

Materials and methods

Cell lines

Periodontal ligament (PDL) fibroblasts were received from Prof.
Dr. Miosge (Department of Prosthodontics, Georg-August-Univer-
sity, Göttingen, Germany).12 PDL fibroblasts were routinely cul-
tured in DMEM-low glucose (PAA, Linz, Austria) supplemented
with 10% fetal bovine serum (FBS) (PAA), 2 mM L-glutamine,
100 units/ml penicillin, 100 lg/ml streptomycin. SCC-25 cells were
purchased from the German Collection of Mikroorganisms and cell
cultures (Braunschweig, Germany), and were routinely cultured in
DMEM/F12 (PAA, Linz, Austria) supplemented with 10% FBS (PAA),
2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin,
100 lg/ml streptomycin.

Co-culture

For induction of carcinoma-associated fibroblasts (CAFs), a
modified protocol of transwell cultures was used, based on a pre-
vious report,13 and detailed described in the Supplementary mate-
rial 1.

RNA extraction, reverse transcription and PCR

Total RNA was isolated from control and co-cultured cells as de-
scribed before.14 Reverse transcription was completed by utiliza-
tion of the ‘‘iScript cDNA Synthesis Kit’’ (Bio-Rad, Munich,
Germany). Real time quantitative PCR (qPCR) was performed using
the Quantance Sensimix Sybr & Fluorescein Kit (Foster City, CA,
USA) in a MyiQ cycler (Bio-Rad).

PCR primers for b-actin,15 E-cadherin, vimentin, snail16 and
SDF17 were described before. b-actin functioned well as house-
keeping gene, and did not show significant changes under experi-
mental conditions in fibroblasts and in SCC-25 cells.

Other primers (BDNF, TrkB, TNF-alpha, IL1b were designed by
using the program Primer Blast of NCBI (NIH, Bethesda, MD, USA)
primers sequences are summarized in Supplementary material 2.
The relative gene expression was calculated as reported before.14

Protein fractionation, immunoprecipitation and western blot

Cells after co-culture and controls were scraped into 500 ll
extraction buffer/well or/insert, non-nuclear and nuclear protein
fractionation was performed as described previously.18 Non-
nuclear protein fractions were subjected to protein concentration
measurement,18 and 16 lg proteins were used for immunoprecip-
itation with Protein A-magnetic beads (Roth, Karlsruhe, Germany),
and 1 lg TrkB-reactive-rabbit immunoglobulin (Biovision, Montain
View, CA, USA), following the instructions of the manufacturer.
Controls were done by immunoprecipitation using 1 lg TrkB-reac-
tive-rabbit immunoglobulin preincubated for 1 h with 1 lg block-
ing peptide. Protein extracts prepared in the same way, containing
16 lg proteins from TrkB-overexpressing SH-SY5Y cells were used
as positive controls.19 Precipitated proteins were removed from
beads into sample buffer: 250 mM Tris HCl pH = 6.8, 4% SDS, 10%
glycerol, 0.006% bromphenolblue, by 5 min incubation at 70 �C, fol-
lowed by western blotting using a previously published protocol,20

and a rabbit polyclonal antibody of Santa Cruz Biotechnology,
(Santa Cruz, CA, USA).20 The first immunoprecipitation superna-
tants were subjected to western blot of b-actin (Sigma, Vienna,
Austria) for control of equal loading.21 Density of the detected
bands was done by the Image J software.14

Statistical analysis

Each experiment was performed in two independent sets con-
taining at least three biological repeats/set, altogether 7 repeats
were performed. Each biological repeat was done in two technical
repeats. The relative gene-expression results were tested for nor-
mal distribution by D’Agostino & Pearson omnibus normality test
using the Graphpad Prism 4.03 (Graphpad Software Inc.). Signifi-
cance of changes in co-culture vs. controls was tested by
one-way analysis of variance within each set using SPSS 15.0 Soft-
ware. The independent experimental sets were then compared for
reproducibility. Only reproducible significant changes were con-
sidered as ‘‘significant’’. Significance was declared by the standard
p < 0.05 level. Correlation analysis was performed to determine the
relation of gene expression changes by SPSS.
Results

TrkB in human oral carcinoma

Using a polyclonal rabbit antibody, TrkB immunohistochemical
labeling was recognised in several tissue samples of head and neck
squamous cell carcinoma. As already described by Smit et al.,9 the
TrkB reactivity was recognised in tumor cells of HNSCC, and an in-
creased reactivity was found in the invasive fronts (Supplementary
material 3).

Co-culture of normal PDL fibroblasts with SCC-25 cells, changes
in gene expression

Normal human periodontal filament fibroblasts (PDLs), and
SCC-25 cells were co-cultured for 7 days. After this time gene
expression changes in PDLs and in SCC-25 cells were investigated,
and compared with control cells. The controls received the same
culture conditions, but they were not co-cultured with the
partners. By this analysis, in the case of fibroblasts, changes of
stroma-derived factor-1 (SDF-1) was investigated in co-culture
vs. controls. 1.6-times significant (p < 0.01 by one-way ANOVA)
reproducible increase of SDF expression was found in co-cultured
fibroblasts compared with control PDL fibroblasts, which indicates
the development of carcinoma-associated fibroblasts of PDLs.2 In
the same co-culture system gene expression changes of key genes
for EMT were investigated in co-cultured SCC-25 cells vs. control
SCC-25 cells. A significant increase of vimentin mRNA expression
was detected (Fig. 1A, Supplementary material 4), while E-cadherin
mRNA expression was dramatically decreased (Fig. 1B, Supplemen-
tary material 4) (p < 0.05). Snail was detected in control and in
co-cultured SCC-25 cells; its gene expression increase in co-culture
was not statistically significant (p = 0.27) (Fig. 1C, Supplementary
material 4). Significant (p < 0.01) correlation was found between
gene expression of vimentin and snail (correlation coefficient:
0.95). Significant (p < 0.01) negative correlation was found



Figure 1 EMT-related gene expression changes in co-cultured SCC-25 cells. Key
genes for EMT were investigated in co-cultured SCC-25 cells vs. control SCC-25
cells. A significant increase of vimentin mRNA expression was detected (A), while E-
cadherin mRNA expression was dramatically decreased (B). Snail was detected in
control and in co-cultured SCC-25 cells; its gene expression increase in co-culture
was not statistically significant (C).
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between gene expression of vimentin and E-cadherin (correlation
coefficient: �0.81), and statistically significant (p = 0.05) correla-
tion was found between gene expression of snail and E-cadherin
(correlation coefficient: 0.37). These changes represent the charac-
teristic gene expression changes involved in EMT.10

In fibroblasts E-cadherin-expression was not detected in control
and in co-culture conditions. Vimentin and snail were high ex-
pressed, and did not change significantly in co-culture conditions
(p = 0.63 and 0.51, respectively).
These gene expression changes confirmed that, CAFs were pro-
duced from PDL fibroblasts and EMT occurred in SCC-25 cells dur-
ing the 7-days-co-culture.

Regulation of the gene expression of TrkB in SCC-25 cells and of BDNF
in fibroblasts

In the co-culture conditions gene expression changes of TrkB
and of its main ligand BDNF were investigated both in PDLs and
in SCC-25 cells. TrkB-gene-expression was not detected in PDLs
in control and in co-culture conditions. Significant TrkB-gene-
expression was detected in SCC-25 cells, confirming published
data.9,10 Moreover, a significant and reproducible, in average
1.5-times increase of TrkB-gene-expression was measured in co-
cultured SCC-25 cells compared to control culture (Fig. 2A, Supple-
mentary material 4). In SCC-25 cells TrkB was also investigated at
protein level, using a combination of immunoprecipitation and
western blotting. In both control and co-cultured SCC-25 cells
the full-length 145 kD (glycoprotein-145) band20 and a lower band
of truncated TrkB were detected,22 and the density of the 145 kD
band was 1.3-times increased in co-culture compared to control
cells (The density was determined by Image J software.). Non-
nuclear extracts of TrkB-overexpressing-SH-SY5Y cells were used
as positive controls,19 where the electrophoretic properties of the
detected bands were identical (Fig. 2B). The specificity of the
detected bands was tested by immunoprecipitation of the same
samples with a blocking peptide-inactivated anti-TrkB antibody.
The blocking peptide completely inhibited the detection of the
bands (Supplementary material 5). In this regard, the expression
of TrkB-glycoprotein could be stated in SCC-25 cells, and its upreg-
ulation in co-culture with fibroblasts was also proved at protein
level.

Kupferman et al. described previously a detectable BDNF
expression in HNSCC cell lines.10 Confirming these data, we also
detected a low BDNF expression in SCC-25 cells, which did
not change significantly in co-culture conditions (p < 0.05 by
Kruskal–Wallis test). Interestingly, in control PDLs in average
12.32-times higher expression of BDNF was measured, which in
co-culture conditions reproducibly, significantly further increased
in average 3.23-times. These data indicate that fibroblasts, and in
special, functional CAFs are a significant source for TrkB-ligands
(Fig. 2C, Supplementary material 4). In further analysis we found
that the gene expression of SDF is highly significantly (p < 0.01)
correlated with the one of BDNF in (correlation coefficient:
0.785), meaning that the induction of BDNF in fibroblasts is an
event closely related with induction of CAF-phenotype.

Inflammatory cytokines produced by SCC-25 cells in relation
to BDNF-induction in fibroblasts

There are only scattered reports on the regulation of BDNF
expression, and those studies were done in neurons,23,24 which re-
vealed a potential involvement of inflammatory cytokines in the
regulation of BDNF-expression. Based on this background the
mRNA expression of TNF-a and IL-1b was investigated in PDLs
and in SCC-25 cells in control and in co-culture conditions.

IL-1b was detected in both of SCC-25 cells and in PDLs, in con-
trol SCC-25 cells in average 86.73-times higher expression was de-
tected. The high IL-1b-gene expression remained in the SCC-25
cells also in co-culture. In PDLs: IL-1b-gene expression significantly
increased in average 2.7-times in co-culture conditions (Fig. 3A,
Supplementary material 4).

Similarly, TNF-a was also detected in both of SCC-25 cells and in
PDLs, in control SCC-25 cells in average 5.15-times higher
expression was detected. The TNF-a-gene-expression 1.45-times
significantly increased in SCC-25 cells in co-culture (Fig. 3B,



Figure 2 Analysis of TrkB and BDNF in co-cultures of PDL fibroblasts and SCC-25
cells. In the co-culture conditions gene expression changes of TrkB and BDNF were
investigated in PDLs and SCC-25 cells. Significant TrkB-gene-expression was
detected in SCC-25 cells, and it increased in co-culture condition at mRNA (A)
and at protein level (B). In a combination of immunoprecipitation and western blot
TrkB-specific bands were detected in SCC-25 cells in control and in co-culture
conditions (B: protein extracts were loaded as follows: 1–2: control SCC-25 cells,
3–4: co-cultured SCC-25 cells, 5: TrkB-overexpressing SH-SY5Y cells; positive
control), and showed an increase in co-culture. For controlling of the equal loading
of protein samples b-actin western blot was done from the supernatants of TrkB-
immunoprecipitated samples. A low BDNF expression was detected in SCC-25 cells
(C), which did not change reproducibly in co-culture conditions. In control PDLs in
average 12.32-times higher expression of BDNF was measured, which in co-culture
conditions reproducibly, significantly further increased in average 3.24-times.
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Supplementary material 4). BDNF gene expression showed a
significant (p < 0.05) correlation with IL-1b gene expression (corre-
lation coefficient: 0.36).

Significant expression of inflammatory cytokines in co-culture
conditions in PDLs and in SCC-25 cells and their co-culture-related
increases raise the potential for these factors to regulate the BDNF-
expression in co-cultured fibroblasts (CAFs).
Discussion

In recent reports a variable, but consistent expression of TrkB
could be observed in HNSCC tissues and cell lines, whereas no sig-
nificant expression was seen in the healthy control tissue. As a
function, not the acceleration of cell proliferation, but a role in pre-
vention of anoikis of TrkB was suggested.25,26 Kupferman et al. in
2010 described a co-expression of TrkB and brain-derived neuro-
trophic factor (BDNF) in human HNSCC, and found functional
proofs for the involvement of the BDNF-TrkB axis in the progres-
sion of HNSCC.10 Moreover, they described a direct association
between TrkB function and EMT in HNSCC cell lines. Epithelial–
mesenchymal transition (EMT) is implicated in the progression of
primary tumors towards metastases. Increasing evidence suggests
that EMT plays a specific role in the migration of cells from a pri-
mary tumor into the circulation and may provide a rationale for
developing more effective cancer therapies.27 At the same time,
carcinoma cells seem to recruit normal fibroblasts into tumor
masses and then force the conversion of these cells into special,
carcinoma-associated fibroblasts in order to promote tumor
growth and progression. CAFs release elevated levels of SDF-1,
which is a functional characteristic of them.2 Investigation of the
fibroblast-to-CAFs conversion requires dynamic human in vitro
models. In the current work we described such a co-culture model
of PDL fibroblasts and SCC-25 oral squamous cell carcinoma cells,
which results in conversion of CAFs from normal fibroblasts.
In the same model EMT occurs in SCC-25 cells, representing its
key-events: detection of snail-expression, increase of vimentin
production and significant reduction of E-cadherin (Figs. 1 and
4). Furthermore, our study provides evidence that a major source
of the main TrkB ligand: BDNF is the carcinoma-associated fibro-
blast (CAF). This finding describes a novel mechanism for the
involvement of the BDNF-TrkB-axis in tumor progression (Fig. 4).

The co-culture system has the advantage against a conditioned
medium system3 that simultaneous bi-directional changes can be
analysed and statistically evaluated. This is the first clear demon-
stration, which shows that conversion of oral fibroblasts to CAFs
and EMT in oral carcinoma cells are simultaneous, coordinated
events. During this coordinated set of events: BDNF was induced
in CAFs, which were converted from PDL fibroblasts, and simulta-
neously TrkB receptor expression was increased in oral carcinoma
cells (Fig. 4).

The role of the inflammatory cytokines in induction of BDNF-
expression was described in neurons.23,24 This regulatory pathway
is also plausible in CAFs (Figs. 3 and 4), the source of those cyto-
kines could be the SCC-25 cells, or more importantly the EMT-
SCC-25 cells, but also the fibroblasts themselves (Fig. 3).

In addition, TNF-a represents also a potential factor for regulat-
ing the induction of CAFs and initiation of EMT in tumor cells.
TNF-a-expression was also significant in both oral fibroblasts and
in carcinoma cells; moreover, in EMT-carcinoma cells its expression
significantly increased (Fig. 3B). A role of TNF-a in regulating EMT
has been reported in several recent reports.28,29 Furthermore, our
results confirmed the previous conclusions of Koontongkaew and
colleagues that the interactions between cancer cells, the extracel-
lular matrix and fibroblasts, are mediated by cytokines and chemo-
kines, and play important roles in the progression of HNSCC.30

The novel findings described in this study initiate a more de-
tailed mechanistic analysis of the regulatory pathways of TNF-a,
IL-1b and other factors on the CAF-induction and EMT, which will
be the issue of a following report.
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Figure 3 Gene expression of IL-1b (A) and TNF-a (D) in PDL fibroblasts and SCC-25 cells in control and co-culture conditions. IL-1b was detected in both of SCC-25 cells and in
PDLs, in control SCC-25 cells in average 86.73-times higher expression was detected. The high IL-1b-gene expression remained in the SCC-25 cells also in co-culture. In PDLs:
IL-1b-gene expression increased in average 2.7-times in co-culture conditions (A). Similarly, TNF-a was also detected in both of SCC-25 cells and in PDLs, in control SCC-25
cells in average 5.15-times higher expression was detected. The TNF-a-gene-expression increased significantly 1.45-times in SCC-25 cells in co-culture (B).

Figure 4 Suggested mechanism for the involvement of the BDNF-TrkB-axis in the coordination of CAF-induction and EMT. SCC-25 cells express sustained levels of TrkB and
inflammatory cytokines. Normal fibroblasts express BDNF, which is the main ligand of TrkB. Inflammatory cytokines released from SCC-25 cells might contribute to the
upregulation of BDNF in PDL fibroblasts. At the same time these cytokines are involved in the induction of CAFs from fibroblasts. CAFs release increased levels of BDNF, which
is related with increased TrkB-expression in SCC-25 cells. In co-culture SCC-25 suffer mesenchymal transition, partly due to the TrkB receptor signaling. For the preparation of
this figure a toolkit of Motifolio (Ellicott City, MD, USA) was used.
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