Strongly hopfian manifolds as codimension-2 fibrators

Yongkuk Kim

Department of Mathematics, The University of Tennessee at Knoxville, Knoxville, TN 37996-1300, USA

Received 30 June 1997; received in revised form 18 September 1997

Abstract

If a closed n-manifold N has a 2--1 covering, we consider the covering space \tilde{N} of N corresponding to H, where H is the intersection of all subgroups H_i of index 2 in $\pi_1(N)$, i.e., $H = \bigcap_{i \in I} H_i$ with $[\pi_1(N) : H_i] = 2$ for $i \in I$. We will show that if $\pi_1(N)$ is residually finite, $\chi(N) \neq 0$, and \tilde{N} is hopfian, then N is a codimension 2 fibration. And then, we will also get several results about codimension-2 fibrators as its corollaries. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Approximate fibration; Codimension-2 fibration; Hopfian manifold; Residually finite group; Degree one mod 2 map; Continuity sets

AMS classification: Primary 57N15; 55R65, Secondary 57N25; 54B15

1. Introduction

Daverman [5] introduced the following definition: A closed n-manifold N^n is a codimension-2 fibration (respectively, a codimension-2 orientable fibration) if, whenever $p : M \to B$ is a proper map from an arbitrary (respectively, orientable) $(n + 2)$-manifold M to a 2-manifold B such that each $p^{-1}(b)$ is shape equivalent to N, then $p : M \to B$ is an approximate fibration. Then we have the following natural question:

Main question. Which manifolds N are codimension-2 fibrators?

In [5], Daverman showed that all simply connected manifolds, closed surfaces with nonzero Euler characteristic, and real projective n-spaces ($n > 1$) are codimension-2 fibrators. And he asked whether every closed n-manifold with a finite fundamental

1 E-mail: ykim@math.utk.edu.

0166-8641/99/$ -- see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(97)00251-4
group is a codimension-2 fibrator. The answer for the case of N having a nonzero Euler characteristic is yes [1]. But, in general, surprisingly, the answer turned out to be no [7].

A group Γ is said to be hopfian if every epimorphism $f : \Gamma \to \Gamma$ is necessarily an isomorphism. A group Γ is said to be residually finite if for any nontrivial element x of Γ there is a homomorphism f from Γ onto a finite group K such that $f(x) \neq 1_K$. It is well known that every finitely generated residually finite group is hopfian. Call a closed manifold N hopfian if it is orientable and every degree one map $N \to N$ is a homotopy equivalence. In [6], Daverman showed the following theorem:

Every hopfian n-manifold N with hopfian $\pi_1(N)$ and a nonzero Euler characteristic is a codimension-2 orientable fibrator.

Whether it is a codimension-2 fibrator is still an open question. But, Chinen [1] showed that the answer is yes if N has no 2–1 covering. So it is natural to ask the following:

Question. What if N has a 2–1 covering?

In this paper, we will get a partial answer of that question, in a sense. If a closed n-manifold N has a 2–1 covering, we consider the covering space \tilde{N} of N corresponding to H, where H is the intersection of all subgroups H_i of index 2 in $\pi_1(N)$, i.e., $H = \bigcap_{i \in I} H_i$ with $[\pi_1(N) : H_i] = 2$ for $i \in I$. Then we see that, by Hall’s Theorem (for any finitely generated group G, the number of subgroups of G having any fixed finite index is finite), the index set I is finite, and \tilde{N} is an n-dimensional orientable manifold, which follows from the facts that a (finite) covering space of an n-dimensional orientable manifold is an n-dimensional orientable manifold and any nonorientable manifold has a 2–1 orientable covering. We will show that if $\pi_1(N)$ is residually finite, $\chi(N) \neq 0$, and \tilde{N} is hopfian, then N is a codimension-2 fibrator. And then, we will also get several results about codimension-2 fibrators as its corollaries.

2. Preliminaries

Throughout this paper, the symbols \sim, \cong, and \cong denote homotopy equivalence, homeomorphism, and isomorphism in that order. The symbol χ is used to denote Euler characteristic. All manifolds are understood to be finite dimensional, connected, metric, and boundaryless. Whenever the presence of boundary is tolerated, the object will be called a manifold with boundary.

Approximate fibrations were introduced by Coram and Duvall [2] as a generalization of Hurewicz fibrations and cell-like maps. A proper map $p : M \to B$ between locally compact ANRs is called an approximate fibration if it has the following approximate homotopy lifting property: Given an open cover ε of B, an arbitrary space X, and two maps $g : X \to M$ and $F : X \times I \to B$ such that $p \circ g = F_0$, there exists a map $G : X \times I \to M$ such that $G_0 = g$ and $p \circ G$ is ε-close to F. The latter means: for each $z \in X \times I$ there exists an $U_z \in \varepsilon$ such that $\{F(z), p \circ G(z)\} \subset U_z$. Much of the theory of Hurewicz fibrations carries over to the set of approximate fibrations. For example, if a
A proper map \(p : M \to B \) is an approximate fibration, there is a homotopy exact sequence between \(M, B \) and fibers of \(p \) as follows:

\[
\cdots \to \pi_{i+1}(B) \to \pi_i(p^{-1}b) \to \pi_i(M) \to \pi_i(B) \to \cdots.
\]

Furthermore, the set of approximate fibrations is a closed subset of the space of maps between two compact ANRs with the sup-norm metric, while the set of Hurewicz fibrations may not be closed [3].

Let \(N^n \) be a closed manifold. A proper map \(p : M \to B \) is \(N^n \)-like if each fiber \(p^{-1}(b) \) is shape-equivalent to \(N \). For simplicity or familiarity, we shall assume that each fiber \(p^{-1}(b) \) in an \(N^n \)-like map to be an ANR having the homotopy type of \(N^n \). Let \(N \) and \(N' \) be closed \(n \)-manifolds and \(f : N \to N' \) be a map. If both \(N \) and \(N' \) are orientable, then the degree of \(f \) is the nonnegative integer \(d \) such that the induced endomorphism of \(f_* : H_n(N; Z) \cong Z \to H_n(N'; Z) \cong Z \) amounts to multiplication by \(d \), up to sign.

In general, the degree mod 2 of \(f \) is the nonnegative integer \(d \) such that the induced endomorphism of

\[
f_* : H_n(N; Z_2) \cong Z_2 \to H_n(N'; Z_2) \cong Z_2
\]

amounts to multiplication by \(d \). Any degree one mod 2 map \(f : N \to N \) with \(\chi(N) \neq 0 \) induces a \(\pi_1 \)-epimorphism \(f_* : \pi_1(N) \to \pi_1(N) \) (see [1, Lemma 3.4])

Suppose that \(N \) is a closed \(n \)-manifold and a proper map \(p : M \to B \) is \(N \)-like. Let \(G \) be the set of all fibers, i.e., \(G = \{ p^{-1}(b) : b \in B \} \). Put \(C = \{ p(g) \in B : g \in G \) and there exist a neighborhood \(U_g \) of \(g \) in \(M \) and a retraction \(R_g : U_g \to g \) such that \(R_g|g' : g' \to g \) is a degree one map for all \(g' \in G \) with \(g' \in G \) in \(U_g \} \), and \(C' = \{ p(g) \in B : g \in G \) and there exist a neighborhood \(U_g \) of \(g \) in \(M \) and a retraction \(R_g : U_g \to g \) such that \(R_g|g' : g' \to g \) is a degree one mod 2 map for all \(g' \in G \) with \(g' \in G \) in \(U_g \} \). Call \(C \) the continuity set of \(p \) and \(C' \) the mod 2 continuity set of \(p \). D. Coram and P. Duvall [4] showed that \(C \) and \(C' \) are dense, open subsets of \(B \).

The following [4, Proposition 2.8] is very useful for investigating codimension-2 fibrators.

Proposition 2.1. If \(G \) is a usc decomposition of an orientable \((n + 2)\)-manifold \(M \) into closed, orientable \(n \)-manifolds, then the decomposition space \(B = M/G \) is a 2-manifold and \(D = B \setminus C \) is locally finite in \(B \), where \(C \) represents the continuity set of the decomposition map \(p : M \to B \); if either \(M \) or some elements of \(G \) are nonorientable, \(B \) is a 2-manifold with boundary (possibly empty) and \(D' = (\text{int } B) \setminus C' \) is locally finite in \(B \), where \(C' \) represents the mod 2 continuity set of \(p \).

And, the following ([6, Theorem 2.2] or [9]) gives us useful information connecting hopfian manifolds and hopfian fundamental groups.

Proposition 2.2. A closed, orientable \(n \)-manifold \(N \) is a hopfian manifold if any one of the following conditions holds:

1. \(n \leq 4 \) and \(\pi_1(N) \) is hopfian;
2. \(\pi_1(N) \) contains a nilpotent subgroup of finite index.
3. Strongly hopfian manifolds as codimension-2 fibrators

Definition. Let \(N \) be a closed \(n \)-manifold. \(N \) is strongly hopfian if \(\widetilde{N} \) is hopfian, where \((\widetilde{N}, \tilde{g})\) is the covering space of \(N \) corresponding to \(H = \bigcap_{i \in I} H_i \) with \(I = \{ i : [\pi_1(N) : H_i] = 2 \} \neq \emptyset \), and \(\widetilde{N} = N \) when \(I = \emptyset \).

From now on, we reserve the symbols \(\widetilde{N} \) and \(H \) for the above meanings.

Lemma 3.1. Let \(N \) be a strongly hopfian closed \(n \)-manifold with residually finite fundamental group and nonzero Euler characteristic. If a proper map \(p : M^{n+2} \to B^2 \) from an \((n + 2)\)-manifold \(M \) onto a 2-manifold \(B \) is \(N \)-like, then \(p \) is an approximate fibration over \(C' \), where \(C' \) denotes the mod2 continuity set of \(p \).

Proof. If \(I = \emptyset \), then \(N = \widetilde{N} \) is hopfian. Since \(\pi_1(N) \) is residually finite, it is hopfian. Hence \(N \) is a hopfian \(n \)-manifold with \(\chi(N) \neq 0 \) and hopfian fundamental group. By [6, Theorem 5.10], \(N \) is a codimension-2 orientable fibrator. Since \(I = \emptyset \) implies that \(N \) has no 2–1 covering, by [1, Corollary 3.3], \(N \) is a codimension-2 fibrator. Now we assume that \(I \neq \emptyset \). Set \(G = \{ p^{-1}(b) : b \in B \} \). Fix \(g_0 \in G \) with \(p(g_0) \in C' \). Take a neighborhood \(U \) of \(p(g_0) \) such that \(p^{-1}(U) \) retracts to \(g_0 \), and take a smaller connected neighborhood \(V \) of \(p(g_0) \) such that \(p^{-1}(V) \) deformation-retracts to \(g_0 \) in \(p^{-1}(U) \). Call this retraction \(R : p^{-1}(V) \to g_0 \). Then, we have that \(R_g : \pi_1(p^{-1}(V)) \to \pi_1(g_0) \) is an epimorphism. By Coram and Duvall [3], it is enough to show that \(p|p^{-1}(V) : p^{-1}(V) \to V \) is an approximate fibration. Take the covering map \(q : V^* \to p^{-1}(V) \) corresponding to \(R_g^{-1}(H) \). Since \([\pi_1(p^{-1}(V)) : R_g^{-1}(H)] = [\pi_1(g_0) : H] < \infty \), \(q \) is finite. So, by [6, Lemma 2.5], it suffices to show that \(p \circ q : V^* \to V \) is an approximate fibration.

Claim. For all \(g \in G \) with \(g \subset p^{-1}(V) \), \(q^{-1}(g) \equiv g^* \) and \(\widetilde{N} \) have the same homotopy type.

First, appealing to the method of the proof of claim in [1, Proposition 3.5], we see that for all \(g \in G \) with \(g \subset p^{-1}(V) \), \(q^{-1}(g) \equiv g^* \) is connected. Hence \(\pi_0(g^*) = 1 \). Now, let \(i : g \to p^{-1}(V) \), \(i^* : g^* \to V^* \), \(j : (p^{-1}(V)) \to (p^{-1}(V), g) \) and \(j^* : V^* \to (V^*, g^*) \) be the inclusion maps for \(g \in G \) with \(g \subset p^{-1}(V) \). From the homotopy exact sequence of \((V^*, g^*)\) and \((p^{-1}(V), g)\), we have the following diagram:

\[
\begin{array}{ccccccccc}
\pi_2(V^*, g^*) & \to & \pi_1(g^*) & \to & \pi_1(V^*) & \to & \pi_1(p^{-1}(V), g) & \to & 1 \\
\cong & \downarrow & \cong & \phi & \downarrow & \cong & \\
\pi_2(p^{-1}(V), g) & \to & \pi_1(g) & \to & \pi_1(p^{-1}(V), g) & \to & 1 \\
\end{array}
\]

Since \(R|g : g \to g_0 \) has degree one mod 2, by [1, Lemma 3.4], the induced map \((R|g) : \pi_1(g) \to \pi_1(g_0)\) is onto, so it is an isomorphism by the fact that \(\pi_1(g) = \pi_1(g_0) \) is hopfian. Since \(R|g = R \circ i, i_g \) is a monomorphism, and so is \(i^* \). We easily see that
Moreover, by the diagram chasing argument (using the serpent lemma (see [15, p. 141])), we have that \(\pi_1(g)/K \cong \pi_1(p^{-1}(V))/q\#(\pi_1(V^*)) \). Since

\[
\begin{align*}
[\pi_1(g) : K] = [\pi_1(g) : H][H : K] \quad \text{and} \quad q\#(\pi_1(V^*)) = R\#^{-1}(H),
\end{align*}
\]

we have \([H : K] = 1\), i.e., \(K = H \). It follows from the uniqueness of lifting that \(g^* \) and \(\tilde{N} \) have the same homotopy type.

Since \(\chi(g) \neq 0 \) and \(q \) is finite, \(\chi(g^*) \neq 0 \). And since every subgroup of a residually finite group is residually finite, \(q\#(\pi_1(g^*)) \cong \pi_1(g^*) \) is residually finite, and so \(\pi_1(g^*) \) is hopfian. Recall that \(V^* \) is orientable. It follows from [6, Theorem 5.10] that \(p^* : V^* \to B^* = V^*/G^* = V \) is an approximate fibration, where \(G^* = \{ g^* : g \in G \text{ with } g \subset p^{-1}(V) \} \) is the usc decomposition of \(V^* \).

Lemma 3.2. Let \(N \) be a strongly hopfian closed \(n \)-manifold with hopfian \(\pi_1(N) \) and \(\chi(N) \neq 0 \). If an \(N \)-like proper map \(p : M^{n+2} \to B^2 \) from an \((n + 2) \)-manifold onto a \(2 \)-manifold with boundary is an approximate fibration over \(\text{int} \ B \), then \(\partial B = \emptyset \).

Proof. Suppose not. Then there exist \(a_0 \in \partial B \), a neighborhood \(U \) of \(a_0 \) in \(B \), and a deformation retract \(H : p^{-1}(U) \to p^{-1}(a_0) \) such that

1. \(U \approx \) the upper half plane \(\{(x, y) \in \mathbb{E}^2 \mid y \geq 0\} \),
2. \(A = (\partial B) \cap U \) is an open arc, and
3. for all \(a \in A \), \(R|p^{-1}(a) : p^{-1}(a) \to p^{-1}(a_0) \) is a homotopy equivalence.

Take the covering map \(q : M^* \to p^{-1}(U) \) corresponding to \(H \). Then by another argument similar to the proof in the Lemma 3.1, we have that for all \(a \in A \), \(q^{-1}(p^{-1}(a)) \) is connected and \(q^{-1}(p^{-1}(a)) \sim q^{-1}(p^{-1}(a_0)) \sim \tilde{N} \). And, since \(p \) is an approximate fibration over \(p^{-1}(\text{int} \ U) \), for all \(b, b' \in \text{int} \ U \), \(q^{-1}(p^{-1}(b))_C \sim q^{-1}(p^{-1}(b'))_C \sim (\text{say} \ N^*)_*, \) where \(q^{-1}(p^{-1}(b))_C \) and \(q^{-1}(p^{-1}(b'))_C \) are components of \(q^{-1}(p^{-1}(b)) \) and \(q^{-1}(p^{-1}(b')) \), respectively. Hence, by the fact of \(M^* \) is orientable and [5, Proposition 2.9], we see that for all \(b \in \text{int} \ U \) and for all \(a \in A \), the components \(q^{-1}(p^{-1}(b))_C \) of \(q^{-1}(p^{-1}(b)) \) and \(q^{-1}(p^{-1}(a)) \) are orientable. Therefore, if \(G^* = \{ q^{-1}(p^{-1}(b))_C, q^{-1}(p^{-1}(a)) \mid b \in \text{int} \ U, a \in A \} \) is the usc decomposition of \(M^* \), then by Proposition 2.1, \(B^* = M^*/G^* \) is a 2-manifold without boundary.

Let \(p^* : M^* \to B^* \) be the decomposition map and \(C^* \) be its continuity set. Since \(p^*(q^{-1}(p^{-1}(A))) \) is homeomorphic to an open arc and \(B^* \setminus C^* \) is locally finite in \(B^* \), there is a point \(a^* \in p^*(q^{-1}(p^{-1}(A))) \cap C^* \). So we have a map \(N^* \sim q^{-1}(p^{-1}(b))_C \to q^{-1}(p^{-1}(a)) \sim \tilde{N} \) with degree one, where \(p^*|(q^{-1}(p^{-1}(a))) = a^* \) and for some \(b \in \text{int} \ U \). Hence we have \(\beta_i(N^*) \geq \beta_i(\tilde{N}) \) for each \(i \).

For \(g \in G \) with \(p(g) = b \), let \(i : g \to p^{-1}(U) \) be the inclusion map. Set

\[
\begin{align*}
\bar{H} &= i_\#^{-1}(q\#(\pi_1(M^*)) \cap i_\#(\pi_1(g))) = i_\#^{-1}(H \cap i_\#(\pi_1(g))) \quad \text{and} \\
K &= (q|g^*_C)_\#(\pi_1(g^*_C)),
\end{align*}
\]
where \(g_C^* = q^{-1}(p^{-1}(b))_C \). Then we can easily see that \(K \subset \overline{H}, \ H \subset \overline{H} \). But since \(g^* \) has two (or more) components, \(H \neq \overline{H} \). By [16, Proposition 11.1], we have \(K = \overline{H} \).

Now we take the covering map \(N_H \to g \) corresponding to \(H \), and take the covering map \(N_H \to g \) corresponding to \(H \). And since \(H \subset \overline{H} \) and \(H \neq \overline{H} \), we have a \(d-1 \) covering map \(N \sim N_H \to N_H \approx N_K \sim N^* \) with \(d \geq 2 \), so we have for each \(i, \beta_i(N) \geq \beta_i(N^*) \) and \(\chi(N) = d(\chi(N^*)) \). As before \(\chi(N^*) = \chi(N) = d(\chi(N^*)) \), which gives a contradiction \(\chi(N) = 0 \).

Theorem 3.3. A strongly hopfian \(n \)-manifold \(N \) with residually finite fundamental group and nonzero Euler characteristic is a codimension-2 fibration.

Proof. We may assume that \(I \neq \emptyset \), i.e., \(N \) has a 2–1 covering. Let a proper map \(p: M^{n+2} \to B^2 \) from an \((n+2)\)-manifold \(M^{n+2} \) onto a 2-manifold \(B \) with boundary be \(N \)-like, and \(G = \{ p^{-1}(b): b \in B \} \). By Proposition 2.1, Lemmas 3.1 and 3.2, it suffices to show that \(p \) is an approximate fibration over \(\text{int } B \).

Let \(D' = (\text{int } B) \setminus C' \). If \(D' = \emptyset \), by the Lemma 3.1, there is nothing to prove. So assume that \(D' \neq \emptyset \). Let \(b_0 \in D \). We localize the situation so that \(\text{int } B \) is an open disk containing \(b_0 = p(g_0) \) and \(p \) is an approximate fibration over \((\text{int } B) \setminus b_0 \). Also we may assume that \(R: p^{-1}(\text{int } B) \to g_0 \) is a strong deformation retraction. Take a covering \(q: M^* \to p^{-1}(\text{int } B) \) corresponding to \(R^{-1}(H) = H \). By an argument similar to the proof of claims in the Lemma 3.1, we see that \(g_0^* = q^{-1}(g_0) \) is connected and has the homotopy type of \(\overline{N} \). Since

\[
p|p^{-1}(\text{int } B) \setminus g_0) : p^{-1}(\text{int } B) \setminus g_0) \to (\text{int } B) \setminus b_0
\]

is an approximate fibration, for any \(g, g'(\neq g_0) \in G \) in \(p^{-1}(\text{int } B) \), their components \(q^{-1}(g)_C = g_C^* \) and \(q^{-1}(g')_C = g_C^* \) have the same homotopy type. And since \(M^* \) is orientable, by [6, Proposition 2.9], \(g_C^* \) and \(g_0^* \) are orientable.

Now we follow the method of the proof in [6, Theorem 5.10], then we have

\[
(R^*|g_C^*)_* : H_1(g_C^*) \to H_1(g_0^*)
\]

is an epimorphism, where \(R^* \) is a lifting of \(R \). By [6, Lemma 5.2'1], \(R^*|g_C^* \) has a positive degree. It follows from [15, p. 399] that \(\beta_i(g_C^*) \geq \beta_i(g_0^*) \) for each \(i \).

Now, for \(g(\neq g_0) \in G \), let \(i: g \to p^{-1}(\text{int } B) \) be the inclusion map. Set

\[
\overline{H} = i_{#}^{-1}(g_{#}(\pi_1(M^*))) \cap i_{#}(\pi_1(g)) = i_{#}^{-1}(H \cap i_{#}(\pi_1(g))) \quad \text{and} \quad K = (q|g_C^*)_{#}(\pi_1(g_C^*)).
\]

Then we can easily see that \(K \subset \overline{H} \) and \(H \subset \overline{H} \). And by [16, Proposition 11.1], we have \(\overline{H} \subset K \), i.e., \(K = \overline{H} \).

Now, let us examine the induced map \(i_{#} \) case by case.

Case 1. \(i_{#} \) is an epimorphism. Then, since \(\pi_1(g) = \pi_1(p^{-1}(\text{int } B)) \) is hopfian, \(i_{#} \) is an isomorphism. So we have that for all \(g \in G \) with \(p(g) \in \text{int } B \), \(g^* \) is connected and has the homotopy type of \(\overline{N} \). By the same proof as the Lemma 3.1, \(p \) is an approximate fibration over \(\text{int } B \).

Case 2. \(i_{#} \) is not onto.
Subcase 1. \(H = \overline{H} = K \). Then for all \(g \in G \) with \(p(g) \in \text{int} \, B \), \(g^* \) is connected and has the homotopy type of \(\tilde{N} \). By the same reason of the proof in the Lemma 3.1, \(p \) is an approximate fibration over \(\text{int} \, B \).

Subcase 2. \(H \subset \overline{H} = K \) but \(H \neq \overline{H} \). We will show that this case cannot happen. Take the covering map \(N_H \to g \) corresponding to \(\overline{H} \), and take the covering map \(N_H \to g \) corresponding to \(H \). Consider

\[
\begin{array}{ccc}
N_H & \to & g \\
\downarrow & & \downarrow \\
N_H & \to & g
\end{array}
\]

Since \(H \subset \overline{H} \) and \(H \neq \overline{H} \), we have a \(d-1 \) covering map \(N_H \to N_{\overline{H}} \) with \(d \geq 2 \). By the facts of \(g_0^* \sim \tilde{N} \sim N_H \) and \(N_{\overline{H}} \sim N_K \sim g_0^* \) with \(d \geq 2 \), we see that \(\beta_i(g_0^*) \geq \beta_i(g_0^*) \) for each \(i \) (from [8, Corollary 1]) and \(\chi(g_0^*) = dx(g_0^*) \) with \(d \geq 2 \). But since we already have that \(\beta_i(g_0^*) \geq \beta_i(g_0^*) \) for each \(i \), \(\chi(g_0^*) = \chi(g_0^*) = dx(g_0^*) \) with \(d \geq 2 \), which gives the contradiction \(\chi(N) = \chi(g_0^*) \neq 0 \). □

Note. A subgroup of a hopfian group may not be hopfian, while every subgroup of a residually finite group is residually finite (see [17]). Call a group \(I \) hereditarily hopfian if every subgroup of \(I \) is hopfian. The preceding argument actually gives the more general result stated below:

Let \(N \) be a strongly hopfian \(n \)-manifold with \(\chi(N) \neq 0 \). If \(\pi_1(N) \) is hereditarily hopfian, then \(N \) is a codimension-2 fibration.

Remark. In the theorem, we cannot omit the condition \(\chi(N) \neq 0 \) (see [7, Theorem 2.1]).

Corollary 3.1. Let \(N^n \) be a closed \(n \)-manifold with \(\chi(N) \neq 0 \). Then \(N \) is a codimension-2 fibration if any one of the following conditions holds:

1. \(\pi_1(N) \) is abelian;
2. \(\pi_1(N) \) is residually finite and \(n_i(N) = 0 \) for \(1 < i < n - 1 \);
3. \(n = 4 \) and \(\pi_1(N) \) is residually finite;
4. \([1] \pi_1(N) \) is finite;
5. \([5]\) \(n = 2 \).

Proof. (1) Case 1. \(N \) has no 2–1 covering. Then, \(N \) must be orientable. Since \(\pi_1(N) \) is abelian, it is nilpotent. By Proposition 2.2, \(N \) is hopfian. We have that \(N \) is a hopfian manifold with hopfian fundamental group and nonzero Euler characteristic, so by [6, Theorem 5.10], \(N \) is a codimension-2 orientable fibration. By Chinen [1, Corollary 3.3], \(N \) is a codimension-2 fibration.

Case 2. \(N \) has a 2–1 covering. Since a finitely generated abelian group is residually finite, \(\pi_1(N) \) is residually finite. And, since \(\pi_1(N) \cong H \) is abelian, \(\tilde{N} \) is hopfian, and so \(N \) is a strongly hopfian manifold. Hence, \(N \) is a codimension-2 fibration.

(2) Note that for \(i \geq 2 \), \(0 \to \pi_i(\tilde{N}) \to \pi_i(N) \to 0 \). Since \(\pi_i(N) = 0 \) for \(1 < i < n - 1 \), \(\pi_i(\tilde{N}) = 0 \) for \(1 < i < n - 1 \). By Swarup [18, Lemma 1.1], \(N \) is strongly hopfian.
(3) and (4) By Proposition 2.2, \(N \) is strongly hopfian.

(5) This follows from the facts that any closed surface has a residually finite fundamental group \([11]\) and Proposition 2.2. \(\square \)

Now, let us consider the following question:

Question. Is any finite product of codimension-2 fibrators a codimension-2 fibrator?, i.e., if \(N_1, N_2, \ldots, N_k \) are closed manifolds which are codimension-2 fibrators, is \(N_1 \times N_2 \times \cdots \times N_k \) a codimension-2 fibrator?

The answer is not yet settled. But the answer is yes for the case of each \(N_j \) (\(j = 1, 2, \ldots, k \)) a closed orientable surface ([12] and [13]). Here, we have an affirmative answer without assuming orientability for any \(N_j \) as follows:

Corollary 3.2. Any finite product of closed surfaces which are codimension-2 fibrators is a codimension-2 fibrator.

Proof. Let \(N_1, N_2, \ldots, N_k \) be closed surfaces which are codimension-2 fibrators, and \(N = N_1 \times N_2 \times \cdots \times N_k \). First, note that for all \(j = 1, \ldots, k \), \(\chi(N_j) \neq 0 \), for the torus and Klein bottle are the only examples of noncodimension-2 fibrators (see [5]). So we have \(\chi(N) \neq 0 \). Moreover,

\[
\pi_1(N) \cong \bigoplus_{j=1}^k \pi_1(N_j)
\]

is residually finite. Hence it suffices to show that \(N \) is strongly hopfian. If \(N \) has no 2–1 covering, then \(N \) must be orientable, so that each \(N_j \) is orientable. In [12] and [13], Im took care of this case. Hence we consider the case that \(N \) has a 2–1 covering. Since \(N \) is of the form \(\text{products of } RP^2 \times \text{products of } S^2 \times \text{products of closed surfaces which are neither } RP^2 \text{ nor } S^2 \), \(N \) must be of the form \(\text{products of } S^2 \times \text{products of closed surfaces which are aspherical} \). Hence \(\bar{N} \) is hopfian, which follows from the fact that any finite product of simply connected manifolds and aspherical closed manifolds with hopfian fundamental groups is hopfian (see [14]). \(\square \)

In closing, we mention the following unsettled topics.

Question 1. If \(N \) and \(N' \) are closed strongly hopfian manifolds with residually finite fundamental groups and nonzero Euler characteristics, then is \(N \times N' \) a codimension-2 fibrator? Furthermore, is any finite product of such manifolds a codimension-2 fibrator?

Question 2. What conditions on a closed manifold are necessary for being a codimension-2 fibrator? What if \(\chi(N) \neq 0 \)?
Acknowledgement

It is a pleasure for me to thank my thesis advisor, Robert J. Daverman, for his support and guidance during this project.

References

[13] Young Ho Im, Decompositions into codimension two submanifolds that induce approximate fibrations, Topology Appl. 56 (1) (1994) 1–11.

[14] Young Ho Im, Mee Kwang Kang and Ki Mun Woo, Codimension-2 fibrators that is closed under finite product, Preprint.

