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Abstract

Background: A scaled logit model has previously been proposed to quantify the relationship between an
immunological assay and protection from disease, and has been applied in a number of settings. The probability
of disease was modelled as a function of the probability of exposure, which was assumed to be fixed, and of
protection, which was assumed to increase smoothly with the value of the assay.

Methods: Some extensions are here investigated. Alternative functions to represent the protection curve are
explored, applications to case-cohort designs are evaluated, and approaches to variance estimation compared. The
steepness of the protection curve must sometimes be bounded to achieve convergence and methods for doing so
are outlined. Criteria for evaluating the fit of models are proposed and approaches to assessing the utility of results
suggested. Models are evaluated by application to sixteen datasets from vaccine clinical trials.

Results: Alternative protection curve functions improved model evaluation criteria for every dataset. Standard
errors based on the observed information were found to be unreliable; bootstrap estimates of precision were to
be preferred. In most instances, case-cohort designs resulted in little loss of precision. Some results achieved
suggested measures for utility.

Conclusions: The original scaled logit model can be improved upon. Evaluation criteria permit well-fitting models
and useful results to be identified. The proposed methods provide a comprehensive set of tools for quantifying the
relationship between immunological assays and protection from disease.

Keywords: Vaccine, Correlate of protection, Correlate of immunity, Surrogate endpoint, Immunological assay

Background
Immunological assays measure characteristics of the im-
mune system, such as antibody concentrations or the
ability of serum to neutralize pathogens in vitro, which
are induced by an immune stimulus such as disease or
vaccination, and which are associated with protection
from disease. The relationship between an immuno-
logical assay and protection from disease is of consider-
able interest in vaccines research. In early phase clinical
trials of a new vaccine, an immune response observed by
an immunological assay suggests the possibility the vac-
cine might be protective. In later phase trials, values of
immunological assays are used for dose selection and dose
ranging, and to assess the effect of co-administration with
other vaccines. In vaccine efficacy trials, data on post-

vaccination assay values and subsequent disease occur-
rence may be used to predict protection in other settings.
‘Correlates of protection’ – threshold values of specific
immunological assays believed to be associated with pro-
tection from disease – have been established for many
vaccine-preventable diseases [1], and are used as surro-
gates for protection in the development of combination
vaccines.
A number of elements need to be demonstrated for an

assay to reliably substitute for observation of clinical dis-
ease. First it should be shown that increasing assay
values correlate with reduction in the rate of disease;
standard statistical methods are available for this pur-
pose, such as logistic regression [2], and the assay is then
described as a ‘correlate of risk’ [3, 4]. When vaccination
both increases assay values and reduces the rate of
disease the term ‘correlate of protection’ has been
suggested [5]; elsewhere the term ‘correlate of vaccine-
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induced protection’ has been used when this condition
is met [6, 7]. It is desirable to show that an assay meets
criteria for a surrogate endpoint, such as the Prentice
criteria [8] or that it explains a high proportion of treat-
ment effect [9]. Alternatively or additionally it can be
useful to demonstrate that the property measured by the
assay is causally or mechanistically related to protection
from disease (rather than both merely reflecting some
common, unobserved characteristic such as robustness
of the immune system). Immunologists understanding of
the mechanisms of action of the immune system have
shown such mechanistic associations [10–12], and statis-
tical methods have been developed seeking to demon-
strate causal associations [13–16]. Finally, it is necessary
to quantify the relationship between assay value and
protection – the level of protection at each assay value –
which is the subject of this research.
Established correlates of protection have been charac-

terized as threshold values of immunological assays;
interpretation of such thresholds can however be prob-
lematic – whether the threshold is one at which protec-
tion can be regarded as complete, or whether it
represents a ‘population average’ measure differentiating
susceptible from protected individuals – and statistical
methods with different interpretations have been devel-
oped [17–21]. In reality the relationship is likely con-
tinuous. Natural variability between individuals means
that at any given assay value some individuals will be
protected and some not, and if protection does in fact
increase with increasing assay value then the proportion
of individuals protected will increase in a smooth con-
tinuous manner, which may be represented by a protec-
tion curve.
Most data on the relationship between assay value and

subsequent protection from disease comes from settings
in which the exposure of subjects to the pathogen of

interest is not guaranteed, so that although standard
statistical methods such as logistic regression can dem-
onstrate a relationship between assay values and disease
they cannot explicitly quantify protection. Absence of
disease may indicate protection, or merely lack of expos-
ure. A scaled logit model modelling disease occurrence
as a function of assay value by an exposure parameter
and a parametric protection curve has been proposed,
using the logistic function of log-assay value to model
the protection curve [22]. An illustration of the model
fitted to the White/varicella data [23] is shown in Fig. 1.
The model has been used to investigate the association

between cell-mediated immunity and protection from in-
fluenza [24], between hemagglutination inhibition assay
values and protection from influenza [25, 26], and the
probability of influenza-like illness in HIV-positive subjects
[27], and has been suggested for other applications [28].
The logistic function is however only one of a number

of 2-parameter symmetrical sigmoid functions which
may be used to represent the protection curve; other
functions are here investigated. A generalized symmet-
rical sigmoid function is developed. Some results suggest
the assumption that protection approaches 100 % at
high assay values may not hold; models for incomplete
protection are considered. Symmetrical sigmoid func-
tions constrain the two halves of the protection curve to
be inverted mirror images of each other; asymmetrical
sigmoid functions are explored.
In the paper introducing the scaled logit model, con-

vergence failed for two illustrative datasets, and it was
hypothesized this was because these assays were not use-
ful as correlates of protection. This has since been found
to be a misinterpretation, the lack of convergence being
in fact due to the steepness of the protection curve in-
creasing in the likelihood maximization algorithm until
it exceeded computer limits. Methods for limiting the
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Fig. 1 Scaled logit model fitted to the White/varicella data [23]. Left panel: Bars show the number and proportion of subjects who developed
disease in each interval of assay value; curve is estimated probability of disease. Right panel: Estimated protection curve with 95 % confidence
interval for protection and estimates of assay values at which protection is 50 % and 90 %
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steepness of the protection curve and other fitting issues
are discussed.
Case-cohort designs have been proposed as an eco-

nomical approach to assessing correlates of protection
when the proportion of subjects developing disease is
small [29, 30]. Application of proposed methods to case-
cohort designs is explored.
Methods for estimating precision and confidence in-

tervals are examined, and evaluation criteria proposed.
Methods are illustrated by application to sixteen datasets
from clinical trials.
Much data on the relationship between assay value

and disease comes from vaccine efficacy trials. A limita-
tion of such data is that the trial will be powered for the
efficacy endpoint and will likely be underpowered for a
correlate of protection investigation. Data from such a
trial can thus at best support exploratory analysis and
yield conclusions of the form: ‘the model found to be
the best fit to the data in this case was…’ rather than be-
ing confirmatory.

Methods
In outline, our research:

i) develops a general form of model for the probability
of disease as a function of exposure and protection;

ii) identifies and develops alternative functions to
represent the protection curve;

iii)proposes criteria for model evaluation and selection;
iv) fits models to sixteen illustrative datasets, calculates

evaluation and model selection criteria, and
compares methods for estimating standard errors;

v) proposes alternative data analysis strategies.

Data consist of assay values and subsequent disease
occurrence in subjects from some defined population;
descriptions of the illustrative datasets are provided at
the end of this section.

General form of model incorporating both exposure and
protection
If both exposure and susceptibility (absence of protec-
tion) are necessary for the development of disease, and
together they are sufficient, the probability of disease
may be expressed as

PðdiseaseÞ ¼ λ� ½1−πðt; α; β;…Þ�

where λ represents exposure (or more generally the ef-
fect of factors independent of assay value), π(⋅) is a smooth
increasing sigmoid function into (0,1) representing protec-
tion (or more generally the effect of factors associated with
assay value) – a ‘protection curve’, t is log-assay value and α
and β are location and slope parameters of the protection

curve. Other parameters may govern shape, incomplete
protection, symmetry, etc. Two parameterizations are pos-
sible, π(t; α, β,…) = π(α + β t,…) as used in the original
scaled logit model or π(t; α, β,…) = π(β(t − α),…) as intro-
duced by Coudeville [25]. The latter is used here since
exp (α) is then the assay value at which protection is 50 %
in models with symmetrical protection curves. Models are
fitted by maximum likelihood.

Symmetrical two-parameter protection curves
Six 2-parameter symmetrical sigmoid functions which
might represent protection curves were explored:

i) the error function, π(β (t − α)) =Φ(β (t − α)), where
Φ(·) is the cumulative standard normal distribution
function;

ii) the logistic function (as in the scaled logit model),

π β t−αð Þð Þ ¼ exp β t−αð Þð Þ
1þ exp β t−αð Þð Þ;

iii)π β t−αð Þð Þ ¼ β t−αð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β t−αð Þð Þ2

p � 2þ 1
2, this is referred to

as the square root sigmoid function;
iv) the double exponential function,

π β t−αð Þð Þ ¼ 1 β t−αð Þ≥0ð Þ � 1−1
2 exp −β t−αð Þð Þ½ �

þ1 β t−αð Þ < 0ð Þ � 1
2 exp β t−αð Þð Þ½ � ; where 1(⋅) is

the indicator function taking the value 1 when its
argument is true and 0 when it is false;

v) the arctangent function, π β t−αð Þð Þ ¼ 1
π tan

−1 β t−αð Þð Þ þ 1
2;

vi)π β t−αð Þð Þ ¼ β t−αð Þ
1þ β t−αð Þj j � 2þ 1

2, this is referred to as

the absolute sigmoid function.

The principal difference between the functions is that
for a given slope at the inflection point the error func-
tion approaches the asymptotes most quickly, with the
logistic, square root, arctangent and absolute sigmoid
functions approaching progressively more slowly; the
double exponential function approaches more slowly
near the inflection point but more quickly in the tails.
By way of illustration, if the arctangent function was
used for the protection curve the model to be fitted
would be

P diseaseð Þ ¼ λ� 1− 1
π
tan−1 β t−αð Þð Þ þ 1

2

� �h i

Models with each of the six functions were fitted to
the sixteen illustrative datasets.

A generalized symmetrical protection curve
Consideration of the algebraic expressions for the abso-
lute sigmoid and square root sigmoid functions suggests
a generalized symmetrical sigmoid function
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π
�
βðt−αÞ� ¼ βðt−αÞ

ð1þ jβðt−αÞjκÞ1=κ
� 2þ 1

2

where κ is a shape parameter governing how fast the
curve approaches the asymptotes for a given slope at the
inflection point. When κ=1 the function is the absolute
sigmoid function and when κ=2 the function is the
square root sigmoid function; when κ=1.5 the function
approximates the arctangent function, when κ=2.9 it
approximates the logistic function, and when κ=3.4 it
approximates the error function. κ is estimated in the
likelihood maximization. Models with generalized sym-
metrical protection curves were fitted to each of the
illustrative datasets.

‘Incomplete protection’ protection curves
Inspection of plots of estimated generalized symmetric
protection curves indicated that for some datasets pro-
tection did not approach 100 % even at the highest assay
values, prompting investigation of a model where the
maximum protection was less than 1.

P diseaseð Þ ¼ λ� 1−γπ β t−αð Þð Þ½ �

where γ ∈(0,1] is the maximum level of protection and
π(⋅) is one of the six 2-parameter symmetrical sigmoid
functions. γ is estimated in the likelihood maximization.
Models were fitted to each of the sixteen illustrative
datasets.

Non-symmetrical protection curves
Two approaches to relaxing the symmetricality of the
protection curve were explored. An alternative to setting
t = log(tN) where tN is the assay value on the natural
scale is the transformation tν = tN

ν log(tN). Using tν with
any of the 2-parameter symmetrical functions has the
effect of making the protection curve asymmetrical rela-
tive to t = log(tN). For example, if the error function was
used the model to be fitted would be

P diseaseð Þ ¼ λ� 1−Φ β tνN log tNð Þ−α� �� �� �

To ensure the transformation remains strictly increas-
ing requires that ν sometimes be bounded: if tN,min < 1
then ν < −1/log(tN,min), and if tN,max > 1 then ν > −1/
log(tN,max). Models using the transformation with error
and absolute sigmoid protection functions (the 2-
parameter functions approaching the asymptotes most
quickly and most slowly) were fitted to the illustrative
datasets.
A notionally straightforward approach to more flexibly

modeling the lower left and upper right parts of the pro-
tection curve is a two-part splined model [31] consisting
of two curves, each with their own exposure, location

and slope parameters, but constrained to join smoothly
at a ‘knot’.

P diseaseð Þ ¼ 1 t < tknotð Þλ1 1−π β1 t−α1ð Þð Þ½ �
þ 1 t > tknotð Þλ2 1−π β2 t−α2ð Þð Þ½ �

subject to the constraints

λ1 1−π β1 tknot−α1ð Þð Þ½ � ¼ λ2 1−π β2 tknot−α2ð Þð Þ½ �
d
dt

λ1 1−π β1 t−α1ð Þð Þ½ � jt¼tknot ¼
d
dt

λ2 1−π β2 t−α2ð Þð Þ½ � jt¼tknot

where subscripts ⋅1 and ⋅2 refer to the lower left and
upper right parts of the protection curve respectively.
Since the likelihood is not continuous in tknot a profile
likelihood is constructed over candidate values of tknot
and the maximum chosen. Two-part spline models were
developed with error function and absolute sigmoid pro-
tection curves; details are given in Additional file 1 at
the publisher’s web site. Models were fitted to the six-
teen datasets.

Case-cohort designs
In case-cohort designs, the likelihood is created by
fitting

Pðdiseasejt measuredÞ ¼ 1

1þ ρ
1

λ½1−πðt; α; β;…Þ�−1
	 


to the data, where ρ is the non-case fraction, i.e. the pro-
portion of non-cases whose assay values are measured.
A question of interest is whether the precision of param-
eter estimates is lessened by the reduced information for
non-cases. The question was investigated for ten illustra-
tive datasets in which the number of cases was small
relative to the total number of subjects. From each illus-
trative dataset, 300 case-cohort datasets comprising the
cases and a random sample of the non-cases, numbering
20×, 10× and 5× the number of cases, 100 of each, were
generated, and case-cohort models with error function
and absolute sigmoid protection curves (the curves ap-
proaching the asymptotes most quickly and most slowly)
fitted. Interest centers on the precision of the estimate
of the location parameter α, since the assay value at
which protection is 50 %, 80 % or other percentage is a
function of α. The standard error of the location param-
eter α̂ estimated in the case-cohort datasets from the
observed information was compared to its standard
error in the ‘all subjects’ illustrative datasets.

Standard errors and confidence intervals
Standard errors based on the observed information were
evaluated and compared with bootstrap estimates [32].
Four estimation methods were compared in two models:
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i) the median of the standard errors based on the
observed information returned by fitting the model
to 1000 non-parametric bootstrap datasets;

ii) the standard deviation of the parameter estimates
found by fitting the model to the 1000 non-
parametric bootstrap datasets;

iii) the median of the standard errors based on the
observed information returned by fitting the model
to 1000 parametric bootstrap datasets;

iv) the standard deviation of the parameter estimates
found by fitting the model to the 1000 parametric
bootstrap datasets.

Methods were evaluated by fitting models with error
function and absolute sigmoid protection curves to
bootstrap datasets from the 27 combinations of protec-
tion curve and illustrative dataset for which maximum
likelihood estimates (MLEs) had been found. Parametric
bootstrap datasets were generated using the parameter
estimates from the illustrative datasets as parameter
values.
Again, interest centers on the precision of the estimate

of the location parameter α, or more particularly on the
precision of a measure such as the assay value at which
protection is 50 %; the utility of the estimate of such a
measure might be assessed by the percentage of subjects
with assay values within and outside the 95 % confidence
interval for the measure.
The variability in standard errors based on the observed

information was examined, estimates by the four methods
were compared, the coverage probability of 95 % two-
sided confidence intervals calculated from the observed
information in the parametric bootstrap datasets was
assessed, and the percentages of subjects falling within
and outside 95 % confidence intervals for the assay value
at which protection is 50 % were calculated.

Limiting the steepness of the protection curve, maximum
likelihood estimates, and evaluation criteria
The likelihood maximization algorithm can fail to con-
verge if the steepness of the protection curve increases
until the slope parameter exceeds computer limits, i.e. if
the protection curve approaches a step function. This
may be controlled for by bounding the slope parameter
in the maximization algorithm. A reasonable bound might
be one where protection increased from 1 to 99 % in some
small fraction of the range of assay values, say 1/50th;
the curve would then be virtually indistinguishable from a
step function. Such a bound would be

β≤2π−1ð0:99Þ � 50� rangeðlog�assay valueÞ

for symmetrical curves or β ≤ [π− 1(0.99) − π− 1(0.01)] ×
50 ÷ range(log‐assay value) more generally, where π−1(⋅) is

the inverse of the protection function. There would seem
to be no reason not to routinely bound the slope when fit-
ting models.
For each model fitting, MLEs were considered to have

been found if the fitting algorithm converged, the Hessian
matrix was positive definite, and 0 < λ̂ < 1. It was noted
that different starting values for parameters could lead to
convergence at different points so a variety of starting values
were used. The convergence criteria of the fitting algorithm
used was tightened to ensure convergence to the same
point from different starting values, and the Hessian matrix
was considered positive definite if all eigenvalues were
greater than −10−4. Details are given in Additional file 2.
The primary criterion for evaluating alternative models

was −2×log-likelihood. Goodness-of-fit was calculated
by the method of Hosmer and Lemeshow [2, 33]. Since
the estimated protection curve is conditional on λ,
models with low coefficients of variation of λ̂ may be
preferred, and this was calculated for each fitted model
based on the observed information.

Illustrative datasets
The various methods were evaluated by application to
16 datasets from five clinical trials:

� German pertussis datasets: eight assays and occurrence
of disease from a sub-study of a pertussis vaccine
efficacy trial conducted in Germany between 1991
and 1994 [34];

� Piedra/RSV datasets: assays for antibody to RSV/A
and RSV/B among subjects presenting with acute
respiratory symptoms at a hospital in Texas, and
subsequent disease confirmation [35];

� White/varicella dataset: varicella glycoprotein assay
for children vaccinated with varicella vaccine in
clinical trials conducted between 1987 and 1989,
and disease occurrence in the following 12 months
(reconstructed from published data) [23];

� Swedish pertussis datasets: four assays from
subjects potentially exposed to pertussis by another
household member and their subsequent
development of disease, from a sub-study of a
vaccine efficacy trial conducted in Sweden between
1992 and 1995 [36];

� Black Nicolay HAI dataset: post-vaccination
hemagglutination inhibition assay (HAI) titers to
H3N2 influenza and the occurrence of H3N2
influenza among children 6 to 72 months of age in
the following influenza season (reconstructed from
published data) [26].

Code to create the datasets reconstructed from published
sources, and to fit the symmetrical two-parameter pro-
tection curve, generalized symmetrical protection curve,
‘incomplete protection’ protection curve and tN

ν log(tN)
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transformation non-symmetrical protection curve models
is provided in Additional file 3.

Results
Results are intended to illustrate the statistical methods
proposed and are not intended to be interpreted as sci-
entifically valid immunological conclusions.

Symmetrical protection curves
The evaluation criteria for the six models with 2-
parameter symmetrical protection curves when fitted to
the sixteen illustrative datasets are shown in Table 1, to-
gether with the rank of the model by each evaluation
criterion.
MLEs were found for 81 of the 96 combinations of

protection curve function and illustrative dataset.
There were differences between models with different

protection functions. For nine of the sixteen datasets the
difference between the smallest and largest −2×log-likeli-
hood exceeded 1; for one it exceeded 5. For eleven data-
sets, models with the absolute sigmoid protection
function had the smallest −2×log-likelihood. Models
with this protection function also had the best
goodness-of-fit for eight datasets and the smallest coeffi-

cient of variation of λ̂ for fourteen datasets.
Some datasets had consistently good goodness-of-fit

with all protection functions; for example, for the
White/varicella dataset it ranged from 0.984 to 1.000, for
the Swedish pertussis PT dataset from 0.922 to 0.975.
For others it was consistently poor, not exceeding 0.020
for any protection function with the German pertussis
FIM IgA dataset. For some datasets, goodness-of-fit was
more variable, e.g. the German pertussis PT IgG dataset.

Coefficients of variation of λ̂ typically ranged from 0.15
to 0.3.
In general, models with protection functions which

approached the asymptotes more slowly found more
MLEs and had better evaluation criteria than models
with protection functions which approached the asymp-
totes more quickly.

Generalized symmetrical protection curve
For seven datasets a model with the generalized symmet-
rical protection curve substantially improved evaluation
criteria relative to the model with the optimal 2-parameter
protection curve. Among these datasets, reductions in
−2×log-likelihood from more than 1 to more than 16 were
seen, and for most of them improvement in goodness-of-
fit was equally marked. For other datasets, improvement
was more modest or no improvement was seen. Detailed
results for models with the generalized symmetrical pro-
tection curve are given in Additional file 4.

‘Incomplete protection’ protection curves
For nine of the eleven datasets for which MLEs were
found, −2×log-likelihood of the optimal ‘incomplete pro-
tection’ model was at least 1 smaller than for the optimal
2-parameter model. Of particular note was the Swedish
pertussis FHA IgG dataset, for which MLEs were found
with only one of the 2-parameter models; when ‘incom-
plete protection’ protection curves were used MLEs
were found with all six models. Marked consistency
in likelihood and fit between incomplete protection
models was noted, whichever 2-parameter function
was used.
Detailed results of fitting models with ‘incomplete

protection’ protection curves are given in Additional
file 4.

Non-symmetrical protection curves
Of the four non-symmetrical models evaluated, none
was consistently optimal. Notably, for the Swedish per-
tussis FHA IgG dataset, for which MLEs were found
with only one of the 2-parameter symmetrical models,
MLEs were found with three of the four asymmetrical
models. In 25 out of a possible 64 instances, a non-
symmetrical model was an improvement over the corre-
sponding symmetrical model, either finding MLEs where
the symmetrical model did not, or improving on all three
evaluation criteria. In most instances the improvement
was small, though in eleven instances −2×log-likelihood
decreased by more than 1. For three datasets, −2×log-like-
lihood and goodness-of-fit for the non-symmetrical
models were almost identical to the symmetrical models.
Detailed results for models with non-symmetrical protec-
tion curves are given in Additional file 1.

Case-cohort designs
Among the 57 combinations of illustrative dataset, pro-
tection curve and non-case:case ratio assessed, MLEs
were found for all 100 case-cohort datasets 43 times.
Among the remaining 14 combinations, MLEs were found
for between 45 and 99 of the case-cohort datasets; how-
ever for the error function model fitted to the German
pertussis FHA IgA case-cohort datasets the number of
MLEs did not exceed 50 for any of the three values of
non-case:case ratio. For the combinations where less than
100 MLEs were found there was an observable trend to-
wards more MLEs being found when the non-case:case
ratio was higher. Detailed results for the case-cohort data-
sets are given in Additional file 5.
Similarly, there was a visible trend for the median

standard error of the estimates of the location parameter,
SE( α̂ ), to increase as the non-case:case ratio decreased.
When the non-case:case ratio was 20 the median value
of SE( α̂ ) in the case-cohort datasets was close to its
value in the ‘all-subjects’ dataset; when the non-case:case
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ratio was 5 the median value of SE(α̂ ) in the case-cohort
datasets was typically 15 % to 40 % greater than in the
‘all-subjects’ dataset.

Standard errors and confidence intervals
Among the 54 combinations of protection function, il-
lustrative dataset and bootstrap method assessed, MLEs

Table 1 Evaluation criteria for models for which MLEs were found with 2-parameter symmetrical protection curves fitted to illustrative
datasets

−2×log-likelihood (rank)

Goodness-of-fit (rank)

Coef. of Var. λ̂ (rank) Protection curve/function

Dataset (cases of disease:subjects) Error function Logistic function Square root
sigmoid

Double
exponential

Arctangent
function

Absolute sigmoid
function

German pertussis FHA IgG (44:1988) 375.441 (6)
0.1799 (1)
0.4365 (6)

375.247 (5)
0.1645 (3)
0.3247 (5)

374.949 (4)
0.1427 (4)
0.2234 (4)

374.393 (3)
0.1775 (2)
0.2072 (3)

374.384 (2)
0.1302 (6)
0.1708 (2)

373.629 (1)
0.1329 (5)
0.1552 (1)

German pertussis PT IgG (44:1987) 379.477 (6)
0.1891 (6)
2.1025 (6)

378.741 (5)
0.1906 (5)
0.5796 (5)

376.344 (3)
0.2837 (3)
0.2250 (3)

377.239 (4)
0.2622 (4)
0.2296 (4)

373.950 (2)
0.5100 (2)
0.1748 (2)

373.595 (1)
0.5233 (1)
0.1530 (1)

German pertussis PRN IgG (44:1992) 381.059 (2)
0.8700 (1)
0.4318 (6)

381.081 (4)
0.8619 (2)
0.3044 (5)

381.124 (6)
0.8263 (4)
0.1855 (4)

381.028 (1)
0.8560 (3)
0.1819 (3)

381.080 (3)
0.8141 (5)
0.1719 (2)

381.087 (5)
0.7829 (6)
0.1514 (1)

German pertussis FIM IgG (44:1986) 376.847 (6)
0.8273 (1)
0.5638 (6)

376.683 (5)
0.8039 (3)
0.4063 (5)

376.553 (3)
0.7381 (4)
0.2784 (4)

376.080 (1)
0.8222 (2)
0.2771 (3)

376.640 (4)
0.7028 (5)
0.2288 (2)

376.518 (2)
0.6791 (6)
0.1936 (1)

German pertussis FHA IgA (44:1932) 418.378 (4)
0.7157 (4)
0.1317 (1)

- 417.617 (3)
0.7216 (3)
0.1490 (4)

- 417.604 (2)
0.7217 (1)
0.1490 (3)

417.603 (1)
0.7217 (2)
0.1490 (2)

German pertussis PT IgA (44:1933) 418.782 (5)
0.5103 (1)
0.2860 (4)

418.784 (6)
0.5099 (2)
0.3207 (5)

418.101 (3)
0.4777 (6)
0.1490 (3)

418.751 (4)
0.5042 (3)
0.3621 (6)

418.076 (2)
0.4781 (5)
0.1490 (2)

418.075 (1)
0.4781 (4)
0.1490 (1)

German pertussis PRN IgA (44:1968) - - 406.932 (3)
0.2489 (3)
0.1490 (3)

- 406.479 (2)
0.2528 (2)
0.1489 (2)

406.432 (1)
0.2532 (1)
0.1488 (1)

German pertussis FIM IgA (44:1994) 410.398 (6)
0.0107 (5)
0.8372 (6)

410.361 (5)
0.0113 (3)
0.7657 (5)

410.349 (4)
0.0118 (2)
0.5205 (4)

409.896 (3)
0.0109 (4)
0.2282 (3)

408.899 (2)
0.0063 (6)
0.1776 (2)

407.798 (1)
0.0196 (1)
0.1721 (1)

Piedra RSV/A (34:175) - - 159.291 (3)
0.6080 (4)
0.9513 (4)

159.477 (4)
0.6156 (3)
0.4410 (3)

158.612 (2)
0.6694 (2)
0.2956 (2)

157.895 (1)
0.7361 (1)
0.2119 (1)

Piedra RSV/B (34:175) - - 154.415 (2)
0.6934 (3)
0.7328 (3)

- 154.395 (1)
0.7439 (2)
0.3734 (2)

154.553 (3)
0.7591 (1)
0.2643 (1)

White/varicella (79:3459) 643.035 (4)
0.9848 (5)
0.2887 (6)

642.145 (3)
0.9987 (3)
0.2297 (5)

641.683 (1)
1.0000 (1)
0.1802 (3)

641.765 (2)
1.0000 (2)
0.2000 (4)

643.060 (5)
0.9934 (4)
0.1403 (2)

643.507 (6)
0.9841 (6)
0.1314 (1)

Swedish pertussis FHA IgG (92:209) - - 284.404 (1)
0.0100 (1)
0.0777 (1)

- - -

Swedish pertussis PT IgG (92:209) 270.365 (6)
0.9223 (6)
0.1577 (4)

270.205 (5)
0.9274 (5)
0.1587 (5)

269.832 (4)
0.9379 (4)
0.1483 (3)

269.757 (3)
0.9407 (3)
0.1938 (6)

269.374 (2)
0.9529 (2)
0.1341 (2)

268.871 (1)
0.9754 (1)
0.1216 (1)

Swedish pertussis PRN IgG (92:209) 247.593 (5)
0.7605 (6)
0.0807 (4)

247.621 (6)
0.7700 (5)
0.0813 (5)

247.571 (4)
0.8123 (1)
0.0813 (6)

247.304 (3)
0.7736 (4)
0.0791 (3)

246.989 (2)
0.7884 (2)
0.0772 (2)

246.071 (1)
0.7863 (3)
0.0763 (1)

Swedish pertussis FIM IgG (92:209) 251.075 (6)
0.2775 (6)
0.3644 (6)

250.822 (5)
0.2921 (5)
0.2708 (5)

250.161 (4)
0.3250 (4)
0.1697 (4)

249.765 (3)
0.3530 (3)
0.1470 (3)

248.902 (2)
0.3691 (2)
0.1103 (2)

247.731 (1)
0.4765 (1)
0.0941 (1)

Black Nicolay HAI (22:777) 181.035 (6)
0.5029 (6)
0.2875 (6)

180.649 (5)
0.5241 (4)
0.2661 (5)

179.402 (3)
0.5209 (5)
0.2267 (3)

179.675 (4)
0.5886 (2)
0.2329 (4)

177.247 (2)
0.5479 (3)
0.2122 (2)

176.743 (1)
0.6813 (1)
0.2120 (1)
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were found for 46,591 of the 54,000 bootstrap datasets –
17,055 out of 24,000 with error function models and
29,536 out of 30,000 with absolute sigmoid models. De-
tailed results for the estimates of standard errors are
given in Additional file 6.
There was considerable variability in the estimates of

the standard error of α̂ based on the observed informa-
tion. Among the 54 combinations, there were six where
more than 50 % of the estimates were less than half or
more than twice their median. Among the non-parametric
bootstrap datasets there were only two combinations
where more than 90 % of the estimates were between half
and twice the median; among the parametric bootstraps
there was only one where more than 90 % of the estimates
were between half and twice the median.
The median standard error of α̂ calculated from the ob-

served information was less than the standard deviation of
the bootstrap estimates of α̂ , SD α̂ð Þ, for 45 out of the 54
combinations – 16 out of 24 for the error function models
and 29 out of 30 for the absolute sigmoid models. The dif-
ference was particularly marked for the absolute sigmoid
models, where there were combinations where the median
was 1/5th (three instances), 1/7th, 1/13th 1/16th and 1/22nd

the value of SD α̂ð Þ.
The standard deviation of the bootstrap estimates of α̂ ,

SD α̂ð Þ , was consistently smaller in the absolute sigmoid
models than in the error function models.
The coverage probability of 95 % two-sided confidence

intervals for α , calculated from the observed information

by α̂ � 1:96� SE α̂ð Þ , in the parametric bootstrap data-
sets, is shown in Table 2.
Although with the error function model the coverage

probability was more than 90 % for all but two illustra-
tive datasets, it exceeded this percentage for only one of
the fifteen illustrative datasets with the absolute sigmoid
model.
The proportion of subjects with assay values above or

below the 95 % confidence interval for the value at
which protection was 50 %, using the mean of the stand-
ard deviation of α̂ from parametric and non-parametric
bootstraps for the standard error, was greater than 80 %
for seven of the fifteen illustrative datasets with absolute
sigmoid models, and less than 40 % for only one such
combination; for error function models, the proportion
of subjects with assay values outside the confidence
interval was greater than 80 % for only one of the twelve
datasets, and was less than 40 % for seven.

Discussion
An important finding was that there was considerable
variability in the estimated standard error of the location
parameter based on the observed information in both
parametric and non-parametric bootstraps. In addition,
the median standard error based on the observed infor-
mation was markedly less than the standard deviation of
bootstrap parameter estimates; this was particularly pro-
nounced for the absolute sigmoid model, which was gen-
erally the best-fitting of the 2-parameter symmetric

Table 2 Coverage probability of 95 % two-sided confidence intervals for α , calculated from the observed information by
α̂ � 1:96� SE α̂ð Þ, in the parametric bootstrap datasets

Dataset (cases of disease:subjects) Error function models Absolute sigmoid models

N* Coverage N* Coverage

German pertussis FHA IgG (44:1988) 801 0.925 1000 0.642

German pertussis PT IgG (44:1987) 595 0.797 1000 0.658

German pertussis PRN IgG (44:1992) 826 0.924 1000 0.619

German pertussis FIM IgG (44:1986) 479 0.987 1000 0.711

German pertussis FHA IgA (44:1932) 194 0.866 1000 0.216

German pertussis PT IgA (44:1933) 232 0.991 1000 0.225

German pertussis PRN IgA (44:1968) - - 1000 0.320

German pertussis FIM IgA (44:1994) 656 0.942 999 0.650

Piedra RSV/A (34:175) - - 964 0.773

Piedra RSV/B (34:175) - - 877 0.814

White/Varicella (79:3459) 998 0.921 1000 0.941

Swedish pertussis FHA IgG (92:209) - - - -

Swedish pertussis PT IgG (92:209) 846 0.953 969 0.829

Swedish pertussis PRN IgG (92:209) 951 0.930 1000 0.744

Swedish pertussis FIM IgG (92:209) 697 0.811 991 0.772

Black Nicolay HAI (22:777) 790 0.934 1000 0.614

* number of bootstrap datasets for which MLEs were found
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curve models. Further, the coverage probability of confi-
dence intervals based on the observed information was
poor, again particularly for the absolute sigmoid model.
Although confidence intervals based on observed infor-
mation are unbiased asymptotically [37], it appeared that
for the models investigated here fitted to the datasets
used for illustration, and particularly for a better fitting
model, they could not be relied upon. Of the methods
considered bootstrap confidence intervals were to be
preferred.
Reliable estimates of precision for immune correlates

of protection are necessary for proper interpretation of
results. For example, Plotkin notes different authors have
found point estimates for HAI titers of 1:40, 1:15, 1:30,
1:110, 1:32 and 1:64 to be protective against clinical in-
fluenza [38]; without knowledge of the precision of the
estimates it cannot be inferred whether these differences
represent true differences in the circumstances of each
experiment or are simply due to chance.
Reliable confidence intervals for measures of protec-

tion are also necessary for valid classification of individ-
uals as susceptible or protected, and for assessment of
the utility of results. Principles of statistical inference
dictate that only individuals with assay values below the
lower limit of the confidence interval can confidently be
said to be susceptible by the measure, and only those
above the upper limit may confidently be said to be pro-
tected. To suggest that susceptibility or protection can
be determined by reference to the point estimate departs
from accepted conventions of inference.
The utility of an estimate of a measure of protection

may be assessed by comparing its confidence interval
with the distribution of subjects’ assay values; an esti-
mate for which most subjects’ assay values fell within
the confidence interval would have little utility. A rea-
sonable standard of precision for a measure might be
one that had been shown to classify 85 % of subjects as
either susceptible or protected with 95 % confidence. In
the two models investigated, this was achieved for six of
the fifteen illustrative datasets for which MLEs were
found with the better-fitting model, but only one of the
twelve datasets with the less well-fitting model.
Of the models investigated, no model was uniformly

optimal for all datasets. For every illustrative datasets,
there was at least one 2-parameter symmetrical model
which improved both likelihood and goodness-of-fit
relative to the logistic (scaled logit) model. There was
also at least one ‘additional parameter’ model – general-
ized symmetric, incomplete protection or asymmetric –
which improved likelihood over the best 2-parameter
model, and goodness-of-fit was likewise improved for all
but one dataset. However, the degree of improvement
was variable, ranging from 0.101 in −2×log-likelihood
and no improvement in fit (White/varicella dataset) to

16.597 improvement in −2×log-likelihood and 0.947 in
goodness-of-fit (Swedish pertussis FHA dataset).
When the estimate of the shape parameter κ in the

generalized symmetric model was between 1 and 3.3
there was (as would be expected) a 2-parameter model
with closely similar likelihood and goodness-of-fit, and
variability in likelihood and goodness-of-fit was limited
across other 2-parameter models (three datasets). For
two datasets with shape parameter estimates of 9.0 and
16.7, the 2-parameter absolute sigmoid model had simi-
lar likelihood, and variability in likelihood and fit were
also limited. When the estimate of the shape parameter
in the generalized symmetric model was less than or
equal to 0.3 and the fit good (>0.69), there was an in-
complete protection model with closely similar likeli-
hood and goodness-of-fit; as between the two the
incomplete protection model would be preferred as bet-
ter estimating exposure (6 datasets).
For three datasets goodness-of-fit was poor, less than

0.3, for all models; for one (German pertussis FIM IgG)
likelihood and goodness-of-fit were variable and incon-
sistent; and for one (Swedish pertussis PT) goodness-of-
fit was excellent for all models with which MLEs were
found, though the generalized symmetric model was not
among them.
A reasonable strategy for an exploratory analysis of a

dataset, based on the results for these illustrative data-
sets, might be to first attempt to fit a generalized sym-
metric model. An estimate of the shape parameter κ
between 1 and 3.3 would suggest fitting the correspond-
ing 2-parameter protection curve, which, other things
being equal, would be preferred for parsimony. Small
values of κ, less than 0.3, would suggests an incomplete
protection model, possibly using the logistic function
since this is the canonical link function for binary data.
Larger values of κ, might suggest an absolute sigmoid
model.
However, this strategy would not have found the opti-

mal model for the Swedish pertussis PT dataset.
An alternative could be to first attempt an absolute sig-

moid model, since this ranked favorably among the 2-
parameter models for many datasets. Another alternative,
used by one of the authors, is to note than many ele-
ments of the computer code required for an analysis
are common to most models – capturing parameter
estimates, −2×log-likelihood, the eigenvalues, calculat-
ing the goodness-of-fit – and having written code for
these a variety of models can be investigated with
minimal additional effort.
For some datasets, spline models had better likelihood

and goodness-of-fit than other models. However, it was
noted that the fitting algorithm often began to fail to
find MLEs at it approached what appeared to be the
maximum of the profile likelihood, and the spline results
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for a number of datasets reflect the greatest likelihood
among the knots for which MLEs were found, rather
than a global maximum.
For the multiple datasets used for illustration here,

goodness-of-fit and −2×log-likelihood were used to com-
pare models. For a single datasets, plots of fitted curves
and protection curves, consideration of whether param-
eter estimates are bounded, proportions of bootstrap
datasets for which MLEs are found, and stability of esti-
mates obtained from different starting values or when
convergence criteria are tightened, can also contribute
to model selection and evaluation.
Case-cohort designs appeared to result in little loss of

precision when the ratio of non-cases to cases was 20:1;
such a design would have reduced the number of sam-
ples assayed by approximately half for the three studies
(ten datasets) investigated. A small loss of precision was
apparent when the ratio was 5:1; such a ratio would have
reduced the number of samples assayed by 90 %.
We have shown that there are a number of alternatives

to the logistic protection curve proposed in the scaled
logit model that improve the fit of the model and the
precision of estimates. The investigations did, however,
reveal the challenges involved in estimating the relation-
ship between two variables, assay value and disease,
from datasets powered to estimate a single-valued end-
point such as vaccine efficacy – in the areas of achieving
convergence and finding MLEs, achieving convergence
to a consistent point, variance estimation, achieving a
reasonable standard of precision, and sometimes marked
differences in fit and precision between closely similar
models – particularly in the multi-parameter non-linear
models which are needed to explicitly quantify protec-
tion. The authors’ experience has been that with richer,
more informative simulated datasets many of these chal-
lenges disappear; however, it is unrealistic to expect that
larger, more informative designed experiments will often
be conducted; cost and ethical considerations would be
difficult to surmount.
We gave no consideration to the question of adjusting

for multiple comparisons, and inference from fitting mul-
tiple models cannot be made to a population. We applied
the same fitting criteria (for convergence, positive definite
Hessian and starting values) in all evaluations without
consideration of whether they were uniformly applicable
to all datasets.
Further research might consider improved methods for

estimating variability; non-parametric methods for esti-
mating protection curves might also be explored. The pro-
tection afforded vaccinees may not be the same as for
non-vaccinees with the same assay value, and previous re-
search has suggested models separately estimating protec-
tion in different treatment groups [24, 25]. Even when the
Prentice criterion is considered met or the proportion of

treatment explained is high, a common protection curve
does not predict the observed relative risk and hence is
not predictive of vaccine efficacy; methods predictive of
efficacy would be of interest. When more than one assay
is conducted, methods for combining their data to esti-
mate protection would be valuable. Other approaches pro-
posed to estimate correlates of protection, such as the
method of Chang and Kohberger [17, 39], the a:b model
[19], the vaccine efficacy curve method [3, 14, 16], and
area-under-the-curve methods [21, 40] might be com-
pared and reconciled with those suggested here.

Conclusions
The original scaled logit model can be improved upon by
considering alternative protection curve functions and
refining likelihood maximization methods. Bootstrap
methods for estimating precision are to be preferred over
estimates based on the observed information. Evaluation
criteria permit well-fitting models and useful results to be
identified. With some datasets good model fit and preci-
sion can be achieved with simpler models; others require
more complex models. The proposed methods provide a
comprehensive set of tools for quantifying the relationship
between immunological assays and protection from
disease.
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