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a b s t r a c t

Based on fuzzy reasoning in fuzzy logic, this paper studies a fuzzy hyperoperation and a
fuzzy hypergroupoid associated with a fuzzy relation. A sufficient and necessary condition
for such a fuzzy hypergroupoid being a fuzzy hypergroup is given, and the properties of
the fuzzy hypergroups associated with fuzzy relations are investigated. Furthermore, the
definition of normal fuzzy hypergroups is put forward and it is shown that the category
NFHG of normal fuzzy hypergroups satisfies all the axioms of topos except for the subobject
classifier axiom.
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1. Introduction

The first step of the development of hyperstructure theory, in particular hypergroup theory, can be traced back to the
8th Congress of Scandinavian Mathematicians in 1934, when Marty [1] introduced the concept of hypergroup, analyzed its
properties and applied them to groups, rational fractions and algebraic functions. Since then, the study of hyperstructure
theory hasmade a great achievement both in the theories and applications. Nowadays hundreds of papers and several books
on this topic have been published (see [2–5]). The principal notions of hypergroup theory can be found in [2]. Applications
of hypergroup theory have mainly appeared in the areas of pure and applied mathematics and computer science [4].
After Zadeh [6] first proposed the concept of fuzzy sets in 1965, Rosenfeld [7] introduced fuzzy sets into group theory

to formulate fuzzy subgroups of a group in 1971. Since then, many researchers are engaged in extending the concepts of
abstract algebra to the framework of the fuzzy setting [8–10].
The study of fuzzy hyperstructures is an interesting research topic of fuzzy sets theory. There is a considerable amount of

work on the connections between fuzzy sets and hyperstructures, which can be divided into three groups of papers. The first
group of papers studies the crisp hyperoperations determined through fuzzy sets [11–18]. The second group of papers con-
cerns the fuzzy hyperalgebras, which are a direct extension of the concepts of fuzzy algebras such as fuzzy subgroups, fuzzy
rings, etc. For example, given a crisp hypergroup 〈X, ◦〉 and a fuzzy set µ, we say that µ is a fuzzy subhypergroup of 〈X, ◦〉
if every cut of µ is a crisp subhypergroup of 〈X, ◦〉 [19–21]. The third group of papers involves the fuzzy hyperoperations
which are defined by assigning to every pair of elements a fuzzy set [22–29].
The last kind of fuzzy hyperstructure seems to have a more practical background. For example, Zadeh put forward the

idea of fuzzy inference for complex systems and gave the famous CRI (compositional rule of inference) algorithm [30]. Given
a double-input single-output system, let X and Y represent the input universes, and Z represent the output universe. The
basic idea of CRI algorithm is as follows: Establish n rules of fuzzy reasoning according to the practical experience of experts,
i.e.,

IF x IS Ai AND y IS Bi, THEN z IS Ci, i = 1, . . . , n, (1)
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where x ∈ X , y ∈ Y and z ∈ Z are basic variables, and Ai ∈ F (X), Bi ∈ F (Y ) and Ci ∈ F (Z) (i = 1, . . . , n) are
linguistic values. The ith rule of fuzzy reasoning in (1) forms a fuzzy relation Ri ∈ F (X × Y × Z). These n rules are joined by
‘‘OR’’ naturally so that the total fuzzy reasoning relation R =

⋃n
i=1 Ri ∈ F (X × Y × Z) is formed. In particular, when

X = Y = Z = H , given an input (x, y) ∈ H2, using the total fuzzy reasoning relation R we can obtain a fuzzy set
C(x, y) = ({x} × {y}) ◦ R ∈ F (H). If we denote x◦̃y = C(x, y) = ({x} × {y}) ◦ R, then ◦̃ is a fuzzy hyperoperation on
H indeed.
Starting with such an analysis, the present paper studies the fuzzy hyperstructures associated with fuzzy relations and

also belongs to the third group of papers above.
The rest of the paper is organized as follows. In Section 2 we recall some basic notions on fuzzy hypergroups and topos

theory. In Section 3 we study the properties of fuzzy hypergroups based on fuzzy relations. In Section 4 we introduce the
normal fuzzy hypergroups. In Section 5 we build up the category of normal fuzzy hypergroups.

2. Preliminaries

First of all, we recall some notions and results that we shall use in the following sections. Let H be a nonempty set. Let
F (H) = [0, 1]H be the set of all fuzzy subsets of H and F ∗(H) = F (H) \ {∅}. A fuzzy hyperoperation on H is a mapping
◦̃: H2 → F (H) and the couple 〈H, ◦̃〉 is called a partial fuzzy hypergroupoid. If the fuzzy hyperoperation ◦̃ maps H2 into
F ∗(H), then 〈H, ◦̃〉 is called a fuzzy hypergroupoid.
If A and B are nonempty fuzzy subsets of H , then A◦̃B ∈ F (H) is defined by

(A◦̃B)(y) =
∨
a, b∈H

(A(a) ∧ B(b) ∧ (a◦̃b)(y)), ∀y ∈ H.

Definition 2.1 ([22]).
(i) A fuzzy semihypergroup is a fuzzy hypergroupoid 〈H, ◦̃〉which satisfies the associative law, i.e.,∀x, y, z ∈ H, (x◦̃y)◦̃z =
x◦̃(y◦̃z).

(ii) A fuzzy quasihypergroup is a fuzzy hypergroupoid 〈H, ◦̃〉 which satisfies the reproductive law, i.e., ∀x ∈ H, x◦̃H =
H = H◦̃x.

(iii) A fuzzy hypergroup is a fuzzy semihypergroup which is also a fuzzy quasihypergroup.

A fuzzy subhypergroup 〈K , ◦̃〉 of a fuzzy hypergroup 〈H, ◦̃〉 is a nonempty subset K ⊆ H such that for any k ∈ K , k◦̃K =
K ◦̃k = K .
Let 〈H1, ◦̃1〉 and 〈H2, ◦̃2〉 be two fuzzy hypergroups. A mapping f : H1 → H2 is called a fuzzy hypergroup homomorphism

if ∀x, y ∈ H1, f (x◦̃1y) ⊆ f (x)◦̃2f (y).

Definition 2.2 ([31]). A topos is a category C which satisfies the following five conditions:
(1) Finite products exist in C . That is, for any objects A, B ∈ C , there exist an object C ∈ C and morphisms p1 : C → A,
p2 : C → B such that for any morphisms f : D → A and g : D → B, there exists a unique morphism h : D → C
satisfying p1 ◦ h = f and p2 ◦ h = g . Here C is denoted as C = A× B.

(2) Equalizers exist in C . That is, for any morphisms f , g : A→ B, there exist an object E ∈ C and a morphism e : E → A
such that (i) f ◦ e = g ◦ e; (ii) for any morphism e′ : E ′ → A satisfying f ◦ e′ = g ◦ e′, there exists a unique morphism
ē : E ′ → E with e ◦ ē = e′.

(3) There is a terminal object U in C . That is, for each object A ∈ C , there exists exactly one morphism ! : A→ U .
(4) Exponentials exist in C . That is, for any objects A, B ∈ C , there exist an object BA ∈ C and a morphism ev : BA × A→ B
such that for any morphism F : D× A→ B, there exists a unique morphism F̄ : D→ BA satisfying ev ◦ (F̄ × IdA) = F .

(5) There is a subobject classifier in C . That is, there are an objectΩ ∈ C and a morphism > : U → Ω such that for each
monomorphism f : A′ → A, there exists a unique morphism χf : A→ Ω such that
(i) χf ◦ f = >◦!;
(ii) for each object B and morphism g : B → A with χf ◦ g = >◦!, there exists a unique morphism ḡ : B → A′ with
g = f ◦ ḡ .

Definition 2.3 ([32]). Let R be a fuzzy relation on H . Then
(i) R is reflexive if for any x ∈ H , R(x, x) = 1;
(ii) R is symmetric if for any x, y ∈ H , R(x, y) = R(y, x);
(iii) R is transitive if R2 ⊆ R, i.e., for any (x, y) ∈ H2,∨

z∈H

(R(x, z) ∧ R(z, y)) ≤ R(x, y).

Given two fuzzy relations ρ and σ on H , ρσ is a fuzzy relation on H determined by

(ρσ)(x, z) =
∨
y∈H

(ρ(x, y) ∧ σ(y, z)), ∀x, z ∈ H.
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3. Fuzzy hypergroups based on fuzzy relations

For a fuzzy relation ρ on H , we denote
D(ρ) = {x ∈ H| ∃y ∈ H, ρ(x, y) > 0} ⊆ H

and
R(ρ) = {x ∈ H| ∨a∈H ρ(a, x) = 1} ⊆ H.

Example 3.1. Let H = {x1, x2, x3, x4} and the fuzzy relations ρ1 and ρ2 defined on H be

ρ1 x1 x2 x3 x4
x1 0 0 0 0
x2 0.5 1 0.7 0.9
x3 0.6 0.8 1 0.6
x4 0.4 0.8 0.6 0.9

ρ2 x1 x2 x3 x4
x1 1 0.6 0.4 0.2
x2 0.7 1 0.5 0.3
x3 0.5 0.8 1 0
x4 0.3 0 0.6 1

Then, there are

D(ρ1) = {x2, x3, x4} ⊂ H, D(ρ2) = {x1, x2, x3, x4} = H,
R(ρ1) = {x2, x3} ⊂ H, R(ρ2) = {x1, x2, x3, x4} = H.

For any x ∈ H , we denote

L̃ρx : H → [0, 1], L̃ρx (z) = ρ(x, z), ∀z ∈ H
and

R̃ρx : H → [0, 1], R̃ρx (z) = ρ(z, x), ∀z ∈ H.
To each fuzzy relation ρ on H , a partial fuzzy hypergroupoid Hρ = 〈H, ◦̃ρ〉 is associated as follows:

∀x, y ∈ H, x◦̃ρy = L̃ρx ∪ L̃
ρ
y .

Especially, x◦̃ρx = L̃
ρ
x for all x ∈ H .

Theorem 3.1. If ρ is a reflexive and transitive fuzzy relation on H, then Hρ = 〈H, ◦̃ρ〉 is a fuzzy hypergroup.

Proof. Denote ◦̃ = ◦̃ρ . Since ρ is reflexive and transitive, for any x, y, v ∈ H ,
(1) (x◦̃x)(x) = ρ(x, x) = 1;
(2) x◦̃y = x◦̃x ∪ y◦̃y;
(3) (x◦̃x)(y) ≥ (x◦̃x)(v) ∧ (v◦̃v)(y).
By (1) and (3), we have (x◦̃x)(y) ≥

∨
v∈H((x◦̃x)(v) ∧ (v◦̃v)(y)) ≥ (x◦̃x)(x) ∧ (x◦̃x)(y) = (x◦̃x)(y), i.e., (x◦̃x)(y) =∨

v∈H((x◦̃x)(v) ∧ (v◦̃v)(y)).
Now we show that Hρ is a fuzzy hypergroup. For any x, y, z ∈ H and u ∈ H , we have

((x◦̃y)◦̃z)(u) =
∨
v∈H

((x◦̃y)(v) ∧ (v◦̃z)(u))

=

∨
v∈H

((x◦̃y)(v) ∧ ((v◦̃v)(u) ∨ (z◦̃z)(u)))

=

∨
v∈H

(((x◦̃y)(v) ∧ (v◦̃v)(u)) ∨ ((x◦̃y)(v) ∧ (z◦̃z)(u)))

=

(∨
v∈H

((x◦̃y)(v) ∧ (v◦̃v)(u))

)
∨

(∨
v∈H

((x◦̃y)(v) ∧ (z◦̃z)(u))

)
=

∨
v∈H

(((x◦̃x)(v) ∧ (v◦̃v)(u)) ∨ ((y◦̃y)(v) ∧ (v◦̃v)(u))) ∨ (z◦̃z)(u)

= ((x◦̃x)(u) ∨ (y◦̃y)(u)) ∨ (z◦̃z)(u).

Similarly, we obtain (x◦̃(y◦̃z))(u) = (x◦̃x)(u) ∨ ((y◦̃y)(u) ∨ (z◦̃z)(u)). Thus (x◦̃y)◦̃z = x◦̃(y◦̃z), and Hρ is a fuzzy
semihypergroup. For any x ∈ H and u ∈ H , (x◦̃H)(u) =

∨
v∈H((x◦̃v)(u) ∧ H(v)) =

∨
v∈H((x◦̃x)(u) ∨ (v◦̃v)(u)) =

(u◦̃u)(u) = 1 and (H◦̃x)(u) =
∨
v∈H(H(v)∧ (v◦̃x)(u)) =

∨
v∈H((v◦̃v)(u)∨ (x◦̃x)(u)) = (u◦̃u)(u) = 1. So x◦̃H = H = H◦̃x.

Thus Hρ is a fuzzy quasihypergroup. Therefore, Hρ is a fuzzy hypergroup. �

Definition 3.1. Let λ ∈ (0, 1]. An element x ∈ H is called a λ-outer element of ρ if there exists an hλ ∈ H such that
ρ2(hλ, x) < λ. An element x ∈ H is called an outer element of ρ if x is a λ-outer element of ρ for any λ ∈ (0, 1].
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Remark 3.1. In Example 3.1, for x1 ∈ H , there are

ρ22 (x1, x1) =
∨
y∈H

ρ2(x1, y) ∧ ρ2(y, x1) = max{1, 0.6, 0.4, 0.2} = 1,

ρ22 (x2, x1) =
∨
y∈H

ρ2(x2, y) ∧ ρ2(y, x1) = max{0.7, 0.7, 0.5, 0.3} = 0.7,

ρ22 (x3, x1) =
∨
y∈H

ρ2(x3, y) ∧ ρ2(y, x1) = max{0.5, 0.7, 0.5, 0} = 0.7,

and

ρ22 (x4, x1) =
∨
y∈H

ρ2(x4, y) ∧ ρ2(y, x1) = max{0.3, 0, 0.5, 0.3} = 0.5.

Thus, for any λ ∈ (0.5, 1], x1 is a λ-outer element of ρ2. Similarly, for any λ ∈ (0.6, 1], x2 is a λ-outer element of ρ2; for any
λ ∈ (0.5, 1], x3 is a λ-outer element of ρ2; and for any λ ∈ (0.3, 1], x3 is a λ-outer element of ρ2.
But for the fuzzy relation ρ1, there are ρ21 (x1, x1) = 0, ρ

2
1 (x1, x2) = 0, ρ

2
1 (x1, x3) = 0 and ρ

2
1 (x1, x4) = 0. Thus, for any

λ ∈ (0, 1], xi (i = 1, 2, 3, 4) is a λ-outer element of ρ1, hence xi (i = 1, 2, 3, 4) is an outer element of ρ1.

Remark 3.2. For x ∈ H , if there exists h ∈ H such that ρ2(h, x) = 0, then x is an outer element of ρ.

Theorem 3.2. Hρ is a fuzzy hypergroup if and only if
(a) H = D(ρ);
(b) H = R(ρ);
(c) ρ ⊆ ρ2;
(d) For any λ ∈ (0, 1], if x ∈ H is a λ-outer element of ρ , then for a ∈ H, ρ2(a, x) ≥ λ⇒ ρ(a, x) ≥ ρ2(a, x).
Proof. Denote ◦̃ = ◦̃ρ . ‘‘Necessity’’ Suppose Hρ is a fuzzy hypergroup.
(a) For any x ∈ H , we have x◦̃x ∈ F ∗(H), and there exists a y ∈ H such that (x◦̃x)(y) > 0, so x ∈ D(ρ). Hence H ⊆ D(ρ),
and we have H = D(ρ).

(b) For any y ∈ H , 1 = χH(y) = (y◦̃H)(y) =
∨
a∈H(y◦̃a)(y) =

∨
a∈H(a◦̃a)(y), so y ∈ R(ρ). Hence H ⊆ R(ρ), and we have

H = R(ρ).
(c) For any x, z ∈ H , let λ = ρ(x, z), i.e., (x◦̃x)(z) = λ. Since (x◦̃(x◦̃z))(z) =

∨
y∈H((x◦̃y)(z)∧ (x◦̃z)(y)) ≥

∨
y∈H((x◦̃x)(z)∧

(x◦̃z)(y)) = (x◦̃x)(z) = λ, we have

((x◦̃x)◦̃z)(z) =
∨
y∈H

((y◦̃z)(z) ∧ (x◦̃x)(y))

=

∨
y∈H

(((y◦̃y)(z) ∧ (x◦̃x)(y)) ∨ ((z◦̃z)(z) ∧ (x◦̃x)(y)))

=

(∨
y∈H

(y◦̃y)(z) ∧ (x◦̃x)(y)

)
∨

(∨
y∈H

(z◦̃z)(z) ∧ (x◦̃x)(y)

)
≥ λ.

If
∨
y∈H((y◦̃y)(z) ∧ (x◦̃x)(y)) ≥ λ, then it implies ρ2(x, z) ≥ λ. If

∨
y∈H((z◦̃z)(z) ∧ (x◦̃x)(y)) ≥ λ, then we have

(z◦̃z)(z) ≥ λ, thus ρ2(x, z) ≥ ρ(x, z) ∧ ρ(z, z) = λ. Hence ρ2(x, z) ≥ ρ(x, z). Therefore, ρ ⊆ ρ2.
(d) Let λ ∈ (0, 1] and x ∈ H be a λ-outer element of ρ. For a ∈ H , let θ = ρ2(a, x) ≥ λ. Suppose ρ(a, x) < θ . Since x is a

λ-outer element of ρ, there exists an hλ ∈ H such that ρ2(hλ, x) =
∨
b∈H(ρ(hλ, b) ∧ ρ(b, x)) < λ ≤ θ . Then

θ >
∨
b∈H

((a◦̃b)(x) ∧ (hλ◦̃hλ)(b)) = (a◦̃(hλ◦̃hλ))(x)

= ((a◦̃hλ)◦̃hλ)(x)

=

∨
y∈H

((y◦̃hλ)(x) ∧ (a◦̃hλ)(y))

≥

∨
y∈H

((a◦̃a)(y) ∧ (y◦̃hλ)(x))

≥

∨
y∈H

((a◦̃a)(y) ∧ (y◦̃y)(x))

= ρ2(a, x),

which leads to a contradiction to ρ2(a, x) = θ . Hence ρ(a, x) ≥ θ , i.e., ρ(a, x) ≥ ρ2(a, x).
‘‘Sufficiency’’ By condition (a), Hρ is a fuzzy hypergroupoid.
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For any x, y,∈ H and u ∈ H , we have ((x◦̃y)◦z)(u) =
∨
a∈H((x◦̃x)(a)∧(a◦̃a)(u))∨

∨
b∈H((y◦̃y)(b)∧(b◦̃b)(u))∨(z◦̃z)(u)

and (x◦̃(y ◦ z))(u) = (x◦̃x)(u) ∨
∨
b∈H((y◦̃y)(b) ∧ (b◦̃b)(u)) ∨

∨
c∈H((z◦̃z)(c) ∧ (c◦̃c)(u)). By condition (c),

(x◦̃x)(u) = ρ(x, u) ≤ ρ2(x, u) =
∨
a∈H

((x◦̃x)(a) ∧ (a◦̃a)(u)).

First, we show that ((x◦̃y)◦z)(u) ≤ (x◦̃(y◦z))(u). Let λ = ((x◦̃y)◦z)(u). If (z◦̃z)(u) = λ or
∨
b∈H((y◦̃y)(b)∧(b◦̃b)(u)) = λ,

then we have (x◦̃(y ◦ z))(u) ≥ λ. Otherwise,
∨
a∈H((x◦̃x)(a) ∧ (a◦̃a)(u)) = ρ

2(x, u) = λand
∨
b∈H((y◦̃y)(b) ∧ (b◦̃b)(u)) ∨

(z◦̃z)(u) < λ. Next, we will show that (x◦̃x)(u) = λ. Since
∨
b∈H((y◦̃y)(b) ∧ (b◦̃b)(u)) < λ, u is a λ-outer element of ρ.

By conditions (c), (d) and ρ2(x, u) = λ, we have ρ(x, u) = ρ2(x, u), i.e., (x◦̃x)(u) = λ. So ((x◦̃y) ◦ z)(u) ≤ (x◦̃(y ◦ z))(u).
Similarly, we can show (x◦̃(y ◦ z))(u) ≤ ((x◦̃y) ◦ z)(u). Hence ((x◦̃y) ◦ z)(u) = (x◦̃(y ◦ z))(u). Thus (x◦̃y) ◦ z = x◦̃(y ◦ z).
For any x, u ∈ H , (x◦̃H)(u) =

∨
a∈H(x◦̃a)(u) =

∨
a∈H(a◦̃a)(u). By condition (b), for u ∈ H = R(ρ), we have∨

a∈H(a◦̃a)(u) = 1, so (x◦̃H)(u) = 1. Thus x◦̃H = H . Similarly we have H◦̃x = H .
Therefore, Hρ is a fuzzy hypergroup. �

Next, we will illustrate Theorem 3.2 step by step by an example.

Example 3.2. Let H = {x, y, z} and ρ be a fuzzy relation on H defined by

ρ x y z
x 1 0.8 0.7
y 0.6 1 0.6
z 0.5 0.5 1

Then the partial fuzzy hypergroupoid Hρ = 〈H, ◦̃ρ〉 is determined by

x◦̃ρx = L̃ρx = (1, 0.8, 0.7)
y◦̃ρy = L̃ρy = (0.6, 1, 0.6)
z◦̃ρz = L̃ρz = (0.5, 0.5, 1)
x◦̃ρy = y◦̃ρx = x◦̃ρx ∪ y◦̃ρy = (1, 1, 0.7)
x◦̃ρz = z◦̃ρx = x◦̃ρx ∪ z◦̃ρz = (1, 0.8, 1)
y◦̃ρz = z◦̃ρy = y◦̃ρy ∪ z◦̃ρz = (0.6, 1, 1).

Since ρ is reflexive and transitive, it is only necessary to check the ‘‘Necessity’’ since by Theorem 3.1 that Hρ = 〈H, ◦̃ρ〉 is a
fuzzy hypergroup.
Firstly, by the definitions of D(ρ) and R(ρ) and the given fuzzy relation ρ that D(ρ) = R(ρ) = H . Thus the conditions

(a) and (b) in Theorem 3.2 hold.
Secondly, there is

ρ2 =

( 1 0.8 0.7
0.6 1 0.6
0.5 0.5 1

)( 1 0.8 0.7
0.6 1 0.6
0.5 0.5 1

)
⊇

( 1 0.8 0.7
0.6 1 0.6
0.5 0.5 1

)
= ρ. (2)

Thirdly, for any λ ∈ (0.5, 1], x1 and x2 are λ-outer elements of ρ and for any λ ∈ (0.6, 1], x3 is a λ-outer element of
ρ. For any λ ∈ (0.5, 0.6], there is ρ2(x1, x1) > ρ2(x2, x1) ≥ λ, it follows from Eq. (2) that ρ(x1, x1) ≥ ρ2(x1, x1) and
ρ(x2, x1) ≥ ρ2(x2, x1). Similarly, it can be shown that condition (d) in Theorem 3.2 holds.
Till then, the necessary conditions of Theorem 3.2 hold, thus the partial fuzzy hypergroupoid Hρ = 〈H, ◦̃ρ〉 is a fuzzy

hypergroup. This can also be deduced directly from Theorem 3.1 for that ρ is reflexive and transitive.

Proposition 3.1. Let Hρ be a fuzzy hypergroup. Then

(1) ρ2 is a transitive fuzzy relation on H.
(2) If ρ is symmetric, then ρ2 is a fuzzy equivalence relation on H.

Proof. (1) Suppose that there exist x, y, z ∈ H such that ρ2(x, z) < ρ2(x, y) ∧ ρ2(y, z). Let λ = ρ2(x, y) ∧ ρ2(y, z). Then
ρ2(x, z) < λ, which means that z is a λ-outer element of ρ. By Theorem 3.2(c) and (d), ρ2(y, z) ≥ λ ⇒ ρ(y, z) =
ρ2(y, z) ≥ λ. If ρ2(y, z) = λ, then ρ2(x, y) ≥ λ. Thus

λ = ρ2(x, y) ∧ ρ(y, z)

=

(∨
a∈H

ρ(x, a) ∧ ρ(a, y)

)
∧ ρ(y, z)

=

∨
a∈H

(ρ(x, a) ∧ ρ(a, y) ∧ ρ(y, z))
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≤

∨
a∈H

(ρ(x, a) ∧ ρ2(a, z))

=

∨
a∈H, ρ2(a,z)≥λ

(ρ(x, a) ∧ ρ(a, z)) ≤ ρ2(x, z),

which is a contradiction to ρ2(x, z) < λ. If ρ2(y, z) > λ, then ρ2(x, y) = λ. Since ρ(y, z) = ρ2(y, z) > λ, we have
λ = ρ2(x, y) ∧ ρ(y, z) ≤ ρ2(x, z), which also leads to a contradiction. Thus ρ2(x, z) ≥

∨
y∈H ρ

2(x, y) ∧ ρ2(y, z) for all
x, z ∈ H , i.e., ρ2 is transitive.

(2) Let ρ be symmetric. For any x ∈ H , x ∈ R(ρ) by Theorem 3.2(b), and so
∨
a∈H ρ(a, x) = 1. Hence ρ2(x, x) =∨

a∈H(ρ(x, a) ∧ ρ(a, x)) =
∨
a∈H ρ(a, x) = 1, proving the reflexivity of ρ

2. Clearly, ρ2 is symmetric. By (1), ρ2 is a
fuzzy equivalence relation on H . �

Proposition 3.2. If ρ and σ are fuzzy relations on H, then for any a ∈ H,
(1) a◦̃ρa◦̃ρa = (a◦̃ρ2a) ∪ (a◦̃ρa);
(2) (a◦̃ρa)◦̃σ (a◦̃ρa) = a◦̃ρσ a;
(3) a◦̃ρ∪σ a = a◦̃ρa ∪ a◦̃σ a; a◦̃ρ∩σ a = a◦̃ρa ∩ a◦̃σ a.

Proof. (1) For any u ∈ H ,

(a◦̃ρa◦̃ρa)(u) =
∨
t∈H

((t◦̃ρa)(u) ∧ (a◦̃ρa)(t))

=

∨
t∈H

(((t◦̃ρ t)(u) ∨ (a◦̃ρa)(u)) ∧ (a◦̃ρa)(t))

=

(∨
t∈H

((t◦̃ρ t)(u) ∧ (a◦̃ρa)(t))

)
∨

(∨
t∈H

((a◦̃ρa)(u) ∧ (a◦̃ρa)(t))

)

=

(∨
t∈H

((t◦̃ρ t)(u) ∧ (a◦̃ρa)(t))

)
∨ (a◦̃ρa)(u)

= (a◦̃ρ2a)(u) ∨ (a◦̃ρa)(u)
= (a◦̃ρ2a ∪ a◦̃ρa)(u).

(2) For any u ∈ H ,

((a◦̃ρa)◦̃σ (a◦̃ρa))(u) =
∨
x, y∈H

((x◦̃σ y)(u) ∧ (a◦̃ρa)(x) ∧ (a◦̃ρa)(y))

=

( ∨
x, y∈H

((x◦̃σ x)(u) ∧ (a◦̃ρa)(x) ∧ (a◦̃ρa)(y))

)

∨

( ∨
x, y∈H

((y◦̃σ y)(u) ∧ (a◦̃ρa)(x) ∧ (a◦̃ρa)(y))

)

=

(∨
t∈H

((a◦̃ρa)(t) ∧ (t◦̃σ t)(u))

)
∧

(∨
t∈H

(a◦̃ρa)(t)

)
= (a◦̃ρσ a)(u).

(3) is straightforward. �

Corollary 3.1. Let ρ be a fuzzy relation on H. If ρ ⊆ ρ2, then
(1) ρ2(a, x) = (a◦̃ρa◦̃ρa)(x) for any a, x ∈ H;
(2) x ∈ H is a λ-outer element of ρ if and only if there exists an aλ ∈ H such that (aλ◦̃ρaλ◦̃ρaλ)(x) < λ;
(3) H has no 1-outer element of ρ if and only if a◦̃ρa◦̃ρa = H for any a ∈ H.

Remark 3.3. Let ρ be a fuzzy relation on H . Then
(1) ρ is transitive if and only if a◦̃ρa◦̃ρa = a◦̃ρa for any a ∈ H;
(2) ρ ⊆ ρ2 if and only if a◦̃ρa◦̃ρa = (a◦̃ρa)◦̃ρ(a◦̃ρa) for any a ∈ H .

Theorem 3.3. If ρ is a reflexive and non-transitive fuzzy relation on H, then the following are equivalent to each other:
(1) x◦̃ρx◦̃ρx = H for any x ∈ H;
(2) H has no 1-outer element of ρ;
(3) ρ2 = H × H.
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On a fuzzy hypergroup 〈H, ◦̃〉, the following fuzzy equivalence relations, called the fuzzy operational equivalence, the fuzzy
inseparability and the fuzzy essential indistinguishability, respectively, may be defined:

• x∼fo y⇔ x◦̃a = y◦̃a and a◦̃x = a◦̃y for any a ∈ H;
• x∼fi y⇔ (a◦̃b)(x) = (a◦̃b)(y) for any a, b ∈ H;
• x∼fe y⇔ x∼fo y and x∼fi y.

Example 3.3. Let H = {x1, x2, x3}. The fuzzy relation defined on H is given by

ρ x1 x2 x3
x1 1 1 0.8
x2 1 1 0.8
x3 0.8 0.8 1

Then 〈H, ◦̃ρ〉 is a fuzzy hypergroup. Since

x◦̃ρy = x◦̃ρx = y◦̃ρx = (1, 1, 0.5), x◦̃ρy = y◦̃ρy = y◦̃ρx = (1, 1, 0.5)

and

x◦̃ρz = y◦̃ρz = z◦̃ρx = z◦̃ρy = (1, 1, 1),

then there is x∼fo y. Similarly, there is x∼fi y, therefore, x∼fe y.

Proposition 3.3. If Hρ is a fuzzy hypergroup, then for any x, y ∈ H,

(1) x∼fo y⇔ L̃
ρ
x = L̃

ρ
y ;

(2) x∼fi y⇔ R̃
ρ
x = R̃

ρ
y .

Proof. (1) For any a ∈ H , x◦̃ρa = y◦̃ρa and a◦̃ρx = a◦̃ρy are equivalent to L̃
ρ
x ∪ L̃

ρ
a = L̃

ρ
y ∪ L̃

ρ
a . So if L̃

ρ
x = L̃

ρ
y , then x∼fo y.

Suppose x∼fo y. Then for any a ∈ H , L̃
ρ
x ∪ L̃

ρ
a = L̃

ρ
y ∪ L̃

ρ
a . Putting a = x gives L̃

ρ
x = L̃

ρ
y ∪ L̃

ρ
x , so L̃

ρ
y ⊆ L̃

ρ
x . Putting a = y gives

L̃ρy = L̃
ρ
x ∪ L̃

ρ
y , so L̃

ρ
x ⊆ L̃

ρ
x . Thus L̃

ρ
x = L̃

ρ
y .

(2) For any a, b ∈ H , (a◦̃ρb)(x) = (a◦̃ρb)(y) is equivalent to (a◦̃ρa)(x) ∨ (b◦̃ρb)(x) = (a◦̃ρa)(y) ∨ (b◦̃ρb)(y),
i.e., R̃ρx (a) ∨ R̃

ρ
x (b) = R̃

ρ
y (a) ∨ R̃

ρ
y (b). So if R̃

ρ
x = R̃

ρ
y , then x∼fi y. Suppose x∼fi y. Then for any a, b ∈ H , R̃

ρ
x (a) ∨ R̃

ρ
x (b) =

R̃ρy (a) ∨ R̃
ρ
y (b). Putting a = b gives R̃

ρ
x (a) = R̃

ρ
y (a). Hence R̃

ρ
x = R̃

ρ
y . �

Proposition 3.4. Let ρ and σ be two reflexive and transitive fuzzy relations on H and x, y ∈ H. Then x∼fe y in Hρ∩σ if and only
if x∼fe y in Hρ and x∼fe y in Hσ .

Proof. Since (ρ ∩ σ)2 ⊆ ρ2 ⊆ ρ and (ρ ∩ σ)2 ⊆ σ 2 ⊆ σ , (ρ ∩ σ)2 ⊆ ρ ∩ σ and so ρ ∩ σ is also reflexive and transitive.
By Theorem 3.1, the fuzzy hypergroupoids Hρ , Hσ and Hρ∩σ are fuzzy hypergroups.
Suppose that x∼fe y in Hρ and x∼fe y in Hσ . Then x◦̃ρx = y◦̃ρx = y◦̃ρy and x◦̃σ x = y◦̃σ x = y◦̃σ y. So x◦̃ρx ∩ x◦̃σ x =

y◦̃ρy∩ y◦̃σ y. By Proposition 3.2(3), x◦̃ρ∩σ x = y◦̃ρ∩σ y, so x∼fo y inHρ∩σ . For any z ∈ H , we have (z◦̃ρz)(x) = (z◦̃ρz)(y) and
(z◦̃σ z)(x) = (z◦̃σ z)(y). By Proposition 3.2(3), (z◦̃ρ∩σ z)(x) = (z◦̃ρ∩σ z)(y), so x∼fi y in Hρ∩σ . Therefore, x∼fe y in Hρ∩σ .
Conversely, suppose x∼fe y in Hρ∩σ . It suffices to show that x◦̃ρ∩σ x = y◦̃ρ∩σ y implies x◦̃ρx = y◦̃ρy and x◦̃σ x = y◦̃σ y,

and that (z◦̃ρ∩σ z)(x) = (z◦̃ρ∩σ z)(y) implies (z◦̃ρz)(x) = (z◦̃ρz)(y) and (z◦̃σ z)(x) = (z◦̃σ z)(y).
In fact, since ρ and σ are reflexive, (x◦̃ρ∩σ x)(x) = 1, and so (y◦̃ρ∩σ y)(x) = 1. For any z ∈ H , (y◦̃ρy)(z) ≥ (y◦̃ρy)(x) ∧

(x◦̃ρx)(z) = (x◦̃ρx)(z), so x◦̃ρx ⊆ y◦̃ρy. Similarly, we have y◦̃ρy ⊆ x◦̃ρx. Hence x◦̃ρx = y◦̃ρy. In the same way, we obtain
x◦̃σ x = y◦̃σ y.
For any z ∈ H , (z◦̃ρz)(y) ≥ (z◦̃ρz)(x) ∧ (x◦̃ρx)(y) = (z◦̃ρz)(x). Similarly, we have (z◦̃ρz)(x) ≥ (z◦̃ρz)(y). Hence

(z◦̃ρz)(y) = (z◦̃ρz)(x). In the same way, we get (z◦̃σ z)(y) = (z◦̃σ z)(x). �

Proposition 3.5. Let ρ and σ be two reflexive and transitive fuzzy relations on H such that ρσ = σρ . If for x, y ∈ H, x∼fo y in
Hρ and x∼fi y in Hσ , then x∼fe y in Hρσ . Moreover, x∼fe y in Hρ and x∼fe y in Hσ lead to x∼fe y in Hρσ .

Proof. Since (ρσ)2 = ρσρσ = ρρσσ ⊆ ρσ , ρσ is also reflexive and transitive. By Theorem 3.1, the fuzzy hypergroupoids
Hρ , Hσ and Hρσ are fuzzy hypergroups.
Suppose x∼fo y in Hρ and x∼fi y in Hσ . Then L̃

ρ
x = L̃

ρ
y and R̃σx = R̃

σ
y . For any z ∈ H , L̃

ρσ
x (z) =

∨
t∈H(L̃

ρ
x (t) ∧ L̃σt (z)) =∨

t∈H(L̃
ρ
y (t)∧ L̃σt (z)) = L̃

ρσ
y (z) and R̃

ρσ
x (z) =

∨
t∈H(R̃

ρ
x (t)∧ R̃σt (z)) =

∨
t∈H(R̃

ρ
y (t)∧ R̃σt (z)) = R̃

ρσ
y (z). Hence L̃

ρσ
x = L̃

ρσ
y and

R̃ρσx = R̃
ρσ
y . Thus x∼fe y in Hρσ . The last assertion is straightforward. �



K. Sun et al. / Computers and Mathematics with Applications 60 (2010) 610–622 617

4. Normal fuzzy hypergroups

In this section, we introduce the normal fuzzy hypergroups.

Definition 4.1. A fuzzy hypergroup 〈H, ◦̃〉 is said to be normal if it satisfies the following three conditions:

(1) (x◦̃x)(x) = 1 for all x ∈ H;
(2) x◦̃y = x◦̃x ∪ y◦̃y for all x, y ∈ H;
(3) (x◦̃x)(z) ≥ (x◦̃x)(y) ∧ (y◦̃y)(z) for all x, y, z ∈ H .

Theorem 4.1. Let ◦̃ be a fuzzy hyperoperation on H. If

(i) (x◦̃x)(x) = 1 for all x ∈ H;
(ii) x◦̃y = x◦̃x ∪ y◦̃y for all x, y ∈ H;
(iii) (x◦̃x)(z) ≥ (x◦̃x)(y) ∧ (y◦̃y)(z) for all x, y, z ∈ H,

then the fuzzy hypergroupoid 〈H, ◦̃〉 is a normal fuzzy hypergroup.

Proof. As in the proof of Theorem 3.1 we can verify that 〈H, ◦̃〉 is a fuzzy hypergroup. Then 〈H, ◦̃〉 is a normal fuzzy
hypergroup. �

Corollary 4.1. Let ρ be a fuzzy relation on H. If ρ is reflexive and transitive, then Hρ is a normal fuzzy hypergroup.

Theorem 4.2. Let 〈H, ◦̃〉 be a normal fuzzy hypergroup. Then the fuzzy relation defined by ρ(x, y) = (x◦̃x)(y) ∧ (y◦̃y)(x),
∀x, y ∈ H, is a fuzzy equivalence relation on H.

Proof. By the definition of ρ, there are ρ(x, x) = (x◦̃x)(x) = 1, ρ(x, y) = (x◦̃x)(y) ∧ (y◦̃y)(x) = ρ(y, x), and

ρ(x, y) ∧ ρ(y, z) = ((x◦̃x)(y) ∧ (y◦̃y)(x)) ∧ ((y◦̃y)(z) ∧ (z◦̃z)(y))
= ((x◦̃x)(y) ∧ (y◦̃y)(z)) ∧ ((z◦̃z)(y) ∧ (y◦̃y)(x))
≤ (x◦̃x)(z) ∧ (z◦̃z)(x)
= ρ(x, z).

Thus, ρ is a fuzzy equivalence relation on H . �

Example 4.1. Let H = {x1, x2, x3, x4, x5}. Define a fuzzy hyperoperation ◦̃ on H by
x1◦̃x1 = (1, 0.4, 0.8, 0.5, 0.5)
x2◦̃x2 = (0.4, 1, 0.4, 0.4, 0.4)
x3◦̃x3 = (0.8, 0.4, 1, 0.5, 0.5)
x4◦̃x4 = (0.5, 0.4, 0.5, 1, 0.6)
x5◦̃x5 = (0.5, 0.4, 0.5, 0.6, 1)
xi◦̃xj = xi◦̃xi ∪ xj◦̃xj, ∀1 ≤ i, j ≤ 5.

Obviously, conditions (i)–(iii) in Theorem 4.1 are satisfied. Thus 〈H, ◦̃〉 is a normal fuzzy hypergroup.

5. The category of normal fuzzy hypergroups

LetNFHG be a category,where (a) objects are normal fuzzy hypergroups; (b) amorphism fromanormal fuzzy hypergroup
〈H1, ◦̃1〉 to a normal fuzzy hypergroup 〈H2, ◦̃2〉 is a mapping f : H1 → H2 such that f (x◦̃1y) ⊂ f (x)◦̃2f (y); (c) an identity
IdH : 〈H, ◦̃〉 → 〈H, ◦̃〉 is an identity mapping; (d) the composition of morphisms f and g is the composition of mappings f
and g .
For the category of normal fuzzy hypergroup, the following theorem holds.

Theorem 5.1. The category NFHG satisfies all the axioms of topos except for the subobject classifier axiom.

Proof. (1) The category NFHG has equalizers property. In fact, let 〈H1, ◦̃1〉 and 〈H2, ◦̃2〉 be two normal fuzzy hypergroups
and f , g : 〈H1, ◦̃1〉 → 〈H2, ◦̃2〉 be two morphisms.
Let E = {x ∈ H1|f (x) = g(x)}. For any x1, x2 ∈ E, set x1 � x2 = x1◦̃1x2 ∩ E. Then 〈E,�〉 is a normal fuzzy hypergroup. In

fact, � is a fuzzy hyperoperation from E2 to F ∗(E), which satisfies (1) for any x ∈ E, (x � x)(x) = (x◦̃1x)(x)∧ χE(x) = 1; (2)
for any x, y ∈ E, x � y = x◦̃1y∩ E = (x◦̃1x∩ E)∪ (y◦̃1y∩ E) = x � x∪ y � y; (3) for any x, y, z ∈ E, (x � x)(y)∧ (y � y)(z) =
(x◦̃1x)(y)∧χE(y)∧(y◦̃1y)(z)∧χE(z) = (x◦̃1x)(y)∧(y◦̃1y)(z) ≤ (x◦̃1x)(z) = (x◦̃1x)(z)∧χE(z) = (x�x)(z). Let e : E → H1,
x 7→ x. Then for any x, y ∈ E and z ∈ H1,
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Fig. 1. Illustration of the existence of equalizers in NFHG.

e(x � y)(z) =
∨
e(z′)=z

(x � y)(z ′)

=

{
(x � y)(z), z ∈ E
0, z 6∈ E

≤ (x◦̃1y)(z)
= (e(x)◦̃1e(y))(z).

Thus e is a morphism from 〈E,�〉 to 〈H1, ◦̃1〉 and f ◦ e = g ◦ e, where ◦ represents the composition of two morphisms.
In Fig. 1, let e′ : 〈E ′, ∗〉 → 〈H1, ◦̃1〉 be a morphism and f ◦ e′ = g ◦ e′. For any x′ ∈ E ′, (f ◦ e′)(x′) = (g ◦ e′)(x′), and so

e′(x′) ∈ E. Thus a mapping ē : E ′ → E, x′ 7→ ē(x′) = e′(x′) is defined. For any z ∈ E,

ē(x′ ∗ y′)(z) =
∨
ē(z′)=z

(x′ ∗ y′)(z ′)

=

∨
e′(z′)=z

(x′ ∗ y′)(z ′)

= e′(x′ ∗ y′)(z)
≤ (e′(x′)◦̃1e′(y′))(z)
= (e′(x′) � e′(y′))(z)
= (ē(x′) � ē(y′))(z),

and so ē(x′ ∗ y′) ⊆ ē(x′) � ē(y′). Thus ē is a morphism. Clearly, e ◦ ē = e′ and such a morphism ē is unique. Therefore,
{〈E,�〉, e} is an equalizer of f and g .
(2) The category NFHG has finite products property.
In fact, let 〈H1, ◦̃1〉 and 〈H2, ◦̃2〉 be two normal fuzzy hypergroups, and let Z = H1 × H2. For (xi, yi) ∈ Z(i = 1, 2), define

((x1, y1)� (x2, y2))(z1, z2) = ((x1◦̃1x1)(z1) ∧ (y1◦̃2y1)(z2)) ∨ ((x2◦̃1x2)(z1) ∧ (y2◦̃2y2)(z2)).

Then ((x, y)� (x, y))(x, y) = (x◦̃1x)(x) ∧ (y◦̃2y)(y) = 1, (x1, y1)� (x2, y2) = (x1, y1)� (x1, y1) ∪ (x2, y2)� (x2, y2), and

((x, y)� (x, y))(x′, y′) ∧ ((x′, y′)� (x′, y′))(x′′, y′′)
= (x◦̃1x)(x′) ∧ (y◦̃2y)(y′) ∧ (x′◦̃1x′)(x′′) ∧ (y′◦̃2y′)(y′′)
= ((x◦̃1x)(x′) ∧ (x′◦̃1x′)(x′′)) ∧ ((y◦̃2y)(y′) ∧ (y′◦̃2y′)(y′′))
≤ (x◦̃1x)(x′′) ∧ (y◦̃2y)(y′′)
= ((x, y)� (x, y))(x′′, y′′).

Thus 〈Z,�〉 is a normal fuzzy hypergroup. Let p1 : Z → H1, (x, y) 7→ x and p2 : Z → H2, (x, y) 7→ y. Then for any x ∈ H1
and y ∈ H2,

p1((x, y)� (x, y))(x) =
∨

p1(x′,y′)=x

(x◦̃1x)(x′) ∧ (y◦̃2y)(y′)

=

∨
y′∈H2

(x◦̃1x)(x) ∧ (y◦̃2y)(y′)

= (x◦̃1x)(x) ∧

(∨
y′∈H2

(y◦̃2y)(y′)

)
= (x◦̃1x)(x)
= (p1(x, y)◦̃1p1(x, y))(x).
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Fig. 2. Illustration of the existence of finite products in NFHG.

Hence p1((x, y) � (x, y)) = x◦̃1x and p1((x1, y1) � (x2, y2)) = p1((x1, y1) � (x1, y1)) ∪ p1((x2, y2) � (x2, y2)) = x1◦̃1
x1 ∪ x2◦̃1x2 = x1◦̃1x2. Thus p1 is a morphism. Similarly, p2 is also a morphism.
Let 〈D,⊗〉 be a normal fuzzy hypergroup, f : D→ H1 and g : D→ H2 be two morphisms (see Fig. 2).
Let h : D→ Z , d 7→ (f (d), g(d)). For (x, y) ∈ Z , if (x, y) = h(d) for some d ∈ D, then

h(d1 ⊗ d1)(x, y) =
∨

h(d)=(x,y)

(d1 ⊗ d1)(d)

=

∨
f (d)=x,g(d)=y

(d1 ⊗ d1)(d)

≤

( ∨
f (d)=x

(d1 ⊗ d1)(d)

)
∧

( ∨
g(d′)=y

(d1 ⊗ d1)(d′)

)
= f (d1 ⊗ d1)(x) ∧ g(d1 ⊗ d1)(y)
≤ (f (d1)◦̃1f (d1))(x) ∧ (g(d1)◦̃2g(d1))(y)
= ((f (d1), g(d1))� (f (d1), g(d1)))(x, y)
= (h(d1)� h(d1))(x, y).

If (x, y) 6= h(d) for any d ∈ D, then h(d1 ⊗ d1)(x, y) =
∨
h(d)=(x,y)(d1 ⊗ d1)(d) = 0. Hence h(d1 ⊗ d1) ⊆ h(d1)� h(d1). Thus

h(d1⊗ d2) = h(d1⊗ d1)∪ h(d2⊗ d2) ⊆ h(d1)� h(d1)∪ h(d2)� h(d2) = h(d1)� h(d2), which means that h is a morphism.
Clearly, p1 ◦ h = f and p2 ◦ h = g , and such an h is unique. Therefore, (〈Z,�〉, p1, p2) is a finite product of 〈H1, ◦̃1〉 and
〈H2, ◦̃2〉.
(3) There is a terminal object in NFHG.
In fact, letM = {0} and 0◦̃0 = {0}. Then 〈M, ◦̃〉 is a fuzzy normal hypergroup. For any normal fuzzy hypergroup 〈H, ◦̃〉,

there exists exactly one morphism f : H → M , x 7→ 0. Therefore, 〈M, ◦̃〉 is a terminal object of NFHG.
(4) The category NFHG has exponentials property.
In fact, let 〈H1, ◦̃1〉 and 〈H2, ◦̃2〉 be two normal fuzzy hypergroups. Let Γ be the set of mappings f : H1 → H2 such that

f (x◦̃1x) ⊆ f (x)◦̃2f (x) for all x ∈ H1. For f , h ∈ Γ , let(f♦f )(h) =
∧
x∈H1

(f (x)◦̃2f (x))(h(x))

f♦g = f♦f ∪ g♦g.

Then (f♦f )(f ) =
∧
x∈H1

(f (x)◦̃2f (x))(f (x)) = 1, f♦g = f♦f ∪ g♦g and

(f♦f )(h) ∧ (h♦h)(g) =

(∧
x∈H1

(h(x)◦̃2h(x))(g(x))

)
∧

(∧
x∈H1

(f (x)◦̃2f (x))(h(x))

)
≤

∧
x∈H1

((h(x)◦̃2h(x))(g(x)) ∧ (f (x)◦̃2f (x))(h(x)))

≤

∧
x∈H1

(f (x)◦̃2f (x))(g(x))

= (f♦f )(g).

Thus 〈Γ ,♦〉 is a normal fuzzy hypergroup. Let ev : Γ × H1 → H2, (f , x) 7→ f (x). Then for any (f , x) ∈ Γ × H1 and y ∈ H2,
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Fig. 3. Illustration of the existence of exponentials in NFHG.

ev((f , x)� (f , x))(y) =
∨

g∈Γ , g(x′)=y

((f♦f )(g) ∧ (x◦̃1x)(x′))

≤

∨
g∈Γ

((f♦f )(g) ∧ g(x◦̃1x)(y)).

Since g(x◦̃1x)(y) ≤ (g(x)◦̃2g(x))(y),

(f♦f )(g) ∧ g(x◦̃1x)(y) ≤

(∧
u∈H1

(f (u)◦̃2f (u))(g(u))

)
∧ (g(x)◦̃2g(x))(y)

≤ (f (x)◦̃2f (x))(g(x)) ∧ (g(x)◦̃2g(x))(y)
≤ (f (x)◦̃2f (x))(y).

Thus ev((f , x) � (f , x))(y) ≤ (f (x)◦̃2f (x))(y) = (ev(f , x)◦̃2ev(f , x))(y), i.e., ev((f , x) � (f , x)) ⊆ ev(f , x)◦̃2ev(f , x). Hence,
ev is a morphism.
In Fig. 3, let 〈D,⊗〉 be a normal fuzzy hypergroup and F : D×H1 → H2 be amorphism. Let F̄ : D→ Γ , d 7→ F̄(d), where

F̄(d)(x) = F(d, x) for all x ∈ H1.
For any y ∈ H2,

F̄(d)(x◦̃1x)(y) =
∨

F̄(d)(a)=y

(x◦̃1x)(a)

=

∨
F(d,a)=y

(x◦̃1x)(a)

≤

∨
F(d1,a)=y

((d⊗ d)(d1) ∧ (x◦̃1x)(a))

=

∨
F(d1,a)=y

((d, x)� (d, x))(d1, a)

= F((d, x)� (d, x))(y)
≤ (F(d, x)◦̃2F(d, x))(y)
= (F̄(d)(x)◦̃2F̄(d)(x))(y).

So F̄(d)(x◦̃x) ⊆ F̄(d)(x)◦̃2F̄(d)(x), which implies that F̄(d) ∈ Γ . Since for any x ∈ H1,

F̄(d1 ⊗ d1)(g) =
∨
F̄(d)=g

(d1 ⊗ d1)(d)

≤

∨
F̄(d)(x)=g(x)

(d1 ⊗ d1)(d) ∧ (x◦̃1x)(x)

=

∨
F(d,x)=g(x)

(d1, x)� (d1, x)(d, x)

≤

∨
F(d,x′)=g(x)

(d1, x)� (d1, x)(d, x′)

= F((d1, x)� (d1, x))(g(x))
≤ (F̄(d1)(x)◦̃2F̄(d1)(x))(g(x)),

we have

F̄(d1 ⊗ d1)(g) ≤
∧
x∈H1

(F̄(d1)(x)◦̃2F̄(d1)(x))(g(x)) = (F̄(d1)♦F̄(d1))(g).
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a b

Fig. 4. Illustration of the existence of a subobject classifier in NFHG.

Thus F̄(d1⊗ d1) ⊆ F̄(d1)♦F̄(d1). Hence F̄(d1⊗ d2) ⊆ F̄(d1)♦F̄(d2), and so F̄ is a morphism. Clearly, ev ◦ (F̄ × IdH1) = F and
such an F̄ is unique. Therefore, {〈Γ ,♦〉, ev} is an exponential.

Remark 5.1. Γ can be an empty set in the theory of category. In fact, as shown in Fig. 3, if the morphism F exists, then for
any d ∈ D, there is F̄(d) ∈ Γ , where F̄(d) : H1 → H2, x→ F̄(d)(x) = F(d, x). In this case, Γ is nonempty. If such F does not
exist, Γ can be an empty set, but this item still holds.

(5) There is no subobject classifier in the category NFHG.
Assume that there exists a normal fuzzy hypergroup and a morphism T : 1 → Ω satisfying the subobject classifiers

axiom, where 1 is a terminal object in NFHG.
Let H = {a, b, c}. Define a hyperoperation ◦̃ on H by

◦̃ a b c
a {a, b} {a, b} {a, b, c}
b {a, b} {b} {b, c}
c {a, b, c} {b, c} {c}

Then 〈H, ◦̃〉 is a normal fuzzy hypergroup. We define another hyperoperation ∗ on H by

∗ a b c
a {a} {a, b} {a, c}
b {a, b} {b} {b, c}
c {a, c} {b, c} {c}

Then 〈H, ∗〉 is also a normal fuzzy hypergroup.
Let f : 〈H, ∗〉 → 〈H, ◦̃〉, x 7→ x. Then f is a monomorphism in NFHG, and there exists a unique morphism χf : 〈H, ◦̃〉 →

Ω such that the Fig. 4(a) is a pullback.
In Fig. 4(b), we have χf ◦ IdH = T◦!. Then there exists a unique morphism f̄ : 〈H, ◦̃〉 → 〈H, ∗〉 such that f ◦ f̄ = IdH .

Hence x = IdH(x) = (f ◦ f̃ )(x) = f (f̄ (x)) = f̄ (x), and {a, b} = a◦̃a = f̄ (a◦̃a) ⊆ f̄ (a) ∗ f̄ (a) = a ∗ a = {a}, i.e., {a, b} ⊂ {a},
which leads to a contradiction. Therefore, NFHG has no subobject classifier. �

6. Conclusion

In this paper, motivated by a fuzzy hyperoperation induced from the fuzzy inference, we studied a fuzzy hyperstructure
associated with a fuzzy relation. We gave a sufficient and necessary condition for such a fuzzy hypergroupoid being a fuzzy
hypergroup and investigated the properties of such fuzzy hypergroups. Furthermore, we presented the definition of normal
fuzzy hypergroups and showed that the categoryNFHG of normal fuzzy hypergroups satisfies all the axioms of topos except
for the subobject classifier axiom.
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