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Abstract

End reflection phenomenon in a semi-infinitely long layered piezoelectric circular cylinder is constructed with modal
data from a spectral decomposition of the differential operator governing its natural vibrations. These modal data consist
of all propagating modes and edge vibrations and they constitute the basis for a wave function expansion of the reflection
of waves arriving at the traction-free end of the cylinder. Without any other external stimulus, a passive reflection event
occurs. This traction-free end condition is enforced at the Gaussian integration points over the end cross-section on the
combination of incoming and reflected wave fields. Reflections due to monochromatic incoming axisymmetric (m = 0)
and flexural (m = 1) waves are studied and two numerical examples are presented.

For an incoming axisymmetric wave, there is a particular frequency that induces an end resonance, which is character-
ized by high (but finite) amplitudes of end displacements vis-a-vis those of neighboring (i.e., slightly different) frequencies.
This phenomenon is illustrated in the two cylinder examples.

It is possible to modify the passive reflection event by imposing some voltage distribution over the free end. For an
oscillating end voltage that is out-of-phase with the incoming wave, it is possible to extract electrical energy from it,
i.e., energy harvesting. Examples of such an oscillating voltage with a particular radial distribution are given, that illustrate
the amount of extracted energy as a function of the frequency of the incident monochromatic wave.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are concerned with the reflected field at the free end of a semi-infinite right laminated circular solid or
hollow piezoelectric cylinder from a monochromatic wave source located afar. If the end cross-section and
lateral surface(s) are traction-free and there is no other external energy exchange, the reflection is a passive
event in which the outgoing field is made up of all available propagating waves and edge vibration modes.
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All of these modes in combination with the incoming wave satisfy the prescribed traction and electrical end
conditions. But, if an oscillating voltage is applied to the free end, it is possible to control the form of the
outgoing field. The extent to which the reflected wave field can be modified by an applied voltage on the
end cross-section is intriguing. Herein, both passive and active phenomena are investigated for incoming
monochromatic axisymmetric and flexural waves, i.e., for circumferential modes m = 0 and m = 1, respec-
tively, in a Fourier representation of the h-dependence. Linear three-dimensional piezoelectricity is used.

The reflected wave field is represented by propagating waves and edge vibration modes obtained from a free
vibration analysis. Herein, this modal basis is established by a semi-analytical finite element analysis set forth
by Siao et al. (1994). In Bai et al. (2004), a literature review was given of the various methods for extracting
these vibration modes in a circular piezoelectric cylinder. The modal amplitudes of the reflected field can be
determined by either a virtual work principle or a least-square minimization of boundary residuals. In Bai
et al. (2004), they used such modal data to construct steady-state Green�s functions.

As part of this study, end resonant modes are also sought. End resonance is manifested by large (but
bounded) amplitude displacements at the end of the cylinder, and such a phenomenon occurs in a very narrow
band-width typically below the first axisymmetric cutoff frequency (m = 0). End resonance in isotropic circular
cylinders was first observed experimentally by Oliver (1957) and determined analytically by McNiven (1961) to
within the 13% of Oliver�s frequency observation using three modes of the reflected wave field spectrum. This
result was further refined to within 0.5% by Zemanek (1972) with nine modes.

There is a sizeable literature on wave reflection studies of plates and cylinders. They are all based on a wave
function expansion, where the modal amplitudes are determined by either some form of least-squares minimi-
zation or a variational principle. For planar and axisymmetric waves in homogeneous, isotropic plates and
circular cylinders, see Torvik (1967), Wu and Plunkett (1972), Gregory and Gladwell (1983), Kim and Steele
(1989). Karunasena et al. (1991) studied the reflection of planar waves at the free end of a laminated composite
plate, and Rattanawangcharoenn et al. (1994) studied the corresponding problem of axisymmetric and flexural
waves in a laminated composite circular cylinder. Taweel et al. (2000) explored the reflected wave field in a
semi-infinitely long laminated composite cylinder with a general cross-section.

After summarizing the modal analysis method, passive end reflection is considered. Calculations for two
piezoelectric cylinders due to incident axisymmetric and flexural waves are given as illustrations. End reso-
nances in these two cylinders are shown. An application of a oscillating voltage at the free end is essentially
a forced input. It is shown that if such a voltage is out-of-phase with the incident wave, energy can be extracted
from this wave.

2. Preliminaries and summary of eigenproblems

For a semi-infinite laminated piezoelectric circular cylinder, adopt cylindrical coordinates (r, h, z) with the
origin located at the center in the end cross-section, see Fig. 1. The primary dependent variables are: mechan-
ical displacement u = [ur, uh, uz]; stress T = [Trr, Thh, Tzz, Thz, Trz, Trh]T; strain S = [Srr, Shh, Szz, Shz, Szr, Srh]T;
electric displacement D = [Dr, Dh, Dz]

T; and electric field E = [Er, Eh, Ez]
T, where E = �$/ with / as the elec-

tric potential. These variables are inter-related by strain–displacement and constitutive relations, i.e.,
respectively,
Fig. 1. Geometry of a hollow piezoelectric cylinder with ri and ro as inner and outer radii.
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q ¼ Lv; ð1Þ

Q ¼ C�q with C� ¼
c �eT

e e

� �
; ð2Þ
where c, e and e are matrices of elastic anisotropic moduli (6 · 6), piezoelectric constants (3 · 6) and permit-
tivities (3 · 3), respectively, and q, Q and v are the combined electro-mechanical dependent variables.
q ¼
S

E

� �
9�1

; Q ¼
T

D

� �
9�1

; v ¼
u

/

� �
4�1

. ð3Þ
There are as many sets of c, e, e as the number of distinct layers in the cylinder.
Non-dimensionalization is used to circumvent numerical anomalies due to large differences between the

material data quoted in their usual units. In explanation of the non-dimensionalization, regard all quantities
on the right-hand and left-hand sides of the equations, respectively, as the dimensional and corresponding
dimensionless forms. Four key parameters are needed: (1) total cylinder thickness H, (2) an elastic modulus
c0, (3) a piezoelectric constant e0, and (4) mass density q0, where these properties are selected from a particular
laminate in the cylinder. Reference dielectric constant e0 and electric field E0 can then be defined as e0 = (e0)2/
c0 and E0 = c0/e0. The independent and dependent variables and material properties, respectively, are then
normalized as
r ¼ r
H
; z ¼ z

H
ði ¼ r; h; zÞ; t ¼ t

H

ffiffiffiffiffi
c0

q0

s
;

ui ¼
ui

H
ði ¼ r; h; zÞ; T p ¼

T p

c0
; Sp ¼ Sp ðp ¼ 1; 2; . . . ; 6Þ;

Dk ¼
Dk

e0
; Ek ¼

Ek

E0
ðk ¼ 1; 2; 3Þ;

cpq ¼
cpq

c0
; eij ¼

eij

e0
; eip ¼

eip

e0
; qi ¼

qi

q0
ðp; q ¼ 1; 2; 3; . . . ; 6Þ.

ð4Þ
Lastly, the normalized charge qe and body force density component fi are given by
qe ¼
Hqe

e0
; f i ¼

Hf i

c0
ði ¼ r; h; zÞ. ð5Þ
This non-dimensionalization enables all dimensionless variables and equations to have the same forms as their
dimensional counterparts.

In Siao et al.�s (1994) semi-analytical finite element formulation, discretization of the laminated cylinder
occurs in the thickness direction with three-node cylindrical laminas, each capable of having its own piezoelec-
tric properties and thickness. Radial quadratic interpolations are used in each element, with the axial, circum-
ferential and time dependencies left undetermined at the outset. The discrete equations of motion for free
vibration are
K1Vþ K2V;h þ K3V;z � K4V;hh � K5V;hz � K6V;zz þM€V ¼ 0; ð6Þ

where V = V(h, z, t) is the nodal variables array of the finite element model. Stiffness matrices K1, K4, K5, K6

and consistent mass matrix M are symmetric, while stiffness matrices K2 and K3 are antisymmetric; their forms
can be found in Siao et al. (1994). Traction-free lateral surfaces in the hollow cylinder are assumed,
i.e.,Trr = Trh = Trz = 0. Surface electrical condition may take the form of an opened circuit (surface is
uncoated) where the radial electric displacement component, Dr = 0, or a short-circuited condition (a coated
lateral surface that is grounded) where the voltage / = 0.

For free vibrations, the solution form is
V ¼ Vm exp iðkmzþ mh� xtÞf g; ð7Þ
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where x is the circular frequency, (km, m) are the axial and circumferential wave numbers, and array Vm rep-
resents the nodal amplitudes of the finite element model. Mode number m is assigned an integer value to
assure circumferential periodicity. Substitution of Eq. (7) into Eq. (6) and factoring out the exponential term
give
K1 þ imK2 þ ikmK3 þ m2K4 þ mkmK5 þ k2
mK6

� �
Vm � x2MVm ¼ 0; ð8Þ
where either x2 or km can act as the eigenvalue, thus giving the following two eigenproblems.

2.1. Real wave numbers

With km assigned and x2 as the eigenvalue, Eq. (8) becomes
ðK1 þ m2K4 þ mkmK5 þ k2
mK6Þ þ iðmK2 þ kmK3Þ

	 

Vm ¼ x2MVm. ð9Þ
The left-hand side matrix is Hermitian, so only real x2�s are admitted. This eigenproblem enables the spectra
of all propagating modes to be established.

2.2. Complex wave numbers

By assigning x2, Eq. (8) takes on the form of a second order algebraic eigenproblem in km.
ðK1 þ m2K4 � x2Mþ imK2Þ þ kmðmK5 þ iK3Þ þ k2
mK6

	 

V m ¼ 0. ð10Þ
The eigenpairs of Eq. (10) are the wave number kmn and associated right-modal matrix Umn. The adjoint
problem yields the same wave numbers kmn and the left-handed modal matrix Wmn. Real wave numbers
kmn represent propagating waves, while the complex conjugate pairs describe standing vibrations with spatially
decaying amplitudes. The corresponding stress eigenvectors are evaluated by Eqs. (1) and (2). These eigendata
provide the modal basis for representation of the reflected field.

3. End reflection

Consider the passive reflection of an incoming monochromatic wave Vin
m ðh; z; tÞ traveling in a negative

z-direction, i.e.,
Vin
m ðh; z; tÞ ¼ ain/mpeið�kmpzþmh�xtÞ; z P 0; ð11Þ
where superscript in denotes an incident wave and ain, (kmp, m), and x are the amplitude, wave numbers, and
frequency of the p-th propagating mode. When this wave impinges upon the end z = 0, a reflected wave field
Vrf

m is generated (designated by superscript rf), which can be approximated by a modal sum of right
eigenvectors
Vrf
mðh; z; tÞ ¼

XN

n¼1

amn/mneiðkmnzþmh�xtÞ; z P 0; ð12Þ
where amn�s are amplitudes to be determined. For simplicity, suppress the exponential factor involving h and x
and their associated subscript m in the wave forms; no confusion should arise. Recasting Eqs. (11) and (12) in
the abbreviated forms yields
VinðzÞ ¼ ain/pe�ikpz; VrfðzÞ ¼
XN

n¼1

an/neiknz; z P 0. ð11a; 12aÞ
Observe that wave numbers with negative imaginary parts are excluded in representation (12) as they are un-
bounded in the domain occupied by the semi-infinite cylinder.

In passive reflection, the end at z = 0 is traction-free.
T zz ¼ T zh ¼ T zr ¼ 0; z ¼ 0. ð13Þ
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Electrically, either a voltage / (grounded) or electric displacement Dz (open circuit) can be prescribed to van-
ish at the end
/ ¼ 0 or Dz ¼ 0; z ¼ 0. ð14Þ

Both electrical conditions will be considered. Traction-free end and electrical conditions will be enforced at
each Gaussian integration point in all elements comprising the cylinder�s thickness profile. To this end, intro-
duce the ordered arrays tn, pn, dn and un
tn ¼ T zz;1�1;n; T zh;1�1;n; T zr;1�1;n; T zz;1�2;n; . . . ; T zz;NE�3;n; T zh;NE�3;n; T zr;NE�3;n½ �T;
pn ¼ /1�1;n;/1�2;n;/1�3;n;/2�1;n; . . . ;/NE�2;n;/NE�3;n

	 
T
;

dn ¼ Dz;1�1;n;Dz;1�2;n;Dz;1�3;n;Dz;2�1;n; . . . ;Dz;NE�2;n;Dz;NE�3;n;½ �T;
un ¼ ur;1�1;n; uh;1�1;n; uz;1�1;n; ur;1�2;n; . . . ; ur;NE�3;n; uh;NE�;n; uz;NE�3;n½ �T.

ð15Þ
The ordered subscripts are defined as follows: (1) the first denotes the traction and electrical displacement
component, except for / which is a scalar, (2) the second gives the element number followed by a dash and
the Guassian point within the element, and (3) the last identifies the nth mode in the spectra; and NE stands
for the total number of elements. Thus, the incident and reflected fields at z = 0 can be written as
f in ¼ ainf and frf ¼ Fa;

gin ¼ aing and grf ¼ Ga
ð16Þ
where
a ¼ a1; a2; . . . ; an; . . . ; aN½ �T;

f ¼ tin

kin

� �
; F ¼

t1 t2

k1 k2

. . .
tN

kN

� �
;

g ¼ uin

�k
in

� �
; G ¼

u1 u2

�k1
�k2

. . .
uN

�kN

� �
.

ð17Þ
with ki and �ki as conjugate electrical variables so that ki = pi and �ki ¼ di or vice versa, depending on the elec-
trical end conditions.

Traction-free end (13) and electrical (14) conditions by means of Eqs. (16) and (17) take the form
f in þ frf � ainf þ Fa ¼ 0. ð18Þ

Since a truncated set of modes is used, this enforcement at the Gaussian integration points will not be exact, so
that a residual will remain, which is denoted by array e
ainf þ Fa ¼ e. ð19Þ

Least-square minimization or virtual work can be used to determine the reflection amplitudes a0ns of this over-
determined system. The least-square solution for the an�s is given by
a ¼ �ain½hF;Fi��1fhF; fig � �aingin
ls ; ð20Þ
where the bracket denotes the inner product
ha; bi �
Z ro

ri

aHbr dr. ð21Þ
Superscript H signifies complex conjugate transposition and ri and ro represent the inner and outer radius of
the cylinder, respectively. Note that FHF is Hermitian, and the values in a will occur as real and complex
conjugate pairs. Solution by means of a virtual work principle (see Wu and Plunkett, 1972) asserts that the
product of the conjugate variables vanish.
dhG; ainf þ Fai ¼ 0. ð22Þ
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This method gives the reflected amplitudes a as
a ¼ �ain½hG;Fi��1fhG; fig � �aingin
vw. ð23Þ
Here, conjugate electrical variables are used in G, f and F Once the amplitudes are established, they may be
normalized with that of the incident wave, i.e., an = an/ain, n = 1,2, . . . ,N.

4. Energy flux

Passive reflection conserves energy. Since energy is only carried by the propagating modes, all participating
outgoing propagating modes must collectively return the energy of the incident wave. An energy balance, ex-
pressed in terms of energy flux, i.e., the time-averaged value of the energy, can be used to measure the solution
accuracy. The time-average value of the energy flux associated with the nth reflected propagating mode is
given by
En ¼ janj2x Imh�tn; �uni þ h�dn; pni � janj2J n; ð24Þ

where the overbars denote complex conjugation. The total energy of the outgoing field is the sum of all Npr

propagating modes.
Eout ¼
XNpr

n¼1

En. ð25Þ
The energy flux of the incident field is given by
Ein ¼ x Im h�tin
; �uini þ h�din

; �pini
n o

. ð26Þ
The proportion of energy carried by the nth reflected propagating wave is En=Ein. A useful index to measure
the solution accuracy is the percentage error in energy balance d defined by
d ¼ 1�
XNpr

n¼1

En

Ein

" #
� 100. ð27Þ
A serious departure of d from zero indicates an error in energy balance.

5. Passive end reflection examples

Two examples are presented to illustrate passive reflection in piezoelectric bodies. In these examples, two
hollow cylinders (inside and outside radii of rin = 0.5m and rout = 1.5m) are considered, both with open-circuit
electrical conditions on their lateral surfaces. Both are composed of a PZT-4 material whose properties are
given in Berlincourt et al. (1964). One cylinder is homogeneous with its crystallographic axes aligned in the
coordinate directions. The second cylinder is composed of two equal thickness layers whose longitudinal crys-
tallographic axes are at ±300 with the generator. The properties for these two cases are

Homogeneous cylinder
c ¼

5:42969 3:03906 2:90234 � � �
� 5:42969 2:90234 � � �
� � 4:49219 � � �
� � � 1:0 � �
� symmetric � � 1:0 �
� � � � � 1:19531

2
666666664

3
777777775

00

;
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e ¼
� � � � 0:84106 �
� � � 0:84106 � �

�0:34437 �0:34437 1:0 � � �

2
64

3
75

00

;

e ¼
1:46632 � �
� 1:46632 �
� � 1:29229

2
64

3
75

00

. ð28Þ
Two-layer cylinder
c ¼

5:42969 3:00488 2:93652 �0:05920 � �
� 5:17334 2:92432 �0:21566 � �
� � 4:70459 �0:19029 � �
� � � 1:02197 � �
� symmetric � � 1:04883 �0:08457

� � � � � 1:14648

2
666666664

3
777777775
	300

;

e ¼
0:72838 	0:42053

�0:17219 	0:62666 �0:29884 0:65525 � �
�0:29823 �0:37136 0:93915 	0:29387 � �

2
64

3
75

00

;

e ¼
1:46632 � �
� 1:42280 �0:07535

� � 1:33581

2
64

3
75

00

.

ð29Þ
The four reference parameters are (1) H = 1 m, (2) c0 = c44 = 25.6 GPA, (3) e0 = e33 = 15.1 C/m2 and (4)
q0 = 7.50 · 104 kg/m3 so that e0 = 8.90664 · 10�9 F/m and E0 = 1.69536 · 109 N/C. Based on these values,
the normalized frequency is given by
x ¼ x
x0

where x0 ¼
1

H

ffiffiffiffiffiffiffiffiffiffiffi
c0=q0

p
¼ 584:24 rad=s. ð30Þ
Solution accuracy obviously depends on finite element discretization. Drawing from the authors� previous
numerical modeling experience (see Bai et al., 2004), and verified by additional convergence studies (not shown
here), a 20 element model (808 dof�s) over the frequency range of consideration (1.5 6 x 6 4.5) was deemed to
an adequate model.

Example 1. For the homogeneous PZT-4 hollow cylinder, the end at z = 0 is traction-free with open-circuit
electrical condition. Consider the reflection of the first incoming propagating mode for circumferential wave
numbers m = 0 and m = 1. The propagation spectra for these two circumferential modes in the frequency
range are shown in Fig. 2. Note that for m = 0, there are torsional modes which are shown by dotted spectral
lines. They do not participate in the reflection of the lowest incoming extensional wave.

For m = 0, there are two extensional cutoff frequencies x = 2.225, 3.983 for k0 = 0 and another of
x = 2.205 at the minimum point of the second branch, see Fig. 2 Wave numbers k0 to the left of x = 2.205
refer to ‘‘backward waves,’’ or waves with a negative group velocity. In Fig. 3(a,b) and (c,d) are shown, respec-
tively, the normalized amplitudes and the proportion of energy in each reflected mode in our frequency range
of interest. For incoming wave frequencies below x = 2.205, only one propagating mode is reflected. In the
frequency range (2.205 6 x 6 2.225), three propagating modes share in the return of the incoming energy.1

This energy partition can be seen in Fig. 3d where I1 decreases, I2 increases, and I3 first increases then de-
creases with increasing incident wave frequency. With incoming wave frequencies above x = 2.225, only
this range, the mirror image of the propagating backward wave about the frequency axis must be used in the reflected wave field.
ave possesses a positive group velocity.



Fig. 2. Frequency spectra for homogeneous cylinder.
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Fig. 3. Reflection in homogeneous PZT4 cylinder with incident mode (0,1).
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two propagating modes are available. At the outset in this frequency interval, the second mode carries the bulk
of the energy, but shortly thereafter (at roughly x = 2.26), the first mode dominates. As the incoming wave
frequency increases beyond x = 3.983, another propagating mode is cut on. In this frequency range, mode
1 carries the majority of return energy initially, but cedes this role to mode 3 as the frequency increases.
The second mode is not a factor throughout this frequency interval.

For m = 1, similar plots of normalized amplitudes and proportion of energy of each reflected mode are
shown in Fig. 4(a) and (b) for an incoming flexural incident wave. The lowest three cutoff frequencies are
x = 1.251, 2.232, and 4.280 as shown in Fig. 2. There are no waves with negative group velocity for m = 1.
Hence, all reflected wave fields over a given frequency interval before encountering the next higher cutoff fre-
quency is composed of the available propagating waves, i.e., below cutoff frequency x = 1.251, only one prop-
agating wave is reflected; between 1.251 6 x 6 2.232, two propagating waves are possible; etc. Fig. 4 shows
the energy partitioning of the incoming energy in the outgoing propagating modes.

Since both least-squares and virtual work methods were used for the amplitudes of the reflected field, a
comparison of the percentage energy errors between them was made for m = 0. The results in Table 1 show
both methods converging with increasing modes, but virtual work is decidedly more efficient. However, if the
criterion is based on satisfying traction-free and open electrical conditions at the Gaussian points over the en-
tire end cross-section, substantially more terms are needed beyond that for energy convergence. In this case,
the least-squares method is usually more effective.
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Fig. 4. Reflection in homogeneous PZT4 cylinder with incident mode (1,1).



Table 1
Comparison results between two proposed methods

No. of modes Percentage energy error

Variational method Least-square method

9 0.0120762953 1.5945280822
18 0.0123930158 0.1093008450
38 0.0010000136 0.0137479347
122 0.0000153697 0.0000153697

Twenty elements are used in the computation.
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Example 2. For the two-layer cylinder, the same end conditions used in Example 1 were adopted, i.e., a
surface which is traction-free with open-circuit electrical condition. Consider the reflection of the lowest
incoming propagating mode for circumferential wave numbers m = 0,1. The spectral plots are shown in Fig. 5,
where the cutoff frequencies are indicated. Unlike Example 1, there are no pure extensional nor pure torsional
modes for m = 0 as these behaviors are coupled in the lowest two modes.

Fig. 6(a,b) and (c,d) show the normalized amplitudes and proportions of energy of each reflected mode for
m = 0. Backward waves for wave numbers k0 to the left of cutoff frequency x = 2.145 are again evident. For
incident waves of frequency x < 2.145, two propagating modes are possible in the reflected field where the
extensional mode is predominant, i.e., the lowest one of the two modes. In the narrow range
2.145 6 x 6 2.163, four propagating modes can occur in the reflected field, where the extensional (first) mode
predominates. For x > 2.163, three propagating modes occur where the lowest mode again carries the most
energy. At frequencies x > 3.864, only the first and fourth modes are active, with the first mode initially car-
rying most of the energy but relinquishing this role to mode 4 as the frequency increases.

Fig. 7(a) and (b) show normalized amplitudes and proportions of energy of each of the reflected modes for
m = 1. The over all behavior for this circumferential mode is similar to that of the homogeneous PZT-4
cylinder.
Fig. 5. Frequency spectra for two-layer PZT4 cylinder.



(a)

0.0

0.5

1.0

1.5

2.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5

ω

|a
n|

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

(b)

0.0

0.5

1.0

1.5

2.0

2.12 2.13 2.14 2.15 2.16 2.17 2.18

ω

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2.12 2.13 2.14 2.15 2.16 2.17 2.18

ω(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.5 2.0 2.5 3.0 3.5 4.0 4.5

ω

E
n

|a
n|

E
n

Fig. 6. Reflection in two-layer PZT4 cylinder with incident mode (0,1).
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6. End resonance

End resonances due to incident axisymmetric waves, i.e., m = 0, were observed in both cylinders. These res-
onances, as manifested by large end displacements, occurred at x = 1.9425 and x = 1.8826, respectively, for the
homogeneous and two-layer cylinders. Both of these frequencies are just below their respective first cutoff
frequencies. Fig. 8 shows displacements and voltage distributions for the homogeneous cylinder at frequencies
(1) just below, (2) at resonance and (3) just above, i.e., at x = [1.92, 1.9425,2.00], respectively. The voltage dis-
Fig. 8. End resonance in homogeneous PZT4 cylinder.
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tribution appears in a colored scale. The large amplitude displacements and high voltage at the resonant
requency can be seen. Also, shown are these patterns slightly below and above the resonant frequency, so that
the dramatic changes can be observed. Similarly, Fig. 9 shows the data for the two-layer cylinder, where
displacement and voltage plots are given at three frequencies, i.e., x = [1.86, 1.8826, 1.91], respectively. The
same phenomenon of large and dramatic increases in displacements and voltage is seen. Careful searches were
conducted for the end resonances in these two cylinders for m = 1, but none were found in the frequency range
considered.
Fig. 9. End resonance in two-layer PZT4 cylinder.
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7. Oscillating end voltage

An oscillating voltage applied at z = 0 generates time harmonic outgoing waves in a semi-infinite cylinder.
In the absence of an incoming wave, the cylinder is essentially driven by this voltage, and the outgoing field
can be represented by a modal sum of right eigenvectors. Consider an axisymmetric end voltage of amplitude
/0 and frequency x with a radial distribution given by v(r). This end condition on a traction-free surface has
the form
T zz ¼ T rz ¼ T hz ¼ 0; /ðr; tÞ ¼ /0vðrÞe�ixt; z ¼ 0. ð31aÞ

By the notation of Eq. (17), this end condition is written as
f/ ¼ /0l where l ¼
0

m

� �
; ð31bÞ
where m = v(r) contains the nodal distribution of voltages. The outgoing field in terms of modal sum of right
eigenvectors at z = 0 is given by
R/
s ¼ Fsb. ð32Þ
The complex amplitudes in b are determined by equating Eq. (32) to Eq. (31b).
0

m

� �
¼ Fsb. ð33Þ
The least-squares solution of Eq. (33) is
b ¼ /0½hF;Fi�
�1½hF; li� � /0g/. ð34Þ
Now, consider the presence of an incoming monochromatic wave whose reflection occurs with an oscillat-
ing end voltage. This oscillating voltage will obviously alter the reflected field. The end condition for this case
is given by Eq. (31). A worthy objective would be to determine the magnitude /0 of the given distribution v(r)
that minimizes the energy flux carried by the outgoing propagating waves. This problem is one of passive
vibration control. Since both passive end reflection and forced vibration by an electric potential are linear,
the reflected field is the sum of these processes, i.e., the sum of Eqs. (23) and (34)
a ¼ �ain½hG;Fi��1fhG; fig þ /0½hF;Fi�
�1½hF; li� � �aingin þ /0g/. ð35Þ
The difference in signs between ain and /0 indicates a p radians phase difference between these two sources, i.e.
�1 = eip. If /0 is found to be positive, the end voltage is out-of-phase with the incident wave. The components
of a are
an ¼ �gin
n ain þ /0g/

n n ¼ 1; 2; . . . ;N . ð36Þ

The energy flux of the nth reflected propagating mode and the total energy of all reflected propagating modes
are given by Eqs. (24) and (25). For the present case of passive vibration control, the total energy of all re-
flected propagating modes from the amplitudes of Eq. (36) is
Eout ¼ ðainÞ2v2 � ain/0v1 þ /2
0v0; ð37Þ
where
v0 ¼
XNpr

n¼1

�g/
n g/

n J n; v1 ¼
XNpr

n¼1

ð�g/
n gin

n þ g/
n �gin

n ÞJ n; v2 ¼
XNpr

n¼1

�gin
n gin

n J n. ð38Þ
Note that v0 and v2 are real and positive. It was also observed that v1 was positive in the range of frequencies
considered. The extremum of Eout is obtained by differentiating Eq. (37) with respect to /0 and setting the re-
sult to zero
dEout

d/0

¼ 2/0v0 � ainv1 ¼ 0! /0 ¼
v1

2v0

ain. ð39Þ
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Since v0 and v1 are both positive, the sign of /0 is positive, thus affirming the out-of-phase nature of end volt-
age with the incident wave. Thus, the total minimized energy flux is
Eout ¼ ðainÞ2 v2 �
v2

1

4v0

� �
. ð40Þ
The following examples illustrate the effects of the applied voltage.

Example 3. For the homogeneous cylinder, let the incident wave be the lowest axisymmetric wave striking the
traction-free end in the presence of an applied voltage, i.e.,
T zz ¼ T zh ¼ T zr ¼ 0; / ¼ /0vðrÞe�ixt; ð41Þ
where /0 is an unknown real constant and the voltage distribution is
vðrÞ ¼
�1; 0:5 6 r < 1;

þ1; 1 6 r 6 1:5.

�
ð42Þ
In Fig. 10, the energies carried by the various outgoing propagating modes are plotted as a function of the
incident wave frequency. Also, a curve for the total energy of all these outgoing waves is shown. Over the fre-
quency range 1.5 6 x 6 4.5, there are three frequencies at which there were relative maxima of incident wave
energy collection (or harvesting), where the total energies of the outgoing waves were minima. At x = 1.941,
2.225 and 3.863, observe that 95.5%, 27.7% and 97.5% of the energy of the incident wave was collected leaving
4.5%, 72.3% and 2.5% to be shared by one, three and two possible outgoing waves, respectively.

Example 4. For the two-layer cylinder with the same conditions as Example 3, Fig. 11 shows the same type of
data as Fig. 10. At x = 1.88, 23.5% of the incident wave energy was removed from the two possible out going
waves. At x = 3.864, 96.7% of the incident wave energy was harvested, leaving only 3.7% to be shared by the
three possible outgoing modes.

These two examples with a relatively simple voltage distribution given by Eq. (42) illustrate the amount of
incident wave energy that can be extracted as a function of frequency. The locations of relative maximum en-
ergy harvests are seen. With another voltage distribution, relative maximum energy harvests will occur at
other frequencies.
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Fig. 10. Energy carried by reflected propagating waves with an oscillating voltage in homogeneous PZT4 cylinder.
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8. Conclusions

The reflected wave field in a layered piezoelectric cylinder is determined by a wave function expansion,
whose coefficients can be determined by least-squares or virtual work. Both passive end reflection and forced
motion by an oscillating voltage applied at the free end of the cylinder were considered.

End resonances were observed in both homogeneous and two-layer PZT-4 cylinders for axisymmetric
incident waves at frequencies slightly below their first cutoff frequencies.

With an out-of-phase oscillating voltage on the end in the presence of the incident wave, energy can be
extracted or harvested. Examples showing maximum energy harvest versus frequencies are given. Conceiv-
ably, different voltage distributions over an entire incident wave frequency range can be programmed to
maximize energy extraction throughout this range.
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