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We have modified the new method for the statistical estimation of the tail distribution of earthquake seismic
moments introduced by Pisarenko et al. (2009) and applied it to the earthquake catalog of Japan (1923–2007).
The newly modified method is based on the two main limit theorems of the theory of extreme values and
on the derived duality between the generalized Pareto distribution (GPD) and the generalized extreme value
distribution (GEV). Using this method, we obtain the distribution of maximum earthquake magnitudes in future
time intervals of arbitrary duration τ . This distribution can be characterized by its quantile Qq(τ ) at any desirable
statistical level q . The quantile Qq(τ ) provides a much more stable and robust characteristic than the traditional
absolute maximum magnitude Mmax (Mmax can be obtained as the limit of Qq(τ ) as q → 1, τ → ∞). The
best estimates of the parameters governing the distribution of Qq(τ ) for Japan (1923–2007) are the following:
ξGEV = −0.19 ± 0.07; µGEV(200) = 6.339 ± 0.038; σGEV(200) = 0.600 ± 0.022; Q0.90,GEV(10) = 8.34 ± 0.32.
We have also estimated Qq(τ ) for a set of q-values and future time periods in the range 1 ≤ τ ≤ 50 years from
2007 onwards. For comparison, the absolute maximum estimate Mmax,GEV = 9.57± 0.86 has a scatter more than
twice that of the 90% quantile Q0.90,GEV(10) of the maximum magnitude over the next 10 years beginning from
2007.
Key words: Extreme value theory, generalized extreme value distribution, generalized Pareto distribution,
earthquake seismic moments, magnitude.

1. Introduction
The work presented in this article has two goals: (1)

to adapt the method suggested by Pisarenko et al. (2009)
for the statistical estimation of the tail of the distribution
of earthquake magnitudes to catalogs in which earthquake
magnitudes are reported in discrete values, and (2) to apply
the newly developed method to the Japan Meteorological
Agency (JMA) magnitude catalog of Japan (1923–2007)
in order to estimate the maximum possible magnitude and
other measures characterizing the tail of the distribution of
magnitudes.

The method of Pisarenko et al. (2009) is a continuation
and improvement of the technique suggested in Pisarenko
et al. (2008). Both rely on the assumption that the distribu-
tion of earthquake magnitudes is limited to some maximum
value Mmax, which is itself probably significantly less than
the absolute limit imposed by the finiteness of the Earth.
This maximum value Mmax may reflect the largest possible
set of seismo-tectonic structures in a given tectonic region
that can support an earthquake, combined with an extremal
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occurrence of dynamical energy release per unit area. The
simplest model embodying the idea of a maximum mag-
nitude is the truncated Gutenberg-Richter (GR) magnitude
distribution truncated at Mmax:

F(m) = C
[
1 − 10−b(m−m0)

] ; m0 ≤ m ≤ Mmax, (1)

where F(m) is the cumulative probability distribution of
earthquake magnitudes, b is the slope parameter, m0 is
the lower known threshold above which magnitudes can
be considered to be reliably recorded, Mmax is the maxi-
mum possible magnitude, and C is the normalizing constant
(which depends on the unknown parameters b and Mmax)
(Cosentino et al., 1977; Kijko and Sellevol, 1989, 1992;
Pisarenko et al., 1996; Kijko, 2004). The parameter Mmax

is a priori a very convenient tool for building engineers and
the insurance business. However, multiple attempts to use
Mmax have clearly shown that this parameter is unstable
with respect to minor variations in the catalogs and, in par-
ticular, for use with incomplete regional catalogs, which are
a rather common situation in seismology. Consequently, the
parameter Mmax is an unreliable measure of the largest seis-
mogical risks. The truncated GR model can be contrasted
with the various modifications of the GR law stretching to
infinity. These modifications impose a finite-size constraint
only on the statistical average of the energy released by
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earthquakes (see, for example, Sornette et al., 1996; Kagan,
1999; Kagan and Schoenberg, 2001), but they contradict the
finiteness of seismogenic structures in the Earth and there-
fore have not been universally accepted.

The chief innovation, introduced first by Pisarenko et al.
(2009) and extended here, is to combine the two main limit
theorems of extreme value theory (EVT), which allows us
to derive the distribution of T -maxima (maximum magni-
tude occurring in sequential time intervals of duration T )
for arbitrary T . This distribution enables derivation of any
desired statistical characteristic of the future T -maximum.
The two limit theorems of EVT correspond to the general-
ized extreme value distribution (GEV) and to the general-
ized Pareto distribution (GPD), respectively. Pisarenko et
al. (2009) established the direct relations between the pa-
rameters of these two distributions. The duality between
the GEV and GPD provides a new approach to check the
consistency of the estimation of the tail characteristics of
the distribution of earthquake magnitudes for earthquakes
occurring over arbitrary time intervals.

Instead of focusing on the unstable parameter Mmax,
we suggest a new, stable, and convenient characteristic,
Mmax(τ ), defined as the maximum earthquake that can be
recorded over a future time interval of duration τ . The
random value Mmax(τ ) can be described by its distribution
function or by its quantiles Qq(τ ), which are, in contrast
to Mmax, stable and robust characteristics. In addition, if
τ → ∞, then Mmax(τ ) → Mmax with a probability of one.
The methods for calculating Qq(τ ) are given in the follow-
ing section. In particular, we can estimate Qq(τ ) for, say,
q = 10%, 5%, and 1%, as well as for the median (q = 50%)
for any desirable time interval τ . These methods are illus-
trated below on the magnitude catalog of the JMA, over the
time period 1923–2007, for magnitudes m ≥ 4.1.

We should stress that our method relies on the assump-
tion that the distribution of earthquake magnitudes exhibits
a regular limit behavior on its right (for large magnitudes)—
even though there is no way to be absolutely certain that this
is the case due to the limited data set for large and extreme
earthquake sizes. Thus, in specific cases, seismologists are
forced to accept the most appropriate assumption about the
behavior of the magnitude distribution on its right end. The
assumption used in our paper (which coincides with the as-
sumption of the EVT: the existence of a non-trivial asymp-
totic distribution for centered and normalized maximum of
sample) seems to be the least harmful and the most fruitful.
It provides the three well-known types of possible limit dis-
tributions for the maximum (in our paper we use only one
of these). Without such an assumption, it would scarcely
be possible to obtain any useful result on the distribution of
sample maxima.

2. The Method
The method developed here is based on the following

assumptions:

(1) the Poisson property of independence in time of the
main shocks;

(2) independence between the observed magnitudes M ;

(3) regularity of the tail probability of the earthquake mag-
nitudes M ;

We now present the elements that justify using these as-
sumptions and then describe the specifics of the method.
2.1 Test of the Poisson hypothesis

Our analysis is performed for main shocks, following the
application of a declustering method. We used the Kagan-
Knopoff time-space window declustering method to remove
the aftershocks. This method has a number of shortcom-
ings, and other versions of aftershock cleansing are avail-
able, but these have no universally accepted advantages.
There is a widespread opinion among seismologists that the
overwhelming majority of main shocks can be considered
to be independent random variables. This property is more
evident when earthquake observations are considered on a
global scale, but it is still a reasonable hypothesis for large
seismic regions, such as Japan. The Japanese data that we
use exhibit evident irregularities in the registration process,
which are visible in Fig. 7. In particular, during the time
interval 1945–1965, the lack of observations is clearly ev-
ident. Fortunately, this effect is not essential for the larger
earthquakes, which are the focus of our work.

We note that the model of a Poisson flow of events cor-
responds to a renewal model with exponentially distributed
intervals between successive events. Testing for the Poisson
property is reduced to the study of the distribution of time
intervals between successive main shocks. In our analysis,
we are going to study this distribution for events in Japan
with magnitudes larger than some chosen lower thresh-
old. We will show that, at least for large earthquakes with
m ≥ 7.0, the exponential distribution cannot be rejected at
a rather high statistical significance level. For earthquakes
with m ≥ 6.0, the exponential distribution can be accepted,
at least since 1966. For earthquakes of smaller sizes, the
deviations of the distribution of the time intervals from the
exponential law becomes more pronounced; consequently,
the renewal model with non-exponentially distributed time
intervals is perhaps more appropriate. However, this is a
rather irrelevant finding for our purpose of determining the
distribution of maximum earthquake magnitudes, which is
controlled mainly by the large earthquakes.

We analyze the empirical distributions of time intervals
between successive events in sub-catalogs derived from the
main catalog by selecting main shocks posterior to some
time T0 and with magnitudes larger than the lower threshold
m0. In order to test the exponential hypothesis, we use the
Kolmogorov distance KD-test modified by Stephens (1974)
for the case where the unknown parameter is estimated
from the same sample. We obtain the following results for
different choices of m0 and T0. The variable 〈tk − tk−1〉 is
the mean inter-event waiting time.

m0 = 6.0; T0 = 1923.

KD = 1.27; n = 318; 〈tk − tk−1〉 = 96.70 days;
p-value = 1.5%;

m0 = 6.0; T0 = 1966.

KD = 0.91; n = 156; 〈tk − tk−1〉 = 91.52 days;
p-value ∼= 20%;
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Fig. 1. Map of the region kept for our study; the coordinates of nodes of the polygon delimiting the area of study are
[(160.00; 45.00); (150.00; 50.00); (140.00; 50.00); (130.00; 45.00); (120.00; 35.00) : (120.00; 30.00); (130.00; 25.00); (150.00; 25.00); (160.00;
45.00)].

m0 = 7.0; T0 = 1923.

KD = 0.74; n = 52; 〈tk − tk−1〉 = 588 days;
p-value ∼= 60%.

m0 = 7.5; T0 = 1923.

KD = 0.53; n = 15; 〈tk − tk−1〉 = 2,030 days;
p-value ∼= 80%.

The exponential Poisson hypothesis is thus acceptable (ac-
cepting, say, if p-value > 0.1) for m ≥ 6.0 since 1966, and
for m ≥ 7.0 for the whole catalog starting from 1923.
2.2 Independence of the magnitudes

Figure 7 shows the magnitudes of the main shocks as
a function of time from 1923 to 2007, inside the polygo-
nal domain shown in Fig. 1, whose depths are <70 km.
Together with the test shown in the previous subsection,
one can see that the magnitudes are approximately random
above m = 6, which is the regime of interest for the appli-
cation of the EVT. We also note that the GR distribution is
rather well verified, as depicted in Figs. 2 and 4, confirming
the standard one-point statistics of earthquakes.
2.3 Regularity of the tail probability of the earthquake

magnitudes M
According to the EVT, the limit distribution of maxima

can be obtained in two ways. The first, sometimes called
the “peak over threshold” method, consists of increasing a
threshold h above which observations are kept. The distri-
bution of event sizes that exceed h tends—under an affine
transformation—to the GPD as h tends to infinity. The
GPD depends on two unknown parameters (ξ, s) and on
the known threshold h (see, for example, Embrechts et al.
(1997)). For the case of random values that are limited from

above, the GPD can be written as follows:

GPD(x |ξ, s, h) = 1 − [1 + (ξ/s) · (x − h)]−1/ξ ,

ξ < 0; s > 0; h ≤ x ≤ h − s/ξ.

(2)

Here, ξ is the form parameter, s is the scale parameter, and
the combination h − s/ξ represents the uppermost magni-
tude, that we shall denote Mmax:

Mmax = h − s/ξ, ξ < 0. (3)

We shall consider only this case of a finite Mmax, to capture
the finiteness of seismo-tectonic structures in the Earth, as
discussed in Introduction.

The second way to obtain the limit distribution of
maxima consists of selecting directly the maxima occur-
ring in sequences of n successive observations Mn =
max(m1, ...,mn) and in studying their distribution as n goes
to infinity. In accordance with the main theorem of the EVT
(see, for example, Embrechts et al., 1997), this distribution,
named the GEV, can be written (for the case of random val-
ues limited from above) in the form:

GEV(x |ζ, σ, µ) = exp(−[1 + (ζ/σ ) · (x − µ)]−1/ζ ),

ζ < 0; σ > 0; x ≤ µ− σ/ζ.
(4)

The conditions guaranteeing the validity of these two
limit theorems include the regularity of the original distri-
butions of magnitudes in their tail. These conditions ensure
the existence of a non-degenerate limit distribution of Mn

after a proper centering and normalization. Following the
standard approach, we assume that the conditions for which
a non-degenerate limit distribution of Mn exists are truly
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Fig. 2. Magnitude-frequency distribution of the 32,324 earthquakes that occurred in the region delimited by the polygon shown in Fig. 1 over the period
1923–2007.

valid. If this were not to be the case, we would not be able
to perform any meaningful analysis. While this argument
may appear circular, it is standard approach in statistics in
general and in statistical seismology in particular. One can
never really prove the validity of mathematical conditions
solely from data. The model or theory can, however, be
progressively validated by comparing its predictions with
the results of precise tests (Sornette et al., 2007, 2008). It
is therefore the conclusions that we derive from our anal-
ysis that will support—or refute—the value of the analysis
itself.
2.4 Formulation of the theory and procedure

In our analysis, we study the maximum magnitudes oc-
curring in time interval (0, T ). We assume that the flow of
main shocks is a Poissonian stationary process with some
intensity λ. This property for main shocks was studied and
confirmed in appendix A of Pisarenko et al. (2008) for the
Harvard catalog of seismic moments over the time period 1
January 1977–20 December 2004. The term “main shock”
refers here to the events that remain following the applica-
tion of a suitable desclustering algorithm (see Pisarenko et
al., 2008, 2009, and below). In Subsection 2.1, we tested
the Poisson hypothesis and confirmed that (1) for earth-
quakes with m ≥ 6.0, the exponential distribution can be
accepted—at least since 1966; (2) for large earthquakes
with m ≥ 7.0, the exponential distribution cannot be re-
jected with rather a high statistical significance level. We
can then proceed with the description of the model.

Given the intensity λ and the duration T of the time
window, the average number of observations (main shocks)
within the interval (0, T ) is equal to 〈n〉 = λT . For T →
∞, the number of observations in (0, T ) tends to infinity
with a probability of one; we can therefore use Eq. (4) as

the limit distribution of the maximum magnitudes mT of the
main shocks occurring in time interval (0, T ) of growing
sizes (Pisarenko et al., 2008).

Pisarenko et al. (2009) showed that, for a Poissonian flow
of main shocks, the two limit distributions, namely, the
GPD given by relation (2) and the GEV given by relation
(4), are related in a simple manner. Here, we briefly sum-
marize the main points and refer the reader to Pisarenko et
al. (2009) for details. If the random variable (rv) X has the
GPD-distribution (relation (2)) and the maximum of a ran-
dom sequence of observations Xk is taken:

MT = max(X1, ..., Xν), (5)

where ν is a random Poissonian value with parameter λT ,
with λT � 1, then MT has the GEV-distribution (Eq. (4))
with the following parameters:

ζ(T ) = ξ ; (6)

σ(T ) = s · (λT )ξ ; (7)

µ(T ) = h − (s/ξ) · [1 − (λT )ξ
]
. (8)

These expressions are valid up to small terms of order
exp(−λT ), which are neglected.

The inverse is true as well: if MT = max(X1, ..., Xν)

has the GEV distribution (Eq. (4)) with parameters ζ , σ , µ,
then the original distribution of Xk has the GPD distribution
(Eq. (2)) with parameters:

ξ = ζ ; (9)

s = σ · (λT )−ξ ; (10)

h = µ+ (σ/ξ) · [(λT )−ξ − 1
]
. (11)

The proof can be found in Pisarenko et al. (2009) where
we see that the form parameter in the GPD and the GEV
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Fig. 3. Histogram of the magnitudes of earthquakes used in Fig. 2. The discrete 0.1-bins are clearly visible.

is always identical, whereas the centering and normalizing
parameters differ.

Using Eqs. (6)–(11), one can recalculate the estimates
ζ(T ), σ(T ), µ(T ) obtained for some T into corresponding
estimates for another time interval of different duration τ :

µ(τ) = µ(T )+ (σ (T )/ξ) · [(τ/T )ξ − 1
] ; (12)

σ(τ) = σ(T ) · (τ/T )ξ . (13)

Equations (6)–(13) are very convenient, and we shall use
them in our estimation procedures. In the following, we
use the notation T to denote the duration of a window
in the known catalog (or part of the catalog) used for the
estimation of the parameters, whereas we use τ to refer to a
future time interval (prediction).

From the GPD (relation (2)) or the GEV (Eq. (4)), we can
obtain the quantiles Qq(τ ), which are proposed as stable
robust characteristics of the tail distribution of magnitudes.
These quantiles are the roots of equations:

GPD(x |ξ, s, h) = q; (14)

GEV(x |ζ, σ, µ) = q. (15)

Inverting Eqs. (14) and (15) for x as a function of q and
using Eqs. (6)–(8), we obtain:

Qq(τ ) = µ(T )+ (σ (T )/ξ) · [a · (τ/T )ξ − 1
] ;

from (14) (16)

Qq(τ ) = h + (s/ξ) · [a · (λτ)ξ − 1
]
,

from (15) (17)

where a = [log(1/q)]−ξ .

3. Application of the GPD and GEV to the Esti-
mation of T-maximum Magnitudes in Japan

3.1 Characteristics of the JMA data
The full JMA catalog covers the spatial domain delimited

by 25.02 ≤ latitude ≤ 49.53◦ and 121.01 ≤ longitude ≤
156.36◦ and by the temporal window 1 January 1923 to
30 April 2007. The depths of the earthquakes fall in the
interval 0 ≤ depth ≤ 657 km. The magnitudes are expressed
in 0.1-bins and vary in the interval 4.1 ≤ magnitude ≤ 8.2.
There are 39,316 events in this space-time domain. The
spatial domain covered by the JMA catalog covers the Kuril
Islands and the east border of Asia.

Here, we focus our study on earthquakes occurring
within the central Japanese islands. We thus restrict
the territory of our study to earthquakes occurring
within the polygon with coordinates [(160.00; 45.00);
(150.00; 50.00); (140.00; 50.00); (130.00; 45.00);
(120.00; 35.00): (120.00; 30.00); (130.00; 25.00);
(150.00; 25.00); (160.00; 45.00)]. Figure 1 shows the map
of the region delineated by the polygon within which we
perform our study. There were 32,324 events within this
area. The corresponding magnitude-frequency is shown in
Fig. 2, and the histogram of magnitudes is shown in Fig. 3.

Next, we only keep “shallow” earthquakes whose depths
are <70 km and apply the declustering Knopoff-Kagan
space-time window algorithm (Knopoff and Kagan, 1977).
The remaining events constitute our “main shocks”, on
which we are going to apply the GPD and the GEV methods
described above. There are 6,497 main shocks in the poly-
gon shown in Fig. 1 with depths < 70 km. The magnitude-
frequency curve of these main shocks is shown in Fig. 4. It
should be noted that the b-slope of the magnitude-frequency
of main shocks is significantly smaller (by approx. 0.15)
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Fig. 4. Magnitude-frequency distribution of the 6,497 “main shocks” remaining in the domain delineated by the polygon shown in Fig. 1 over the period
1923–2007 that have depths of <70 km, after applying the Knopoff-Kagan declustering algorithm.
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Fig. 5. Histogram of the magnitudes of the main shocks whose magnitude-frequency distribution is shown in Fig. 4. The discrete 0.1-bins are clearly
visible. There are additional oscillations decorating the decay with magnitudes that require further coarse-graining, as explained in the text.

than the corresponding b-slope of the magnitude-frequency
for all events. From the relatively small number of remain-
ing main shocks, one concludes that the percentage of af-
tershocks in Japan is very high (about 80% according to the
Knopoff-Kagan algorithm). The histogram of these main
events with magnitudes m ≥ 5.5 is shown in Fig. 5. This
histogram of magnitudes is characterized by non-random

irregularities and a non-monotonic behavior. The irreg-
ularities force us to aggregate 0.1-bins into 0.2-bins, and
the resulting discreteness in the magnitudes requires a spe-
cial treatment (in particular, the use of the chi-square test),
which is explained in the next subsection. On a positive
note, no visible pattern associated with half-integer magni-
tude values can be detected. Thus, we accept that the use of
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Fig. 6. Yearly number of earthquakes averaged over 10 years for three magnitude thresholds: m ≥ 4.1 (all available events); m ≥ 5.5; m ≥ 6.0.
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Fig. 7. Flow of main shocks from 1923 to 2007. Main shocks are defined as “shallow” earthquakes inside the polygonal domain shown in Fig. 1, whose
depths are <70 km and which remain after applying the declustering Knopoff-Kagan space-time window algorithm (Knopoff and Kagan, 1977).

0.2-bins will be sufficient to remove the irregularities.
Figure 6 plots the yearly number of earthquakes averaged

over 10 years for three magnitude thresholds: m ≥ 4.1 (all
available events); m ≥ 5.5; m ≥ 6.0. The latter time-series
with m ≥ 6.0 appears to be approximately stationary, with
an intensity of about three to four events per year. Figure 7
shows the flow of main events (same variable as in Fig. 6 but
for the main shocks obtained after applying the declustering

Knopoff-Kagan algorithm). For large events (m ≥ 6.0), the
flow is approximately stationary.
3.2 Adaptation for binned magnitudes

As shown in Figs. 3 and 5, the earthquake magnitudes
of the JMA catalog are discrete. Moreover, the oscillations
decorating the decay with magnitudes shown in Fig. 5 re-
quire further coarse-graining with bins of 0.2 units of mag-
nitudes, as explained in the previous subsection. However,
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all of the considerations identified in Section 2 refer to con-
tinuous random values, with continuous distribution func-
tions. For discrete random variables, the EVT is not directly
applicable. This contradiction is avoided as follows.

Consider a catalog in which the magnitudes are reported
with a magnitude step �m. In most existing catalogs, in-
cluding that of Japan, in most cases �m = 0.1. In some
catalogs, two decimal digits are reported, but the last digit is
fictitious unless the magnitudes are recalculated from seis-
mic moments, themselves determined with several exact
digits (such as for the mW magnitude in the Harvard cat-
alog). Here, we assume that the digitization is fulfilled ex-
actly without random errors in intervals ((k − 1) · �m; k ·
�m), where k is an integer. As a consequence, in the
GPD approach, we should use only half-integer thresholds
h = (k − 1/2) ·�m, which is not a serious restriction.

Furthermore, having a sample of observations exceeding
some h = (k − 1/2) · �m, and fitting the GPD to it, we
need to test the goodness of fit of the GEV model to the
empirical distribution. For continuous random variables,
the Kolmogorov test or the Anderson-Darling test has been
successfully used in earlier studies (Pisarenko et al., 2008,
2009). For discrete variables, such statistical tools tailored
for continuous random variables are incorrect. To demon-
strate this, we calculated the Kolmogorov distances for N =
1,000 discrete artificial samples, each of them obeying the
GEV. Our aim was to check the impact of discrete mag-
nitudes on the Kolmogorov test. Specifically, we generate
N times n synthetic random magnitudes mi , i = 1, ..., n,
distributed according to the GEV distribution (relation (4)).
Then, for each of the N set, we discretize the magnitudes
by rounding off the random numbers with �m = 0.1, thus
mimicking the empirical data. For each of the N sets, we
constructed the Kolmogorov statistic as follows. We esti-
mated the empirical distribution function Fn for the n iid
observations as Fn(x) = (1/n)

∑
i=1 to n I (mi ≤ x), where

I (mi ≤ x) is the indicator function, equal to 1 if mi ≤ x
and equal to 0 otherwise. The Kolmogorov statistics for
the cumulative distribution function GEV(x |ζ, σ, µ) is then
given by

K j =Supn |Fn(x)− GEV(x |ζ, σ, µ)| , where j = 1, ..., N

where Supn is the supremum of the set of distances. Having
N realizations of K j , we found that their distribution is very
far from the true one (the Kolmogorov distances for discrete
magnitudes are much larger than those for continuous ran-
dom variables.).

This result shows that in our analysis we are forced to use
statistical tools adapted to discrete random variables. We
have chosen the standard Pearson chi-square (χ2) method
as it provides a way to both estimate unknown parameters
and strictly evaluate the goodness of fit. The χ2-statistic is
calculated by finding the difference between each observed
and theoretical frequency for each possible magnitude bin,
then squaring each difference, dividing it by the theoreti-
cal frequency, and taking the sum of the results. The χ2-
statistics is then distributed according to the χ2-distribution
with n−1–3 degrees of freedom (df) since we estimate three
parameters in fitting the theoretical GEV distribution.

The chi-square test has two specific requirements:

1. In order to be able to apply the chi-square test, a suffi-
cient number of observations is needed in each bin (we
chose this minimum number as being equal to 8 (see
discussion of this matter in Borovkov (1987));

2. In order to compare two different fits (corresponding
to two different vectors of parameters), it is highly
desirable to have the same binning in both experiments
in order to avoid large variations in the significance
levels, which depend on the binning.

In general, the chi-square test is less sensitive and less ef-
ficient than the Kolmogorov test or the Anderson-Darling
test due to the fact that the chi-square test coarsens data by
placing data into discrete bins.

When using the GEV, the digitized GEV of the magni-
tude maxima in successive T -intervals is fitted using the
χ2-method.
3.3 The GPD approach

Consider the discrete set of magnitudes registered with
step �m over threshold h,

h + (k − 1)�m/2 ≤ m < h + k�m/2;
k = 1, ...r; �m = 0.1.

(18)

The corresponding discrete probabilities read

pk(ξ, s|h) = P{h + (k − 1) · 0.05 ≤ m < h + k · 0.05}
= GPD(h + k · 0.05|ξ, s, h)

−GPD(h + (k − 1) · 0.05|ξ, s, h); (19)

pr+1(ξ, s|h) = 1 − GPD(h + r · 0.05|ξ, s, h). (20)

The last (r + 1)-th bin covers the interval (h + r · 0.05;∞).
We use the following expression

GPD(x |ξ, s, h) = 1 − [1 + (ξ/s)(x − h)]−1/ξ ,

h ≤ x ≤ h − s/ξ, ξ < 0.
(21)

Let us assume that the interval (Eq. (18)) contains nk obser-
vations. Summing over the r + 1 intervals, the total number
of observations is n = n1+n2+...nr +nr+1. The chi-square
sum S(ξ, s) is then written as:

S(ξ, s) =
r+1∑

k=1

[nk − n · pk(ξ, s|h)]2 /
n · pk(ξ, s|h), (22)

S(ξ, s) should be minimized over the parameters (ξ, s).
This minimum value is distributed according to the χ2-
distribution with (r − 2) df. The quality of the fit of the
empirical distribution by expressions (19) and (20) is quan-
tified by the probability Pexc = P{χ2(r − 2) ≥ min(S)},
where χ2(r −2) is the chi-square random value with (r −2)
df, i.e. Pexc is the probability of exceeding the minimum fit-
ted chi-square sum. The larger the Pexc, the better the good-
ness of fit.

For magnitude thresholds h ≤ 5.95 and h ≥ 6.65, the
chi-square sums min(S) happened to be very large, leading
to very small Pexc values and indicating that such thresholds
are not acceptable. For thresholds in the interval (6.05 ≤
h ≤ 6.55), the results of the chi-square fitting procedure are
shown in Table 1. In order to obtain confidence intervals,
we also performed Nb = 100 bootstrapping procedures on
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Table 1. Chi-square fitting procedure using the GPD approach.

h 6.05 6.15 6.25 6.35 6.45

r 7 7 6 6 6

degrees of freedom 5 5 4 4 4

ξ −0.0468 −0.2052 −0.2137 −0.2264 −0.1616

s 0.5503 0.6420 0.6397 0.6264 0.6081

Mmax 17.87 9.43 9.31 9.11 10.20

Q0.90(10) 8.73 8.32 8.29 8.24 8.52

Pexc 0.0753 0.2791 0.3447 0.3378 0.1747

The parameters are estimated by minimizing S(ξ, s), defined by expression (21). Mmax is the rightmost
point of the magnitude distribution given by expression (3). Q0.90(10) is the 90% quantile of the maximum
magnitude distribution (T -maximum magnitude) in 10-year intervals.

our initial sample and averaged the results over the obtained
estimates, as described in Pisarenko (2008, 2009).

As pointed out above, if the distribution of magni-
tudes over thresholds obeys the GPD(x |ξ, s, h), then, for
a Poissonian flow of events, the T -maxima have the GEV
distribution:

GEV(x |ξ, σT , µT )=exp
{−[1+(ξ/σT )(x−µT )]

−1/ξ
}
,

x ≤ h − σT /ξ, ξ < 0.

(23)

Thus, we can use an alternative approach, the GEV, to fit
the sample of T -maxima derived from the same underlying
catalog.

Having estimated the first triple (ξ, σT , µT ) or the sec-
ond triple (ξ, s, h), we use these estimates to predict the
quantile of τ -maxima for any arbitrary future time in-
terval (0, τ ), since these τ -maxima have the distribution
GEV(x |ξ, στ , µτ ), as seen from Eqs. (6)–(13). Recall that,
in Eqs. (6)–(13), λ denotes the intensity of the Poissonian
flow of events whose magnitudes exceed the threshold h.

In Table 1, three thresholds h = 6.15: h = 6.25, and h =
6.35 give very close estimates. In contrast, the estimates
obtained for the thresholds h = 6.05 and h = 6.45 have
smaller goodness of fit (smaller Pexc), suggesting that the
estimates corresponding to the highest goodness of fit (h =
6.25) should be accepted:

ξGPD = −0.2137; sGPD = 0.6397; Mmax,GPD = 9.31;
Q0.90,GPD(10) = 8.29.

(24)

These estimates are very close to their mean values obtained
over the three thresholds h = 6.15; 6.25; 6.35.

In order to estimate the statistical scatter of these es-
timates, we simulated our whole procedure of estimation
Nb = 100 times on artificial GPD samples with known
parameters. For a better stability, instead of sample stan-
dard deviations, we used the corresponding order statistics,
namely, the difference of quantiles:

(Q0.84 − Q0.16)/2. (25)

For Gaussian distributions, this quantity (Eq. (25)) coin-
cides with its standard deviation (SD). For distributions

with heavy tails, the difference (Eq. (25)) is a more ro-
bust estimate of the scatter than the usual SD. Combining
the scatter estimates (Eq. (25)) derived from simulations to
the mean values (Eq. (24)), the final results of the GPD ap-
proach for the JMA catalog can be summarized by

ξGPD = −0.2137 ± 0.1031; sGPD = 0.6397 ± 0.0634;
Mmax,GPD = 9.31 ± 1.14; Q0.90,GPD(10) = 8.29 ± 0.49;

(26)

One can observe that the statistical scatter of Mmax exceeds
the scatter of the quantile Q0.90(10) by a factor of more than
two, thereby confirming once more our earlier conclusion
on the instability of Mmax.
3.4 The GEV approach

In this approach, we divide the total time interval Tc from
1923 to 2007 covered by the catalog into a sequence of
non-overlapping and touching intervals of length T . The
maximum magnitude MT, j in each T -interval is identified.
We have k = [Tc/T ] T -intervals, so the sample of our T -
maxima has size k: MT,1, ..., MT,k . We assume that T is
large enough, so that each MT, j can be considered as be-
ing sampled from the GEV distribution GEV(x |ξ, σT , µT )

with some unknown parameters (ξ, σT , µT ) that should be
estimated through the sample MT,1, ..., MT,k .

The larger T is, the more accurate is the approximation
for this observed sample, but one cannot choose too large
a T because the sample size k of the set of T -maxima
would be too small, resulting in an inefficient statistical
estimation of the three unknown parameters (ξ, σT , µT ).
Besides, we should keep in mind the restrictions mentioned
above, imposed by the chi-square method, that the number
of bins should be constant for all used T values and that
the minimum number of observations per bin should not be
<8. In order to satisfy these contradictory constraints, as a
compromise, we had to restrict the T -values to be sampled
in the rather small interval

200 ≤ T ≤ 300 days. (27)

It should be noted that, for all T -values >50 days, the
estimates of the parameters do not vary much and that only
for T ≤ 40 do the estimates change drastically. We have
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Fig. 8. Quantile Qq (τ ) of the distribution of maxima over a future time interval τ for three confidence levels q, defined by expression (16). The three
curves use the parameters of the GPD estimated from the JMA catalog, as explained in the text.
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Fig. 9. Quantile Qq (τ ) of the distribution of maxima over a future time interval τ for three confidence levels q, defined by expression (17). The three
curves use the parameters of the GEV estimated from the JMA catalog, as explained in the text.
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Fig. 10. Median (quantile Qq (τ ) for q = 50%) of the distribution of the maximum magnitude over a future time interval τ , obtained by the GEV
method, as a function of τ (years), together with the two accompanying quantiles 16% and 84% that correspond to the usual ±1 SD.

chosen T = 200 and obtained the following estimates:

ξGEV = −0.1901 ± 0.0717;
µGEV(200) = 6.3387 ± 0.0380;
σGEV(200) = 0.5995 ± 0.0223;
Mmax,GEV = 9.57 ± 0.86;
Q0.90,GEV(10) = 8.34 ± 0.32;

(28)

The estimates of the scatter in Eq. (28) were obtained by
the simulation method with 100 realizations, similar to the
method used in the GPD approach. In estimating the pa-
rameters, we have used the shuffling procedure described
in Pisarenko et al. (2009), which is similar to the bootstrap
method, with NS = 100 realizations. It should be noted
that, in Eq. (28), the T -value for the parameters µ, σ is in-
dicated in days (T = 200 days) whereas in the quantile Q,
the τ -value is indicated in years (τ = 10 years).

Comparing ξ , Mmax and the Q-estimates obtained by the
GPD and the GEV approaches, the GEV method is found
to be somewhat more efficient (its scatter is smaller by a
factor approximately equal to 0.7). This can be explained
by the fact that the GEV approach uses the full catalog more
intensively: all events with magnitude m ≥ 4.1 participate
(in principle) in the estimation, whereas the GPD approach
throws out all events with m < h.

Finally, we show in Figs. 8 and 9 the dependence of the
quantile Qq(τ ) as a function of τ , for τ = 1–50 years, as
estimated by our two approaches, respectively given by ex-
pressions (16) and (17). One can observe that the quantile
Qq(τ ) obtained by the two methods are very close, which
testifies to the stability of the estimations. Figure 10 plots
the median (quantile Qq(τ ) for q = 50%) of the distribu-
tion of the maximum magnitude as a function of the future

τ years, together with the two accompanying quantiles 16%
and 84%, which correspond to the usual ±1 SD. These
quantiles Qq(τ ) can be very useful tools for pricing risks in
the insurance business and for optimizing the allocation of
resources and preparedness by state governments.

4. Discussion and Conclusions
We have adapted the new method of statistical estimation

suggested by Pisarenko et al. (2009) to earthquake catalogs
with discrete magnitudes. This method is based on the du-
ality of the two main limit theorems of EVT. One theo-
rem leads to the GPD (peak over threshold approach), and
the other theorem leads to the GEV (T -maximum method).
Both limit distributions must possess the same form pa-
rameter ξ . For the Japanese catalog of earthquake mag-
nitudes over the period 1923–2007, both approaches pro-
vide almost the same statistical estimate for the form pa-
rameter, which is found to be negative; ξ ∼= −0.2. A
negative form parameter corresponds to a distribution of
magnitudes that is bounded from above (by a parameter
named Mmax). This maximum magnitude corresponds to
the finiteness of the geological structures supporting earth-
quakes. The density distribution extends to its final value
Mmax with a very small probability weight in its neighbor-
hood, characterized by a tangency of a high degree (“duck
beak” shape). In fact, the limit behavior of the density dis-
tribution of Japanese earthquake magnitudes is described
by the function (Mmax − m)−1−1/ξ ∼= (Mmax − m)4, i.e. by
a polynomial of degree approximately equal to 4. This is
the explanation of the unstable character of the statistical
estimates of the parameter Mmax: a small change in the cat-
alog of earthquake magnitude can give rise to a significant
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fluctuation in the resulting estimate of Mmax. In contrast,
the estimation of the integral parameter Qq(τ ) is generally
more stable and robust, as we demonstrate quantitatively
for the Japanese catalog of earthquake magnitudes over the
period 1923–2007.

The main problem in the statistical study of the tail of the
distribution of earthquake magnitudes (as well as in distri-
butions of other rarely observable extremes) is the estima-
tion of quantiles that exceed the data range, i.e. quantiles of
level q > 1 − 1/n, where n is the sample size. We would
like to stress once more that the reliable estimation of quan-
tiles of levels q > 1 − 1/n can be made only with some
additional assumptions on the behavior of the tail. Some-
times, such assumptions can be made on the basis of phys-
ical processes underlying the phenomena under study. For
this purpose, we used general mathematical limit theorems,
namely, the theorems of EVT. In our case, the assump-
tions for the validity of EVT amount to assuming a regular
(power-like) behavior of the tail 1 − F(m) of the distribu-
tion of earthquake magnitudes in the vicinity of its right-
most point Mmax. Partial justification for such an assump-
tion is the fact that, without it, there is no meaningful limit
theorem in EVT. Of course, there is no a priori guarantee
that these assumptions will hold in all real situations, and
they should be discussed and possibly verified or supported
by other means. In fact, because EVT suggests a statisti-
cal methodology for the extrapolation of quantiles beyond
the data range, the question of whether such interpolation
is justified or not in a given problem should be investigated
carefully in each concrete situation.
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