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Abstract 

Let G = (V, E) be a graph and k > 2 an integer. The general chromatic index x;(G) of G is the minimum 

order of a partition P of E such that for any set F in P every component in the subgraph (F) induced 

by F has size at most k- 1. This paper initiates a study of x;(G) and generalizes some known results 

on chromatic index. 

The purpose of this paper is to obtain a generalization of chromatic index. 

Compared to many generalizations of chromatic number, there exist very few general- 

izations of chromatic index in the literature. For example, see [2] and [3]. 

Let G=( V, E) be a graph and k 22 an integer. A set FcE is and Zk-set (or 

k-independent set) if every component in the subgraph (F) induced by F has size at 

most k - 1. Equivalently, a set F c E is k-independent if the sum of the degrees of the 

vertices in every component of the subgraph (F) is r, where 2 d r g2 (k - 1). 

A partition {E 1, E,, . . . , E,] of E is an I,-partition if each Ei is an &-set. An I,-edge 

coloring of G is a coloring of the edges of G so that the set of all edges receiving the 

same color is an Zk-set. An I,-edge coloring which uses r colors is called a (k,r)-edge 

coloring. 

The k-chromatic index xi = x;(G) of G is the minimum number of colors needed in an 

I,-edge coloring of G. If x;(G) = n, then G is said to be (k, n)-edge chromatic. The k-edge 

independence number Plk=Plk(G) of G is the maximum cardinality of an I,-set. 

Clearly, if M is any independent set of edges, then M is an Ik-set for all k 3 2. 

We observe that x;(G)=x’(G), the chromatic index. Also PI2 =/?r, the edge inde- 

pendence number of G. If G has size q, then x;(G)= 1 for all k>q. If L(G) is the line 

graph of G, then 

x’(G) = XV(G)) 

where x(L(G)) is the chromatic number of L(G). 
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Fig. 1. Fig. 2 

The vertex analogue of X;(G) has been defined by Sampathkumar [S] as follows: Let 

k>2 be an integer. The k-chromatic number xJG) of G is the minimum order of 

a partition {Vi, V,, . . . , V,} of V such that every component in the subgraph (I$) 

induced by Vi has order at most k- 1. Clearly, for any graph G with size 42 1 

X;(G) =X/&(G)) (2) 

The problem of determining the k-chromatic index for the complete graph K, and 

the complete bipartite graph K,,, is open. However Figs. 1 and 2 will give the 

k-chromatic index of these graphs in some cases. 

Also &,(K7)= 3 Also x;(K7,,)=3, for k=lO,ll 

x;(K,)=2, for llQkQ21 &(Ks,s)=4, for k=lO, 11 

&(Ks)=3, for lOdk<l4 x;(K,,J=3, 12<k<16, n=7,8. 

=2, for 15<k<28 &(K,,,)=2, 108k616, 4<n<6. 

x;(K,)=3, for lO<k$18 =2, 17<k625, 5<n<8. 

=2, for 19<k<36 =2, 26<k<36, 66n<8. 

=2, 37<k<49, n=7,8. 

x;(K&=2, 50<k<64. 

Let G be a graph of order p, and 2 < k Q r. If G is a cycle, then x;(G) = 2. We also 

observe that for all 2~ kdr, an Zk-set is an IV-set, and 

Bi=Plz~Blk~Plr, (3) 

X:<X;<X;=X’. (4) 



A generalization of chromatic index 175 

Proposition 1. For any graph G=(V,E), (i) filk<(k- l)Br, and (ii) x’<(k- 1)x;. 

Proof. (i) Let F c E be an I,-set with IFI =/?ik. Clearly, the subgraph (F) can contain 

at most /I1 components, and each component containing at most k- 1 edges. 

Thus IFI=filk<(k-l)B1. To establish (ii), let {E1,E2, . . . ,E,) be an Zk-partition 

of E with r=x;(G), and X’((Ei))= ti. Then ti < k- 1 for each i, and 

x’(G)<Cti<(k-1)X;(G). I7 

We now deduce some bounds for x; using (4) and the following results: 

If A is the maximum degree of G, 

d<x’<d+l. [6] 

If G is bipartite 

f=A. [4] 

By (4), (5) and (6) we have for any graph G, if ka2 

A I 1 - <x;dA+l 
k-l 

and if G is bipartite, 

X;<A, 

(5) 

(6) 

(7) 

(8) 

Proposition 2. For any graph G with q edges 

Proof. (i) Let {E, , E,, . . . , E,} be an I,-partition of E with I = xi. Then 

q = C I Ei I G rfilk, and the lower bound in (i) follows. The upper bound in (i) is trivial. 

The lower bound in (ii) follows from (i) and (3). To establish the upper bound, let F c E 
be an I,-set with IF I=filk. Clearly, x;(G-F)>x;- 1. Since G-F has q-/Ilkedges, we 

have from (i), 

Therefore, 



176 E. Sampathkumar, G.D. Kamath 

fjg$ &fj!$$ 
2 2 

Fig. 3 

(k, n)-Critical Graphs: Let G be a graph with maximum degree A. Then G is chromatic- 

index critical (or simply, A-critical) if (i) G is connected, (ii) x’(G)= A + 1, and 

(iii) x’(G -e) <x’(G) for every edge e of G. For details on A-critical graphs, see [l] and 

[7]. We generalize this concept as follows: 

Let k 22 and n 22 be integers. A graph G is (k, n)-critical if (i) G is connected, 

(ii) x;(G)=n, and (iii) x;(G-~)<x;(G) for every edge e of G. 

Note that a A-critical graph is (2, A + 1)-critical. For ka3, the star K,,, is (k,r)- 

critical, if and only if, n = 1 mod (k - l), where r = x;(K1,.). The Peterson graph is 

(4,3)-critical. This can be seen from the (4,3)-colorings of the edges as in Fig. 3. 

Some elementary properties of (k, n)-critical graphs are as follows. 

Proposition 3. Let G be a (k, n)-critical graph. If F c E is an Ik-set, then 

(i) &(G- F)=n- 1, (ii) G contains a (k, r)-critical subgraph for every r satisfying 

2 <r < n, and (iii) if u and v are adjacent vertices in G, then deg u +deg v 3 n + 1. 

Proof. (i) is trivial. 

(ii) For every edge e of G, x;(G - e) = n - 1. If the graph G-e is not (k, n - 1)-critical, 

we successively remove the edges from G-e until we obtain a graph G’ which is 

(k, n - 1)-critical. Continuing this process, we can obtain a (k, r)-critical subgraph of 

G for each r, 2<r<n. 

(iii) Clearly there exists a (k, n)-edge coloring of G such that {e} is a color class. Let 

{e}, J&J%, . . . . E, be the color classes in such an edge coloring. The edge e should be 

adjacent to at least one edge in each color class Ei, 2 <i< n. This implies 

(degu-l)+(degv-l)>n-1. 

A graph G is (k, n)-vertex critical if xk(G)= n and xk(G--o)=n- 1 for all VE I’. We 

deduce our next result using a known result. 

Proposition 4 (Sampathkumar [S] ). Let G be a (k, n)-vertex critical graph, n > 2. Then 

(i) G is (n-1)-edge connected, and (ii) 6(G)>n- 1, where 6(G) is the minimum 

degree of G. 
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Clearly, s(L(G))=min {degu+degu:uucE}-2. Since x;(G)=xk(L(G)), and G is 

(k, n)-critical oL(G) is (k, n)-vertex critical, we deduce the following proposition from 

Proposition 4: 

Proposition 5. Let G be Q (k, n)-critical graph, n>2. Then (i) L(G) is (n- 1)-edge 

connected. 

Corollary 5.1. Let G be a A-critical graph. Then L(G) is A-edge connected. 

We now present an upper bound on the number of edges in a (k, n)-critical graph. 

Proposition 6. Let dl,dz, . . . , d, be the degree sequence of a (p, q) graph G. Zf G is 

(k, n)-critical then q <C df/(n + 1). 

Proof. The number of edges in the line graph L(G) of G is given by qL = - q + f C d?. 
Let d;,d;, . . . . db be the degree sequences of L(G). By (ii) of Proposition 5, 

d; > 6 (L(G)) 3 n - 1 for each i. Hence, 

Zq,=tdl>q(n-I), and q< 
-2q+Cd: 

i=l 
n+k-3 

and the result follows. 
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