Discrete Mathematics 124 (1994) 173-177 North-Holland

173

A generalization of chromatic index

E. Sampathkumar and G.D. Kamath

Department of Mathematics, Mysore University, Mysore-570006, India

Received 2 June 1990 Revised 24 May 1991

Abstract

Let G = (V, E) be a graph and $k \ge 2$ an integer. The general chromatic index $\chi_k(G)$ of G is the minimum order of a partition P of E such that for any set F in P every component in the subgraph $\langle F \rangle$ induced by F has size at most k-1. This paper initiates a study of $\chi'_k(G)$ and generalizes some known results on chromatic index.

The purpose of this paper is to obtain a generalization of chromatic index. Compared to many generalizations of chromatic number, there exist very few generalizations of chromatic index in the literature. For example, see [2] and [3].

Let G = (V, E) be a graph and $k \ge 2$ an integer. A set $F \subset E$ is and I_k -set (or k-independent set) if every component in the subgraph $\langle F \rangle$ induced by F has size at most k-1. Equivalently, a set $F \subset E$ is k-independent if the sum of the degrees of the vertices in every component of the subgraph $\langle F \rangle$ is r, where $2 \le r \le 2(k-1)$.

A partition $\{E_1, E_2, \dots, E_r\}$ of E is an I_k -partition if each E_i is an I_k -set. An I_k -edge coloring of G is a coloring of the edges of G so that the set of all edges receiving the same color is an I_k -set. An I_k -edge coloring which uses r colors is called a (k, r)-edge coloring.

The k-chromatic index $\chi'_k = \chi'_k(G)$ of G is the minimum number of colors needed in an I_k -edge coloring of G. If $\chi'_k(G) = n$, then G is said to be (k, n)-edge chromatic. The k-edge independence number $\beta_{1k} = \beta_{1k}(G)$ of G is the maximum cardinality of an I_k -set. Clearly, if M is any independent set of edges, then M is an I_k -set for all $k \ge 2$.

We observe that $\chi'_2(G) = \chi'(G)$, the chromatic index. Also $\beta_{12} = \beta_1$, the edge independence number of G. If G has size q, then $\chi'_k(G) = 1$ for all k > q. If L(G) is the line graph of G, then

$$\chi'(G) = \chi(L(G)) \tag{1}$$

where $\chi(L(G))$ is the chromatic number of L(G).

Correspondence to: E. Sampathkumar, Department of Mathematics, Mysore University, Mysore 570006, India.

$\chi'_{k}(K_{p})$										
k P	3	4	5	6	7	8	9			
3	2	3	4	4	6	6	7			
4	1	2	3	4	4	4	4			
5	1	2	3	3	4	4	4			
6	1	2	2	3	3	3	4			
7	1	1	2	3	3	3	4			
8	ı	1	2	3	3	3	4			
9	1	1	2	2	3	3	3			

$\chi'_{k}\left(K_{n,n}\right)$											
k n	3	4	5	6	7	8					
3	3	4	5	6	7	8					
4	3	3	4	5	6	6					
5	2	2	3	4	4	4					
6	2	2	3	4	4	4_					
7	2	2	3	3	4	4					
8	2	2	3	3	4	4					
9	2	2	3	3	4	4					

Fig. 1.

Fig. 2.

The vertex analogue of $\chi'_k(G)$ has been defined by Sampathkumar [5] as follows: Let $k \ge 2$ be an integer. The k-chromatic number $\chi_k(G)$ of G is the minimum order of a partition $\{V_1, V_2, \ldots, V_n\}$ of V such that every component in the subgraph $\langle V_i \rangle$ induced by V_i has order at most k-1. Clearly, for any graph G with size $q \ge 1$

$$\chi_k'(G) = \chi_k(L(G)) \tag{2}$$

The problem of determining the k-chromatic index for the complete graph K_p and the complete bipartite graph $K_{m,n}$ is open. However Figs. 1 and 2 will give the k-chromatic index of these graphs in some cases.

Also
$$\chi'_{10}(K_7) = 3$$
 Also $\chi'_{k}(K_{7,7}) = 3$, for $k = 10, 11$ $\chi'_{k}(K_7) = 2$, for $11 \le k \le 21$ $\chi'_{k}(K_{8,8}) = 4$, for $k = 10, 11$ $\chi'_{k}(K_8) = 3$, for $10 \le k \le 14$ $\chi'_{k}(K_{n,n}) = 3$, $12 \le k \le 16$, $n = 7, 8$. $2 \le k \le 16$, $2 \le 16$, $2 \le k \le 16$, $2 \le 1$

Let G be a graph of order p, and $2 \le k \le r$. If G is a cycle, then $\chi'_k(G) = 2$. We also observe that for all $2 \le k \le r$, an I_k -set is an I_r -set, and

$$\beta_1 = \beta_{12} \leqslant \beta_{1k} \leqslant \beta_{1r},\tag{3}$$

$$\gamma_r' \leqslant \gamma_k' \leqslant \gamma_2' = \gamma' \,. \tag{4}$$

Proposition 1. For any graph G = (V, E), (i) $\beta_{1k} \leq (k-1)\beta_1$, and (ii) $\chi' \leq (k-1)\chi'_k$.

Proof. (i) Let $F \subset E$ be an I_k -set with $|F| = \beta_{1k}$. Clearly, the subgraph $\langle F \rangle$ can contain at most β_1 components, and each component containing at most k-1 edges. Thus $|F| = \beta_{1k} \leq (k-1)\beta_1$. To establish (ii), let $\{E_1, E_2, \dots, E_r\}$ be an I_k -partition of E with $r = \chi'_k(G)$, and $\chi'(\langle E_i \rangle) = t_i$. Then $t_i \leq k-1$ for each i, and $\chi'(G) \leq \Sigma t_i \leq (k-1)\chi'_k(G)$. \square

We now deduce some bounds for χ'_k using (4) and the following results: If Δ is the maximum degree of G,

$$\Delta \leqslant \chi' \leqslant \Delta + 1. \quad [6]$$

If G is bipartite

$$\chi' = \Delta. \quad [4] \tag{6}$$

By (4), (5) and (6), we have for any graph G, if $k \ge 2$

$$\left\lceil \frac{\Delta}{k-1} \right\rceil \leqslant \chi_k' \leqslant \Delta + 1 \tag{7}$$

and if G is bipartite,

$$\chi_k' \leqslant \Delta,$$
 (8)

Proposition 2. For any graph G with q edges

(i)
$$\frac{q}{\beta_{1k}} \leqslant \chi'_k \leqslant \frac{q}{k-1}$$
,

$$(ii) \qquad \frac{q}{(k-1)\beta_1} \! \leqslant \! \chi_k' \! \leqslant \left\lceil \frac{q-\beta_{1k}}{k-1} \right\rceil \! + 1.$$

Proof. (i) Let $\{E_1, E_2, \dots, E_r\}$ be an I_k -partition of E with $r = \chi'_k$. Then $q = \Sigma | E_i | \le r \beta_{1k}$, and the lower bound in (i) follows. The upper bound in (i) is trivial. The lower bound in (ii) follows from (i) and (3). To establish the upper bound, let $F \subset E$ be an I_k -set with $|F| = \beta_{1k}$. Clearly, $\chi'_k(G - F) \ge \chi'_k - 1$. Since G - F has $q - \beta_{1k}$ edges, we have from (i),

$$\chi'_{\mathbf{k}}(G-F) \leqslant \frac{q-\beta_{1\mathbf{k}}}{k-1}.$$

Therefore,

$$\chi'_{k}(G) \leqslant \left\lceil \frac{q - \beta_{1k}}{k - 1} \right\rceil + 1.$$

Fig. 3.

(k, n)-Critical Graphs: Let G be a graph with maximum degree Δ . Then G is chromatic-index critical (or simply, Δ -critical) if (i) G is connected, (ii) $\chi'(G) = \Delta + 1$, and (iii) $\chi'(G-e) < \chi'(G)$ for every edge e of G. For details on Δ -critical graphs, see [1] and [7]. We generalize this concept as follows:

Let $k \ge 2$ and $n \ge 2$ be integers. A graph G is (k, n)-critical if (i) G is connected, (ii) $\chi'_k(G) = n$, and (iii) $\chi'_k(G - e) < \chi'_k(G)$ for every edge e of G.

Note that a Δ -critical graph is $(2, \Delta + 1)$ -critical. For $k \ge 3$, the star $K_{1,n}$ is (k, r)-critical, if and only if, $n \equiv 1 \mod (k-1)$, where $r = \chi'_k(K_{1,n})$. The Peterson graph is (4,3)-critical. This can be seen from the (4,3)-colorings of the edges as in Fig. 3.

Some elementary properties of (k, n)-critical graphs are as follows.

Proposition 3. Let G be a (k, n)-critical graph. If $F \subset E$ is an I_k -set, then (i) $\chi'_k(G-F)=n-1$, (ii) G contains a (k, r)-critical subgraph for every r satisfying $2 \leq r \leq n$, and (iii) if u and v are adjacent vertices in G, then $\deg u + \deg v \geqslant n+1$.

Proof. (i) is trivial.

- (ii) For every edge e of G, $\chi'_k(G-e)=n-1$. If the graph G-e is not (k,n-1)-critical, we successively remove the edges from G-e until we obtain a graph G' which is (k,n-1)-critical. Continuing this process, we can obtain a (k,r)-critical subgraph of G for each r, $2 \le r \le n$.
- (iii) Clearly there exists a (k, n)-edge coloring of G such that $\{e\}$ is a color class. Let $\{e\}, E_2, E_3, \ldots, E_n$ be the color classes in such an edge coloring. The edge e should be adjacent to at least one edge in each color class E_i , $2 \le i \le n$. This implies $(\deg u 1) + (\deg v 1) \ge n 1$.

A graph G is (k, n)-vertex critical if $\chi_k(G) = n$ and $\chi_k(G - v) = n - 1$ for all $v \in V$. We deduce our next result using a known result.

Proposition 4 (Sampathkumar [5]). Let G be a (k, n)-vertex critical graph, $n \ge 2$. Then (i) G is (n-1)-edge connected, and (ii) $\delta(G) \ge n-1$, where $\delta(G)$ is the minimum degree of G.

Clearly, $\delta(L(G)) = \min \{ \deg u + \deg v : uv \in E \} - 2$. Since $\chi'_k(G) = \chi_k(L(G))$, and G is (k, n)-critical $\Leftrightarrow L(G)$ is (k, n)-vertex critical, we deduce the following proposition from Proposition 4:

Proposition 5. Let G be a (k, n)-critical graph, $n \ge 2$. Then (i) L(G) is (n-1)-edge connected.

Corollary 5.1. Let G be a Δ -critical graph. Then L(G) is Δ -edge connected.

We now present an upper bound on the number of edges in a (k, n)-critical graph.

Proposition 6. Let $d_1, d_2, ..., d_p$ be the degree sequence of a (p, q) graph G. If G is (k, n)-critical then $q \le \sum d_i^2/(n+1)$.

Proof. The number of edges in the line graph L(G) of G is given by $q_L = -q + \frac{1}{2} \sum d_i^2$. Let d_1, d_2, \ldots, d_q' be the degree sequences of L(G). By (ii) of Proposition 5, $d_1 \ge \delta(L(G)) \ge n-1$ for each i. Hence,

$$2q_L = \sum_{i=1}^{q} d_i' \ge q(n-1)$$
, and $q \le \frac{-2q + \sum d_i^2}{n+k-3}$

and the result follows.

References

- [1] S. Fiorini and R.J. Wilson, Edge Coloring of Graphs (Pitman, London, 1977).
- [2] S.L. Hakimi, A Generalization of Edge-Coloring in Graphs, J. Graph Theory 10 (1986) 139-154.
- [3] A.J.W. Hilton, Coloring the edges of a multigraph so that each vertex has at most j, or at least j edges of each color in it, J. London Math. Soc. (2) 12 (1975) 123-128.
- [4] D. König, Uber graphen und ihre Anwendung and Determinantentheorie and Mengenlehree, Math. Ann. 77 (1916) 453-465.
- [5] E. Sampathkumar, A generalization of independence and chromatic numbers of a graph, Discrete Math. 115 (1993) 245-251.
- [6] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Discrete Analiz. 3 (1964) 25-30.
- [7] H.P. Yap, On graphs critical with respect to edge-colorings, Discrete Math. 37 (1981) 289-296.