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1. Introduction

In Q = (0,1) × (0, T ) we consider initial boundary value problems for the Kawahara equation

Lu = ut + uDu + aD3u − bD5u = 0, (1.1)

where Di = ∂ i

∂xi
; a, b are real constants.

This dispersive equation describes one-dimensional evolutions of small amplitude long waves in various problems of fluid
dynamics and physics [19,25]. If b = 1, a = 1, we have the classical Kawahara equation which was derived as a perturbation
of the KdV equation

Lu = ut + uDu + aD3u = 0 (1.2)

when the coefficient a is small and frequently is called the perturbed KdV equation or the special version of the Benney–Lin
equation, see [3]. A sign of the coefficient b depends on a nature of physical processes modeled by the Kawahara equation
and may be positive or negative.

Historically, interest in dispersive-type evolution equations dates from the 19th century when Russel [24], Airy [1],
Boussinesq [9] and later Korteweg and de Vries [20] studied propagation of waves in dispersive media. Due to physical
reasons, these and posterior studies mostly dealt with one-dimensional problems posed on the entire real line, see [2,3,5,
6,11–13,18,19,25] and references therein. Moreover, the emphasis in these works was mainly focused on the existence and
qualitative structure of the solitary, cnoidal and other specific types of waves, whereas correctness of corresponding mathe-
matical problems attracted minor interest. Known mathematical results for (1.1) concerned the Cauchy problem, see [5,13],
but correctness of initial boundary value problems was not studied.

On the other hand, if one is interested in calculating solutions to the Cauchy problem or stationary problems on the
whole real line using some numerical schemes, there appears a problem of approximating the real line by finite intervals and
solving mixed problems in bounded domains. Therefore precise mathematical analysis of initial boundary value problems in
bounded domains for dispersive equations attracts more attention in last years, see [7,10,14,16,17,22,23].
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Because (1.1) and (1.2) are of odd orders, boundary conditions for them in points x = 0 and x = 1 are not symmetric
and study of these equations in bounded domains is interesting from the purely mathematical point of view: a type of
boundary conditions needed to ensure the correctness of a problem depends on a sign of the higher derivative coefficient;
whereas this sign is of no importance in the case of the Cauchy problem. Therefore, methods for studying of these two
kinds of problems should be different. Solvability of boundary value problems for linear third-order dispersive equations in
bounded multidimensional domains was studied in [21] (see also the references). As concerns nonlinear odd-order equations
considered in bounded regions, there is no satisfactory general theory to answer questions of existence, uniqueness and
asymptotics, nevertheless initial–boundary value problems for the KdV equation on bounded intervals were studied by
various authors, see [7,10,14,22,23]. Usually, there are one condition on the left end and two conditions on the right end of
an interval. This is explained by physical arguments and it must be noted that this situation is common for all dispersive
equations, nevertheless we did not find a general mathematical approach to this question. Because of that, we tried to treat
the questions of ill and well-posed problems for general dispersive equations.

Our paper has the following structure: Section 1 is Introduction, in Section 2 we present some auxiliary mathematical
results including Lopatinskii condition for ODE systems. In Section 3 we treat the question of ill and well-posedness for
general dispersive equations and give an example of an ill-posed problem for the third-order ordinary differential equation
while the set of boundary conditions is different from what we propose. This is actually an example of an ill-posed problem
for the linear KdV equation. In Section 4 we prove our main results: Theorem 1 on solvability of the initial boundary value
problem for the Kawahara equation on a bounded interval when b > 0 and Theorem 2 on the exponential decay of the
energy as t → ∞. To prove Theorem 1, we exploit a regularization of the original problem by an initial boundary value
problem for a higher-order parabolic operator in a similar manner as we have done in [22] for the KdV equation. In turn,
we use the Faedo–Galerkin method with a special basis to solve the parabolic problem. We prove the existence, uniqueness
and the exponential decay of the L2-norms of solutions for the Kawahara equation. In Section 5 we show that its solutions
converge to solutions of the KdV equation as the coefficient b tends to zero and a is positive. Finally, in Section 6 we
consider the initial boundary value problem for the Kawahara equation when b < 0.

2. Notations and auxiliary results

We will use the following notations:

(u, v)(t) =
1∫

0

u(x, t)v(x, t)dx,
∣∣u(t)

∣∣2 = (u, u)(t), ‖v‖ = ∣∣v(0)
∣∣

and usual notations for Sobolev spaces Hl(0,1). We will need two inequalities of calculus: the Ehrling inequality which in
our case can be formulated as follows, see [4].

Lemma 1. Let u ∈ Hs(0,1) and 0 � l < s. Then for an arbitrary ε > 0 there exists K (ε) > 0 such that

‖u‖Hl(0,1) � ε‖u‖Hs(0,1) + K (ε)‖u‖L2(0,1).

The other is the Gagliardo–Nirenberg inequality [4], which in our case reads.

Lemma 2. Let n = 1, 1 � p1 � ∞, 1 � p2 � ∞, 0 � r < l and

1

p
− r = (1 − θ)

1

p1
+ θ

(
1

p2
− l

)
, r < l,

r

l
� θ � 1.

Then there exists a constant C which depends on r, l, p, p1, p2, θ such that
∥∥Dr f

∥∥
Lp(0,1)

� C‖ f ‖1−θ
Lp1 (0,1)

∥∥Dl f
∥∥θ

Lp2 (0,1)
.

We will need two lemmas from the theory of ODE. For details one can see [15].

Boundary value problem on a segment

Let us study the problem of finding a solution y(x) of the nonhomogeneous equation

d

dt
y(x) = Ay(x) + f (x), xL � x � xR ; xl < xR , (2.1)

with the boundary conditions

Ly(xL) = l, R y(xR) = r. (2.2)
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Here A is a quadratic N × N matrix; each of the matrices L, R has N columns, where N is the number of components of the
vector y(x). The number of rows of the matrix L can differ from that of the matrix R . We denote the number of the rows
of the matrix L by kL and the number of the rows of the matrix R by kR . Let Y (x) be a fundamental matrix of solutions to
the homogeneous equation

d

dt
y(x) = Ay(x).

The following assertion is true [15].

Lemma 3. The boundary value problem (2.1)–(2.2) has a unique solution y(x) for any l, r, f (x) if and only if the following conditions
hold:

kL + kR = N

and the determinant of the matrix∥∥∥∥∥
LY (xL)

RY (xR)

∥∥∥∥∥
is different of zero.

The Lopatinskii condition

Proposition 1. The boundary value problem for the homogeneous vector equation

d

dt
v(x) = Av(x)

with the boundary condition

M v(0) = φ

has a unique bounded solution v(x), 0 � x < ∞ (‖v(x)‖ < ∞) for any vector φ such that the number of its components coincides
with the number of rows of the matrix M which in turn coincides with the number of those eigenvalues of the matrix A that have the
negative real parts.

3. Initial boundary value problems for odd-order evolution equations

We consider odd-order evolution equations of dispersive type:

ut + uDu + (−1)l+1 D2l+1u = 0 (3.1)

in Q = (0,1) × (0, T ), Q − = (−∞,0) × (0, T ), Q + = (0,∞, ) × (0, T ), where l is a nonnegative entire number, T > 0,

Dk = dk

dxk .
To set a correct initial boundary value problem for (3.1), we prescribe initial data

u(x,0) = u0(x)

for x ∈ (0,1) or x ∈ (−∞,0) = R− or x ∈ (0,∞) = R+ .
Besides the initial data we must set boundary conditions at x = 0 and x = 1 for x ∈ (0,1) or at x = 0 for x ∈ R+ and

x ∈ R− which are defined by the principal part of (3.1):

ut + (−1)l+1 D2l+1u = 0. (3.2)

We will show that when x ∈ (0,1), one has to set l conditions at x = 0 and l + 1 conditions at x = 1. In the case x ∈ R+ ,
one must set l conditions at x = 0 and when x ∈ R− one must set l + 1 conditions at x = 0. A correct set of boundary
conditions guarantees that a corresponding initial boundary value problem for (3.1) is well posed (it has a unique regular
bounded solution) and that a different choice of numbers of boundary conditions leads to ill-posed problems (nonexistence
of solutions or non-uniqueness).

To construct solutions of (3.2), we use discretization of it with respect to time: let N be a natural number, then we
define

h = |0, T |
N

, un(x) = u(x,nh), u0(x) = u0(x).

Substitution in (3.2) u(x, t) by un(x) and ut(x, t) by un(x)−un−1(x)
h gives

un

+ (−1)l+1 D2l+1un = un−1

≡ f (x), n = 1, . . . , N.

h h
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Since u0 = u0(x), finding u1(x), we can find u2(x), etc. It is clear that we must set well-posed boundary value problems for
the stationary equation

sv + (−1)l+1 D2l+1 v = f (x), s > 0. (3.3)

Because our goal here is not to write explicitly solutions, but to find out which boundary value problems are well-posed
and which are ill-posed in (0,1), R+ or R− , it is sufficient to construct a fundamental system of solutions for the linear
homogeneous equation

sv + (−1)l+1 D2l+1 v = 0 (3.4)

which is defined by the roots of the characteristic equation

s + (−1)l+1λ2l+1 = 0.

Without loss of generality they can be written as

λk = d0 exp

(
iπ

β + 2k

2l + 1

)
, k = 0, . . . ,2l,

where

d0 = |s| 1
2l+1 , β = 0 for l = 2s and β = 1 for l = 2s + 1.

It is easy to see that there is always one real root

λ0 = (−1)βd0 (3.5)

and 2l complex roots

λ j = d0 exp

(
iπ

β + 2 j

2l + 1

)
, j = 1, . . . ,2l. (3.6)

If l = 2s, among them are l roots with positive real parts

λ+
j = d0 exp

(
±i

2π j

2l + 1

)
, j = 1, . . . ,

l

2
,

and l roots with negative real parts

λ−
j = d0 exp

{
±i

2π j

2l + 1

}
, j = l

2
+ 1, . . . , l.

If l = 2s + 1, then there are l + 1 roots with positive real parts

λ+
j = d0 exp

{
±iπ

1 + 2 j

2l + 1

}
, j = 0, . . . ,

l − 1

2
,

and l − 1 roots with negative real parts

λ−
j = d0 exp

{
±iπ

1 + 2 j

2l + 1

}
, j = l − 1

2
+ 1, . . . , l − 1.

3.1. Problem I: x ∈ R+

We seek bounded solutions

sup
x∈R+

∣∣u(x)
∣∣ < ∞. (3.7)

It is easy to see that there are l roots with real parts negative. Rewriting (3.4) as a first-order ODE system and using
Proposition 1, we pose l conditions at x = 0. This can be resumed as

Lemma 4. Well-posed Problem I for (3.1) in R+ has exactly l conditions at x = 0.
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3.2. Problem II: x ∈ R−

Changing −x = y, we get

sv − (−1)l+1 D2l+1
y v = 0, y > 0. (3.8)

In this case there are l + 1 roots with negative real parts. By Proposition 1, we need to pose l + 1 conditions at y = 0. This
can be resumed as

Lemma 5. Well-posed Problem II for (3.1) in R− has exactly l + 1 conditions at x = 0.

3.3. Problem III: x ∈ (0,1)

To pose a correct boundary value problem on the segment (0,1), we rewrite (3.3) as a first-order ODE system and use
Lemma 3 setting l conditions at x = 0 and l +1 conditions at x = 1. This gives 2l +1 conditions on both ends of the segment
and corresponds to a correct boundary value problem on R+ .

From the physical point of view it means one-way propagation of waves. This conception was used while simplifying
Boussinesq system to the KdV and BBM equations. Details can be found in [8]. This setting of boundary conditions is usual
for the KdV equation [7,10,14,22]. On the other hand, setting l + 1 conditions at x = 0 and l conditions at x = 1 leads to
nonexistence of solutions which can be proved for the linear KdV equation. We resume all above as

Lemma 6. Well-posed initial boundary value problems for (3.1) on R+ , R− and (0,1) have the following set of boundary conditions:

1. l conditions at x = 0, while x ∈ R+ , t > 0.
2. l + 1 conditions at x = 0, while x ∈ R− , t > 0.
3. l conditions at x = 0 and l + 1 conditions at x = 1 while x ∈ (0,1), t > 0.

Ill-posed problem for the linear KdV equation

In the case of the KdV equation we have l = 1 and (3.4) becomes

sv + D3 v = 0 (3.9)

for which we pose l + 1 = 2 boundary conditions at x = 0 and l = 1 boundary condition at x = 1:

v(0) = vx(0) = v(1) = 0. (3.10)

This contradicts the choice of boundary conditions proposed in Lemma 6. The characteristic equation for (3.9)

s + λ3 = 0

has three roots

λk = |s|1/3 exp

(
i

[
π + 2kπ

3

])
, k = 1,2,3,

where λ1 = −|s|1/3 has the negative real parts. These roots define the following fundamental system of solutions to (3.9):

u1(x) = exp
(−|s|1/3x

)
, u2(x) = exp

(
1

2
|s|1/3x

)
cos

(√
3

2
|s|1/3x

)
,

u3(x) = exp

(
1

2
|s|1/3x

)
sin

(√
3

2
|s|1/3x

)
.

Due to Lemma 3, applied to the equivalent first-order ODE system, a correct setting of boundary conditions on (0,1)

guarantees that a corresponding determinant is different from zero for all s > 0 and vice versa. We calculate∥∥∥∥∥∥∥
u1(0) u2(0) u3(0)

u1(1) u2(1) u3(1)

u1x(0) u2x(0) u3x(0)

∥∥∥∥∥∥∥
=

√
3t

2
exp

(
t

2

){
2 cos

(√
3t

2
+ π

3

)
− exp

(
−3t

2

)}
,

where t = |s|1/3 > 0. Consider on R+ the continuous function

G(t) = 2 cos

(√
3t + π

)
− exp

(
−3t

)
.

2 3 2



1084 N.A. Larkin / J. Math. Anal. Appl. 344 (2008) 1079–1092
At points tk , k = 0,1,2,3, . . . such that t0 = 4π

3
√

3
, tk+1 − tk = 2π√

3
, we have

cos

(√
3t2p

2
+ π

3

)
= −1, p = 0,1,2,3, . . . ,

cos

(√
3t2p+1

2
+ π

3

)
= +1, p = 0,1,2,3, . . . .

It is easy to see that G(t0) < 0 and G(t1) > 0. By the Intermediate Value Theorem, there exists at least one point t∗ ∈ (t0, t1)

such that G(t∗) = 0. Proceeding with this argument for all intervals (tk, tk+1), we find that G(t) is equal to zero on a
countable set of points on R+ . It means that problem (3.9)–(3.10) does not have solutions for all s > 0. Hence the problem

ut + D3u = 0, x ∈ (0,1),

u(x,0) = u0(x),

u(0, t) = ux(0, t) = u(1, t) = 0

is ill posed.
On the other hand, the problem

ut + D3u = 0, x ∈ (0,1), (3.11)

u(x,0) = u0(x), (3.12)

u(0, t) = u(1, t) = ux(1, t) = 0 (3.13)

is well posed. Indeed, it is easy to see that a corresponding determinant is strictly positive for all s > 0:
∥∥∥∥∥∥∥

u1(0) u2(0) u3(0)

u1(1) u2(1) u3(1)

u1x(1) u2x(1) u3x(1)

∥∥∥∥∥∥∥
= tet

[√
3

2
− exp

(
−3t

2

)
cos

(√
3t

2
+ π

6

)]
> 0, ∀t > 0.

By Lemma 3, problem (3.11)–(3.13) is well posed.

4. Kawahara equation

In this section we will prove our main results: Theorems 1 and 2.
In Q T = (0,1) × (0, T ), T > 0, consider the following mixed problem:

Lu = ut + uDu + aD3u − bD5u = 0 in Q T , (4.1)

u(0, t) = Du(0, t) = 0, t > 0, (4.2)

u(1, t) = Du(1, t) = D2u(1, t) = 0, t > 0, (4.3)

u(x,0) = u0(x), x ∈ (0,1), (4.4)

where a,b ∈ R; b > 0.

Theorem 1. Let u0 ∈ H5(0,1) satisfy boundary conditions (4.2), (4.3). Then for all finite T > 0 there exists a unique regular solution
to (4.1)–(4.4) u(x, t):

u ∈ C
(
0, T ; H5(0,1)

) ∩ L2(0, T ; H7(0,1)
)
,

ut ∈ L∞(
0, T ; L2(0,1)

) ∩ L2(0, T ; H2(0,1)
)
.

Proof. We will prove that this initial boundary value problem is well posed which corresponds to the choice of boundary
conditions proposed in Lemma 6. As was shown in the example of the ill-posed problem in the case l = 1, a different
choice of boundary conditions may lead to the non-existence of solutions even in a linear case. To solve it we will use
regularization by a mixed problem for a higher-order parabolic equation:
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Regularized problem

let ε be an arbitrary positive real number, then we define

Lεuε = Luε − εD10uε = 0, (4.5)

uε(0, t) = Duε(0, t) = D5uε(0, t) = D6uε(0, t) = D7uε(0, t) = 0, (4.6)

uε(1, t) = Duε(1, t) = D2uε(1, t) = D5uε(1, t) = D6uε(1, t) = 0, (4.7)

uε(x,0) = u0m(x), (4.8)

where u0m ∈ H15(0,1).

Lemma 7. Let u0m ∈ H15(0,1) satisfy boundary conditions (4.6), (4.7) and

D10u0m(0) = D11u0m(0) = D11u0m(1) = D12u0m(1) = 0.

Then for all ε > 0 there exist unique solutions to (4.5)–(4.8), uε(x, t):

uε ∈ C
(
0, T ; H10(0,1)

)
, uεt ∈ C

(
0, T ; H5(0,1)

) ∩ L2(0, T ; H10(0,1)
)
, uεtt ∈ L2(Q T ).

Proof. To solve (4.5)–(4.8), we will use the Faedo–Galerkin method with a special basis provided by the following proposi-
tion.

Proposition 2. There exist eigenfunctions of the following eigenvalue problem:

Lλw j = −D10 w j + λw j = 0, x ∈ (0,1), j = 1,2, . . . , (4.9)

satisfying boundary conditions (4.6), (4.7), which create a basis in H10(0,1) orthonormal in L2(0,1).

Proof. It is easy to show that the operator (4.9), (4.6), (4.7) is self-adjoint and positive in H10(0,1). Hence, assertions of the
last proposition follow from the well-known facts of the functional analysis. �

For a fixed ε > 0 we construct approximate solutions to (4.5)–(4.8) in the form

uN
ε (x, t) =

N∑
j=1

gN
j (t)w j(x),

where gN
j (t) are to be found from the following system of ODE:

(
LεuN

ε , w j
)
(t) = 0, (4.10)

gN
j (0) = (u0m, w j), j = 1, . . . , N. (4.11)

Obviously, solutions of (4.10), (4.11) exist on some interval (0, T N ). To extend them to any finite T > 0 and to pass to the
limit as N → ∞, we need a priori estimates.

Estimate I

From now on we will drop in calculations indices ε, N . Replacing in (4.10) w j by uN
ε and integrating by parts, we get

d

dt

∣∣u(t)
∣∣2 + b

∣∣D2(0, t)
∣∣2 + 2ε

∣∣D5u(t)
∣∣2 = 0,

whence,

∣∣uN
ε (t)

∣∣2 + 2ε

t∫
0

∣∣D5uN
ε (s)

∣∣2
ds � |u0m|2. (4.12)
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Estimate II

Due to Proposition 2, we replace in (4.10) w j by −D10uN
ε and obtain

d

dt

∣∣D5u(t)
∣∣2 + ε

∣∣D10u(t)
∣∣2 � C(ε)

((∣∣u(t)
∣∣2 + 1

)∣∣D5u(t)
∣∣2)

.

Taking into account (4.12), we get

∣∣D5uN (t)
∣∣2 + ε

t∫
0

∣∣D10uN (s)
∣∣2

ds � C(ε)‖u0m‖2
H5(0,1)

, (4.13)

where the constant C depends on ε > 0,‖u0m‖, but does not depend on N .

Estimate III

Differentiating (4.10) with respect to t and replacing w j by − D10 w j gN
jt

λ j
, we come to the inequality

d

dt

∣∣D5ut(t)
∣∣2 + ε

∣∣D10ut(t)
∣∣2 � C(ε)

[∣∣D5ut(t)
∣∣2(

1 + ∣∣u(t)
∣∣2) + ∣∣D5u(t)

∣∣2]

which implies

∣∣D5uN
εt(t)

∣∣2 + ε

t∫
0

∣∣D10uN
εs(s)

∣∣2
ds � C(ε)

{
1 + ∥∥uN

εt(0)
∥∥2

H5(0,1)

}
. (4.14)

We calculate from (4.10)∥∥uN
εt(0)

∥∥
H5(0,1)

� C‖u0m‖H15(0,1),

hence

∣∣D5uN
εt(t)

∣∣2 + ε

t∫
0

∣∣D10uN
εs(s)

∣∣2
ds � C(ε)‖u0m‖2

H15(0,1)
(4.15)

with the constant C independent of N , but dependent of ε > 0. In turn, (4.15) and (4.10) imply

t∫
0

∣∣uN
εtt(s)

∣∣2
ds � C(ε), (4.16)

where C does not depend on N . Estimates (4.12)–(4.16) allow us to pass to the limit in (4.10) as N → ∞ and to prove the
existence part of Lemma 7. Uniqueness can be proved by standards arguments.

Solvability of (4.1)–(4.4)

To prove the existence part of Theorem 1, we need a priori estimates uniform in ε ∈ (0,1] which will allow us to pass
to the limit as ε → 0.

Estimate (4.12) is uniform in ε > 0, N . In the limit case, when N → ∞, it reads

∣∣uε(t)
∣∣2 + 2ε

t∫
0

∣∣D5uε(s)
∣∣2

ds � ‖u0m‖2. (4.17)

Estimate IV

Multiplying (4.5) by (1 + x)uε , integrating by parts and dropping the index ε, we get

1

2

d

dt

(
(1 + x), u2)(t) + (

uDu, (1 + x)u
)
(t) + a

2

∣∣Du(t)
∣∣2 + 5b

2

∣∣D2u(t)
∣∣2 + b

2

∣∣D2u(0, t)
∣∣2

+ ε
(
(1 + x),

∣∣D5u
∣∣2)

(t) + 5ε
(

D5u, D4u
)
(t) = 0. (4.18)
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Here a can be positive or negative. Estimating sign-indefinite terms, we have

I = ∣∣(uDu, (1 + x)u
)
(t)

∣∣ � 1

3
max[0,1]

∣∣u(x, t)
∣∣(u2,1

)
(t) � η

∣∣Du(t)
∣∣2 + 1

36η

∣∣u(t)
∣∣4

for all η > 0.
Substituting I into (4.18) and using the Ehrling inequality, we obtain

1

2

d

dt

(
(1 + x), u2)(t) + a

2

∣∣Du(t)
∣∣2 + 5b

2

∣∣D2u(t)
∣∣2 − η

∣∣Du(t)
∣∣2 − 1

36η

∣∣u(t)
∣∣4 − Cε

(∣∣D5u(t)
∣∣2 + ∣∣u(t)

∣∣2) � 0, (4.19)

where the constant C does not depend on ε > 0. There are two cases:
(i) If a > 0, then setting η = a

4 and taking into account (4.12), we get

a

t∫
0

∣∣Du(s)
∣∣2

ds + b

t∫
0

∣∣D2u(s)
∣∣2

ds � C
(‖u0m‖)‖u0m‖2, (4.20)

where the constant C depends on a, ‖u0m‖, but does not depend on ε > 0.
(ii) If a � 0, using the obvious inequality

|a||Du|2 � η
∣∣D2u

∣∣ + a2

4η
|u|2

with 2η = b, we transform (4.18) into the form

d

dt

(
(1 + x), u2)(t) + 3b

∣∣D2u(t)
∣∣2 � 1

9b

∣∣u(t)
∣∣4 + |a|2

2b2

∣∣u(t)
∣∣2 + εC

(∣∣D5u(t)
∣∣2 + ∣∣u(t)

∣∣2)
which after integration and making use of (4.17) reads

b

t∫
0

∣∣D2u(s)
∣∣2

ds � C‖u0m‖2, (4.21)

where the constant C does not depend on ε.

Estimate V

Differentiating (4.5), which is possible due to (4.13), (4.16), multiplying the result by (1 + x)ut , after standard calculations
we get

1

2

d

dt

(
(1 + x), u2

t

)
(t) + (

(uDu)t , (1 + x)ut
)
(t) + a

2

∣∣Dut(t)
∣∣2 + 5b

2

(
(1 + x),

∣∣D2ut
∣∣2)

(t)

+ b

2

∣∣D2ut(0, t)
∣∣2 + 5ε

(
D5ut , D4ut

)
(t) + ε

(
(1 + x),

∣∣D5ut
∣∣2)

(t) = 0. (4.22)

Estimating the second term in the left-hand side, we find

I = (
(uDu)t , (1 + x)ut

)
(t) = −(

u, u2
t

)
(t) − (

uut , (1 + x)Dut
)
(t) � −max[0,1]

∣∣u(x, t)
∣∣∣∣ut(t)

∣∣2 − η
∣∣Dut(t)

∣∣2 − 1

η

(
u2, u2

t

)
(t)

� −η
∣∣Dut(t)

∣∣2 −
([

1 +
(

1

4
+ 1

η

)∣∣Du(t)
∣∣2

]
, u2

t

)
(t), ∀η > 0.

Substituting I into (4.22) and using the Ehrling inequality, we obtain

d

dt

(
(1 + x), u2

t

)
(t) + a

∣∣Dut(t)
∣∣2 + 5b

∣∣D2ut(t)
∣∣2 + ε

∣∣D5ut(t)
∣∣2 � η

∣∣Dut(t)
∣∣2 +

([
1 + εC +

(
1

4
+ 1

η

)∣∣Du(t)
∣∣2

]
, u2

t

)
(t).

(4.23)

We consider two cases:
(i) If a > 0, we take η = 1

2 a in (4.23) and after integration and making use of (4.20), we get

∣∣ut(t)
∣∣2 + ε

t∫
0

∣∣D5us(s)
∣∣2

ds + a

t∫
0

∣∣Dus(s)
∣∣2

ds + b

t∫
0

∣∣D2us(s)
∣∣2

ds � C
(‖u0m‖2

H5(0,1)
+ ε2‖u0m‖2

H10(0,1)

)
(4.24)

with the constant C independent of ε.
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(ii) If a � 0, then the same arguments that we have used to prove (4.21), show

∣∣ut(t)
∣∣2 + ε

t∫
0

∣∣D5us(s)
∣∣2

ds + b

t∫
0

∣∣Dus(s)
∣∣2

ds + b

t∫
0

∣∣D2us(s)
∣∣2

ds � C
(‖u0m‖2

H5(0,1)
+ ε2‖u0m‖2

H10(0,1)

)
. (4.25)

Estimate VI

Multiplying (4.5) by −D5u, we obtain

b
∣∣D5u(t)

∣∣2 + 1

2
ε
∣∣D7u(1, t)

∣∣2 �
∣∣(ut , D5u

)
(t) + (

uDu, D5u
)
(t) + a

(
D3u, D5u

)
(t)

∣∣. (4.26)

Exploiting the Ehrling inequality with an arbitrary η > 0, we get

I1 = a
(

D3u, D5u
)
(t) � |a|∣∣D5u(t)

∣∣∣∣D3u(t)
∣∣ � η

∣∣D5u(t)
∣∣2 + C(η)a2

∣∣u(t)
∣∣2

,

I2 = (
uDu, D5u

)
(t) �

∣∣D5u(t)
∣∣∥∥u(t)

∥∥
L4(0,1)

∥∥Du(t)
∥∥

L4(0,1)
,

I3 = (
ut , D5u

)
(t) � η

∣∣D5u(t)
∣∣2 + C(η)

∣∣ut(t)
∣∣2

.

Using the Gagliardo–Nirenberg inequality, we find

∥∥u(t)
∥∥

L4(0,1)
� C

∣∣D5u(t)
∣∣ 1

20
∣∣u(t)

∣∣ 19
20 ,

∥∥Du(t)
∥∥

L4(0,1)
� C

∣∣D5u(t)
∣∣ 1

4
∣∣u(t)

∣∣ 3
4 .

With this I2 for all η > 0 becomes

I2 � η
∣∣D5u(t)

∣∣2 + C(η)
∣∣u(t)

∣∣ 34
7 . (4.27)

Substituting I1 − I3 into (4.26) and setting η = b
6 , we come to the inequality:

b
∣∣D5u(t)

∣∣2 � C
{∣∣ut(t)

∣∣2 + ∣∣u(t)
∣∣2 + ∣∣u(t)

∣∣ 34
7
}
.

Making use of (4.25), (4.26), we find

b
∣∣D5uε(t)

∣∣2 � C
{

1 + ‖u0m‖2
H5(0,1)

+ ε2‖u0m‖2
H10(0,1)

}
. (4.28)

The constant in (4.28) does not depend on ε > 0.
For every ε ∈ (0,1] we have solvability of (4.5)–(4.8), moreover, the sequence of solutions uε(x, t) satisfies estimates

(4.17), (4.20), (4.21), (4.25), (4.26), (4.28) which are uniform in ε > 0. Whence, there exists a function u(x, t) and a subse-
quence {uε(x, t)} such that for all fixed m

uε → u weak star in L∞(
0, T ; H5(0,1)

)
,

uεt → ut weak star in L∞(
0, T ; L2(0,1)

) ∩ L2(0, T ; H2(0,1)
)
,

εD5uε → 0 weak star in L∞(
0, T ; L2(0,1)

)
.

It is clear that u(x, t) is a solution to (4.1)–(4.4).
Now directly from (4.1) u ∈ L2(0, T ; H7(0,1)). �

Remark 1. To prove solvability of (4.1)–(4.4), from the technical reasons we needed an excessive regularity of initial data
u0m ∈ H15(0,1). In reality, it is sufficient u0 ∈ H5(0,1). We approximate a function u(x): u(0) = Du(0) = u(1) = Du(1) =
D2u(1) = 0 by a sequence of functions u0m ∈ H15(0,1) satisfying boundary conditions (4.6), (4.7) and also

D10u0m(0) = D10u0m(1) = D11u0m(0) = D11u0m(1) = D12u0m(1) = 0.

Of course,

lim
m→∞‖u0 − u0m‖H5(0,1) = 0.

Such functions can be developed in series of eigenfunctions of problem (4.9) given by Proposition 2, see [4]. Passing to
the limit as m → ∞ in estimates (4.26), (4.28), we prove solvability of (4.1)–(4.4) for u0 ∈ H5(0,1) satisfying boundary
conditions (4.2), (4.3) as was claimed in Theorem 1. This completes the proof of the existence part of Theorem 1.
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4.1. Uniqueness

Let u1(x, t), u2(x, t) be two regular solutions to (4.1)–(4.4), then z = u1 − u2 is a solution to the following problem:

zt − bD5z + aD3z + 1

2
D

(
u2

1 − u2
2

) = 0, (4.29)

z(0, t) = Dz(0, t) = z(1, t) = Dz(1, t) = D2z(1, t) = 0, (4.30)

z(x,0) = 0. (4.31)

Multiplying (4.29) by (1 + x)z and integrating over (0,1), we obtain

1

2

d

dt

(
(1 + x), z2)(t) + 5b

2

∣∣D2z(t)
∣∣2 + b

2

∣∣D2z(0, t)
∣∣2 + 3a

2

∣∣Dz(t)
∣∣2 + 1

2

(
(1 + x)z, D

[
u2

1 − u2
2

])
(t) = 0. (4.32)

For all η > 0, we have

I1 = 3a

2

∣∣Dz(t)
∣∣2 � −η

∣∣D2z(t)
∣∣2 − 9a2

16η

∣∣z(t)∣∣2
,

I2 = 1

2

(
(1 + x)z, D

[
u2

1 − u2
2

])
(t) = 1

4

(
(1 + x)D(u1 + u2) − (u1 + u2), z2)(t) � −3

8

([
2 + ∣∣D2u1(t)

∣∣2 + ∣∣D2u2(t)
∣∣2]

, z2)(t).
Taking η = 1

2 b and substituting I1, I2 into (4.32), we get

d

dt

(
(1 + x), z2)(t) � C

{
1 + ∣∣Du1(t)

∣∣2 + ∣∣Du2(t)
∣∣2}(

(1 + x), z2)(t).
Because ui ∈ L2(0, T ; H2

0(0,1)), i = 1,2, then by the Gronwall’s lemma,
(
(1 + x), z2)(t) = 0 a.e. in (0, T ),

hence

z(x, t) = 0 in Q .

This proves uniqueness of a regular solution to (4.1)–(4.4) and completes the proof of Theorem 1. �
The exponential decay of the energy

We prove the exponential decay of the energy without restriction on a sign of the coefficient a.

Theorem 2. Let b > 0 and 35b + 9a − 8
3 ‖u0‖ = b0 > 0. Then for regular solutions of (4.1)–(4.4) the following inequality is valid:

∣∣u(t)
∣∣2 � 4‖u0‖2 exp(−κt),

where κ = b0
4 .

Proof. First we multiply (4.1) by u to get

d

dt

∣∣u(t)
∣∣2 + b

∣∣D2u(0, t)
∣∣2 = 0.

Since b > 0, this gives for all t > 0,

∣∣u(t)
∣∣2 � ‖u0‖2. (4.33)

To obtain more estimates, we consider the following scalar product:

(Lu, φu)(t) = 1

2

d

dt

(
φ, u2)(t) + (φuDu, u)(t) + 3a

2

(
Dφ, (Du)2)(t) − 1

2
a
(

D3φ, u2)(t) − 5b
(

D3φ, (Du)2)(t)
+ 5b

(
Dφ,

(
D2u

)2)
(t) + b

(
D5φ, u2)(t) + b

∣∣D2u(0, t)
∣∣2 = 0, (4.34)

where

φ = φ(x) = 1 + 4x − x3, x ∈ [0,1]. (4.35)
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It is easy to see that

φ(x) > 1, Dφ(x) � 1, D3φ(x) = −6, max[0,1] Dφ(x) = 4. (4.36)

Using (4.33), we estimate

I1 = (φuDu, u)(t) = −1

3

(
Dφ, u3)(t) � −1

3
max[0,1] Dφ‖u0‖

∣∣Du(t)
∣∣2

.

Substituting I1 into (4.34) and making use of (4.35), (4.36), we come to the inequality

d

dt

(
φ, u2)(t) +

([
3a + 30b − 8

3
‖u0‖

]
, (Du)2

)
(t) + 5b

∣∣D2u(t)
∣∣2 + 6a

∣∣u(t)
∣∣2 � 0. (4.37)

Because b > 0 and 35b + 9a − 8
3 ‖u0‖ > 0, then (4.37) can be rewritten as

d

dt

(
φ, u2)(t) +

[
35b + 9a − 8

3
‖u0‖

]∣∣u(t)
∣∣2 � 0.

Denoting 35b + 9a − 8
3 ‖u0‖ = b0, we get

d

dt

(
φ, u2)(t) + b0

4

(
φ, u2)(t) � 0.

Integration and (4.36) give∣∣u(t)
∣∣2 � 4‖u0‖2 exp(−κt)

where

κ = b0

4
.

This proves Theorem 2. �
5. KdV equation as a limit of the Kawahara equation

In considerations above we had no restrictions on a sign of the coefficient a, but the coefficient b had to be strictly
positive. Now we want to prove analogous results in the case b = 0, a > 0, i.e., for the KdV equation. Due to results of
Section 3, this is an equation of the type (3.1) with l = 1. In this case, by Lemma 6, we must put one condition at x = 0 and
two conditions at x = 1:

ut + uDu + aD3u = 0; x ∈ (0,1), t > 0, (5.1)

u(0, t) = u(1, t) = Du(1, t) = 0, t > 0, (5.2)

u(x,0) = u0(x), x ∈ (0,1). (5.3)

We prove the following result.

Lemma 8. Let a > 0 and u0 ∈ H3(0,1). Then for all finite T > 0 there exists a unique solution u(x, t):

u ∈ C
(
0, T ; H3(0,1)

) ∩ L2(0, T ; H5(0,1)
)
, ut ∈ L∞(

0, T ; L2(0,1)
)

to (5.1)–(5.3) which is a limit of solutions to (4.1)–(4.4) as b tends to 0.

Proof. First, passing to the limits as m → ∞, ε → 0 in estimates (4.20), (4.24), and combining the results, we obtain

∣∣ut(t)
∣∣2 + a

t∫
0

{∣∣Du(s)
∣∣2 + ∣∣Dus(s)

∣∣2}
ds + b

t∫
0

{∣∣D2u(s)
∣∣2 + ∣∣D2us(s)

∣∣2}
ds � C

(‖u0‖2
H3(0,1)

+ b2
∥∥D5u0

∥∥2)
,

where the constant C does not depend on b > 0. When b tends to 0, we get a sequence of solutions to (4.1)–(4.4) {ub(x, t)}
which uniformly in b > 0 satisfies the estimates:

∣∣ubt(t)
∣∣2 + a

t∫
0

{∣∣Dub(s)
∣∣2 + ∣∣Dubs(s)

∣∣2}
ds � C

(‖u0‖2
H3(0,1)

+ b2
∥∥D5u0

∥∥2)
, (5.4)

lim b‖ub‖C(0,T ;H2(0,1)) = 0. (5.5)

b→0
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It means that there exists a function u(x, t) such that

ub ⇀ u weak star in C
(
0, T ; H1(0,1)

)
,

ubt ⇀ ut weak star in L∞(
0, T ; L2(0,1)

)
.

Let v(x) be an arbitrary function from H3(0,1) such that

v(0) = D v(0) = D2 v(0) = v(1) = D v(1) = 0.

Multiplying (4.1) by v and integrating by parts, taking into account (4.2), (4.3), we get

(ubt , v)(t) + (ub Dub, v)(t) + a
(

Dub, D2 v
)
(t) + b

(
D2ub, D3 v

)
(t) = 0.

Making use of (5.4), (5.5), we can pass to the limit as b → 0 and obtain

(ut , v)(t) + (uDu, v)(t) + a
(

Du, D2 v
)
(t) = 0, a.e. in (0, T ),

which is valid for any v ∈ H2(0,1) such that v(0) = D v(0) = v(1) = 0. The last identity means that u(x, t) is a weak solution
to the following problem:

aD3u = F (x, t), x ∈ (0,1), t > 0, (5.6)

u(0, t) = u(1, t) = Du(1, t) = 0, t > 0, (5.7)

where

F (x, t) = −ut − uDu ∈ L∞(
0, T ; L2(0,1)

)
,

whence, taking into account (5.4):

u ∈ C
(
0, T ; H3(0,1)

) ∩ L2(0, T ; H4(0,1)
)
,

ut ∈ L∞(
0, T ; L2(0,1)

) ∩ L2(0, T ; H1
0(0,1)

)
.

This implies

ut + uDu + aD3u = 0, x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = Du(1, t) = 0, t > 0,

u(x) = u0(x).

Uniqueness and exponential decay of this solution is a known fact [22]. This proves Lemma 8. �
Remark 2. To use solvability of (4.1)–(4.4), we need u0 ∈ H5(0,1). Hence, to prove Lemma 8, we approximate u0 ∈ H3(0,1)

by a sequence of functions u0m ∈ H5(0,1). Passing to the limit as b → 0 in (5.4) at a fixed m and then passing to the limit
as m → ∞, we complete the proof of Lemma 8.

6. Kawahara equation with b < 0

For technical reasons, we consider in the domain Q − = (−1,0) × (0, T ) the following problem:

ut + uDxu + aD3
x u + bD5

x u = 0 in Q −, b > 0, (6.1)

u(−1, t) = Dxu(−1, t) = D2
x u(−1, t) = 0, t > 0, (6.2)

u(0, t) = Dxu(0, t) = 0, t > 0, (6.3)

u(x,0) = u0(x). (6.4)

Differently from the considerations above, now we set three conditions at the left boundary and two conditions at the right
boundary. Correctness of this problem also could be studied as had been made for (4.1)–(4.4), but is easier to change the
variables y = −x which gives

ut − uD yu − aD3
yu − bD5

yu = 0, in Q = (0,1) × (0, T ),

u(0, t) = D yu(0, t) = 0, t > 0,

u(1, t) = D yu(1, t) = D2
yu(1, t) = 0, t > 0,

u(y,0) = u0(−y).

This problem differs from (4.1)–(4.4) only by the signs of uDu and aD3u that did not play any important part in proofs of
solvability and stability. It means that all the results standing for (4.1)–(4.4) are valid also for (6.1)–(6.4) inclusive passage
to the limit as b → 0 for a < 0.
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