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For a collection of Markov chains the aggregated process, that is a process for which the transition rates 
are a mixture of the transition rates of the Markov chains in the collection, is introduced. A sufficient 

condition is given, called cross-balance, a generalization of global balance to a collection of processes, 

under which the equilibrium distribution of the aggregated process is shown to be the same mixture of 

the equilibrium distributions of the Markov chains in the collection. A number of examples are discussed 

including a construction method for constructing the equilibrium distribution. 

aggregated process * cross-balance * equilibrium distribution * collection of Markov chains 

1. Introduction 

Over the last decades considerable attention has been paid to the determination of 

equilibrium distributions of stochastic processes arising from queueing networks. 

However, most of this work considers product form equilibrium distributions only. 

The Jackson network (Jackson, 1957) was found to possess a product form solution. 

Since then, the class of networks that possess a product form equilibrium distribution 

has been extended considerably. As of today, this class is known to contain BCMP 

networks (Baskett et al., 1975), networks with blocking (cf. Hordijk and van Dijk, 

1983; Serfozo, 1989), networks with batch movements (cf. Henderson et al., 1990; 

Henderson and Taylor, 1990) and networks with batch movements and blocking 

(cf. Boucherie and van Dijk, 1990, Boucherie and van Dijk, 1991). Also, a lot of 

work has been done on understanding why a stochastic process possesses a product 

form equilibrium distribution. Kelly (1976) introduces the notion of quasi-reversi- 

bility, Walrand and Varaiya (1980) connect quasi-reversible queues, Whittle (1984) 

introduces weak coupling and Pollett (1986) connects reversible Markov processes 

to give an explanation of the existence of product form equilibrium distributions. 

At this moment, for a wide class of stochastic processes product form equilibrium 

distributions are proven to exist, however, the class of stochastic processes with a 

product form equilibrium distribution is a very restricted class. This paper aims to 

extend this class to a class with a more general form of equilibrium distribution. In 
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particular, we extend the class of stochastic processes with a single underlying 

transition structure leading to one product form equilibrium distribution to a class 

of stochastic processes with an equilibrium distribution that is a sum of product 

forms such as arising from processes which are subject to various underlying 

transition structures. We consider an amalgamation of stochastic processes each of 

which has an equilibrium distribution and provide a so-called cross-balance condi- 

tion such that the equilibrium distribution of this amalgamation is itself an amalga- 

mation of the equilibrium distributions of the underlying stochastic processes. 

A well-known result in the theory of stochastic processes is the following. Consider 

a Markov chain that can move according to K different sets of transition rates and 

chooses the kth with probability dk). Then, without any constraints on the transition 

rates of the process, the equilibrium distribution r is given by 

K 

r= c r(k)Qgk), 
(1.1) 

k=l 

where rCk’ . IS the equilibrium distribution for the process with the kth set of transition 

rates. However, this result is valid only if the process selects a set of transition rates 

at the start and always remains using this set. If the process can, independent of 

the previous or successive transitions, select upon each transition from a collection 

of transition rates via which the transition will be made, i.e., if the transition rates 

q are a mixture of the sets of transition rates 

q = 5 r(L) (k) 
9 9 (1.2) 

k=l 

where q (k) is the kth set of transition rates, then the equilibrium distribution will, 

in general, not be of the form (1.1) with r (k) the equilibrium distribution for the 

kth set of transition rates. This paper gives a sufficient condition on the transition 

rates q (k) for the aggregated process, that is the process with transition rates (1.2), 

to have an equilibrium distribution (1.1). This sufficient condition is cross-balance, 

a generalization of global balance to a collection of processes. It relates the transition 

rates qck’ for process k in the collection to the transition rates qck” for process k’ 
in the collection. 

Section 2 presents the model and main result of this paper. Section 3 gives some 

examples to the theory, in particular, Example 3.6 presents a construction method 

for constructing the equilibrium distribution for a stochastic process. This construc- 

tion method is based on cross-balance and divides the state space of the process 

in possibly overlapping state spaces for the processes in the collection. Finally, 

Section 4 gives some concluding remarks. 

2. Model 

Consider a collection of K stable, regular, continuous-time Markov chains, labelled 

k = 1,. . . , K, at finite or countable state space S. A state of a Markov chain in the 
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collection is denoted by G, fi E S. The transition rate from state ti to state 3’ for 

Markov chain k is denoted by qCk’(ti, fi’), k = 1, . . . , K. The irreducible set Vk’ for 

the Markov chain with transition rates q (k) is the set VCk’~ S at which the Markov 

chain is irreducible and at which there exists a unique equilibrium distribution 

r(k) k=l,..., K, that is 7~‘~‘={~‘~‘(~)(rr’~‘(~)>O, fin V”“, ~~‘“‘(ri)=O,fif V’“‘} 
is the unique solution to the global balance equations at S (cf. Kelly, 1979), 

,;,- { TP( $q’k’( ti, 3) - 7P( n’)q(Q( ii’, fi)} = 0, n E Vk’. (2.1) 

Note that (2.1) implies that the irreducible set V (k’ is a closed set, that is if a solution 

r(k) exists to (2.1) then it must be that qCk)(fi, ii’) = 0 if fi E VCk’, ii’@ VCk’, k = 1, . . , K. 

For a collection of Markov chains define the following process. 

Definition 2.1 (Aggregated process). Consider a collection of Markov chains with 

transition rates qCk), k = 1,. . . , K. The aggregated process with aggregation 

coefficients rCk) E R, the real numbers, 

ij ,(k)q’k’( n, 2’) 2 0, 
h=l 

is the Markov chain at state space S with transition rates q defined as 

q( n, 3) = ; r’“‘q’k’(5, ii’), 
k-l 

k=l,..., K, such that for all fi, ?i’ E S, fi # fi’, 

(2.2) 

ii, ?i’E s. (2.3) 

Remark 2.2 (Aggregation coejkients). Note that in the definition above it is not 

assumed that r(“a 0. Therefore, condition (2.2) is necessary for the transition rates 

q to be properly defined. If rCk’zO for all k then (2.2) is trivially satisfied. 

Remark 2.3 (Irreducible set). The irreducible set V c S of the aggregated process 

cannot be immediately obtained from the irreducible sets V’“’ of the processes in 

the collection. For example, consider a collection of two Markov chains such that 

V’“n V”‘# @I and V(‘) # V(‘). Let fi E V”’ and define a sequence of states 
- - - _ 
no,n~,...,~j-l,n, such that nj E V”’ and tijE V(“u V”‘,i=l,..., j-l. If 

q(‘)(fi;, &+,) > 0, i = 0,. . . ,j - 1, then the irreducible set of the aggregated process 

contains the states n,, . . . , ii_, which are not elements of the irreducible sets of the 

processes in the collection. This implies that, at least in some cases, V 3 lJ:=, VCL’. 
Also, the case where V c Uf=, VCk’ . IS possible. For example, consider the following 

collection of three Markov chains. Assume that q”‘= q”‘, If”‘= VC2’ 2 VC3’. Then 

the aggregated process with aggregation coefficients r(I) = 1, r(” = - 1, rC3) = 1 satisfies 

(2.2) and is given by q(fi, fi’) = qC3)(ii, fi’) with irreducible set V= V”‘c V”‘= 
LJ_:=, v”“. 

If we define qCk’( fi, fi’) = 0 if fi or fi’~‘ V (k’ then the irreducible set of the aggregated 

process is determined by the irreducible sets of the processes in the collection. 

However, this seems to be an unnecessary assumption. In the sequel we reconsider 

the problem of determining V when the notion of cross-balance is introduced. It 

will be shown that the irreducible set V is a subset of the union of the VCk’ if the 

collection satisfies cross-balance (see Lemma 2.8). 
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The remaining part of this section relates the irreducible set V and the equilibrium 

distribution 7~ of the aggregated process to the irreducible sets Vck’ and the equili- 

brium distributions rrCk) of the Markov chains in the collection. In order to avoid 

problems with the normalizing constant when deriving this relation we first consider 

invariant measures rather than equilibrium distributions. As a consequence of the 

assumption on the existence of z-“’ there exists an invariant measure at V’“’ , i.e., 

a set of non-negative numbers WI” = {m’“’ - (n), ti E V”“} that satisfies the global 

balance equations (2.1), for the processes in the collection, k = 1,. . , K. The 

following lemma gives a sufficient condition for the aggregated process to have an 

invariant measure m that is a sum of the invariant measures for the Markov chains 

in the collection. This sufficient condition will be interpreted in Remark 2.6. The 

irreducible set V of the aggregated process is not determined in this lemma. 

Lemma 2.4. Consider a collection of K Markov chains with transition rates qck), 

irreducible sets V’ k’ c S and invariant measures mck’, k = 1,. . . , K. Then the aggre- 

gated process with aggregation coeficients r’/‘), k = 1, . . , K, such that 

+k) m’“‘(ti) 20, ii E S, 
!,=I 

has an invariant measure m given by 

m(ii) = 5 r’k’m(k’(fi), fi E s, 
k=l 

(2.4) 

if for all k, k’, k, k’ = 1, . . . , K, the following relation holds for all ii E S, 

,z, {m’k’(ti)q’h”(fi, ii’)+ m’A”(A)q’h’(ii, ii’)} 

= ,z, {m’“‘( ii’)q”‘)( fi’, ii) + m(“‘( fi’)q’k’(fi’, Z)}. (2.5) 

Proof. It is sufficient to prove that m defined in (2.4) satisfies the global balance 

equations for the aggregated process for all fi E S, 

,z, {m(fi)q(fi, fi’) - m(ti’)q(fi’, i?)} = 0. (2.6) 

Substitution of (2.3) and (2.4) into the global balance equations gives 

,F,? {m(fi)s(fi, fi’) - m(fi’)q(fi’, c)l 

= ,s, kg, ,E, r’h’r’~“{m’A’(~)q’~“(~, ii’) - mc”(ri’)q’k”(ii’, fi)} 

=iki, ,i, Gk)rfk’) ( 1 {m’k’(fi)q’k”(ii, fi’)+mck”(fi)q’k’(ri, fi’)} 
n fn 

- ,z, {mCk;‘( ii’)q(“‘( ii’, ii) + mck’)( fi’)q’“‘( ii’, fi)} 
> 
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where the second equality is obtained via changing the order of summation and the 

last equality by using (2.5). 0 

Remark 2.5 (K = 2). If K = 2, Lemma 2.4 gives a necessary and sufficient condition 

for the existence of an invariant measure of the form (2.4) for the aggregated process. 

This can easily be seen by substitution of (2.3) and (2.4) in the global equations (2.6): 

(r(‘)+P)) c {m(Fi)q(fi, fi’)-m(fi’)q(fT, fi)} 
ti’fii 

= c ({r(‘)m(‘)(fi)+ ,(2’,(2)(,)}{,(‘)q(‘l(~, fi’)+ ,(‘)qQy,-, fi’)} 

n f ri 

_{,(I,m'l'(n')+ r(2)m(2)(nr)}{y(l)q(l)(n,, fi)+ r(2)qy$, S))) 

= C (+"r(') {m”‘(fi)q”‘(ti, n’)- r#‘(,_‘)q”‘(fi’, i?)} 
fi’#A 

+ ~cl~~'"'{m"'(n)qi2'(~, fit)+ m"'(n)q"'(n, $) 

_ m("(fi')q'2'(fi', fi)- m'2'(fj')q"'(fi', fi)) 

+ rc2'Yc2'{m'2'(n)q'2'(n, C')- mc2'($)q'2'(fi', fi)}) 

= r(“rc2) ,F, {m’“(fi)q”‘(Ft, fi’)+ mC2)(fi)q”‘(fi, ti’) 

- m(“(fi’)q’ytj’, fi) - myfi’)qyfi’, fi)}, 

where the last equality is obtained by using global balance for both Markov chains 

separately. This implies that global balance for the aggregated process is equivalent 

to (2.5). 

Remark 2.6 (Interprefatiorz of (2.5)). (2.5) is a technical relation. However, as can 

be seen from Remark 2.5, there is an obvious way to interpret this relation. When 

we add the global equations for processes k and k’to (2.5) we obtain after rearranging 

terms 

c {(m ‘k)( n> + rntk’)( n))(q”“( 5, Z’) + q’h”( Fi, IT))} 
n 5+n 

=,x, WkYfi’)+m (k’)( fi’))( qy 3, 5) + q’““( ti’, ti))}. 

Under the assumptions of Lemma 2.4 this relation is equivalent to (2.5). Therefore, 

(2.5) expresses that for all k, k’, WI’“‘+ m (“’ is an invariant measure for the process 

with transition rates qCk’+ q”“. 

As can be seen from Remark 2.5, (2.5) gives a general condition for the existence 

of an invariant measure m for the aggregated process. However, (2.5) seems to be 

rather a complicated condition to verify. Therefore, in the following definition we 

give a more practical form of balance, so-called cross-balance, which implies (2.5). 
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In the definition below we do not make any assumptions on the irreducible set 

of the processes in the collection. We start afresh with a collection of processes 

with transition rates qck), k = 1, . . . , K, at state space S. If a collection satisfies 

cross-balance, the irreducible sets V (‘I of the processes are determined and also, 

as can be seen from Lemma 2.8, the irreducible set V of the aggregated process is 

determined by the irreducible sets V (k) of the processes in the collection. 

Definition 2.7 (Cross-balance). Consider a collection of Markov chains with transi- 

tion rates qck), k= 1,. . . , K. If there exists a collection of measures mck) = 

{r,~‘~‘(n), n E S}, k = 1, . . . , K, such that for all k, k’, k, k’ = 1, . . . , K, and for all fi E S, 

(2.7) 

then the collection of Markov chains satisfies cross-balance with measures VI(~), 

k=l,...,K. 

Note that in the definition above it is not assumed that the measures m”’ are 

invariant measures for the processes in the collection. However, since (2.7) must 

hold for all k, k’, for k = k’ this implies that mck) is an invariant measure for 

process k. This implies that the irreducible sets V (k) of the processes in the collection 

are determined by cross-balance also. Therefore, cross-balance is a generalization 

of global balance to collections of processes. 

Based on the assumptions made on the uniqueness of the equilibrium distributions, 

the following lemma reduces the irreducible set of the aggregated process to the 

union of the irreducible sets of the processes in the collection. 

Lemma 2.8. Consider a collection of Markov chains with transition rates qck’, irreducible 

sets Vck’ and unique equilibrium distributions QT’~’ at Vck’. Then, if there exists a set 

of constants cck’ > 0, k = 1, . . . , K, such that the collection satisfies cross-balance with 

measures c (k)~(k) k = 1, . . . , 
out of the set V =‘U,“_, 

K, then the aggregated process cannot have transitions 

Vck’ , i.e., for all k it must be the case that if ii E V and ti’~! V 

then qck)(fi, ii’) = 0. 

Proof. Let &E V, say &E V’“~)‘, and fi, g V, then rr(ko)(fiO) > 0 and nck’(fi,) = 0 for 

all k, k = 1,. . . , K. Assume that q(&, fil) > 0, then for some k, say k,, we must have 

that q’kl’( fi,, ti,) > 0. Now consider cross-balance for k0 and k, at ii,: 

c ic %)&k,)( ~,)q”J( fi, , fi’) - CWTW( fiyq”G(fi’, fil)} 
fi’ffi, 

=- c C(k,,)~(ko)(nl)q(k,)(~f, fi,) 
I?‘# ti, 

s -C(kJ&)( ii(Jqy ii,, ii,) < 0, 

which is in contradiction with the assumption that the collection satisfies cross- 

balance. 0 
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In this paper we consider collections of Markov chains satisfying cross-balance 

only. Therefore, without loss of generality, we may now assume that the initial 

distribution of the aggregated process is such that with probability 1 the process starts 

at V=lJ,“_, Vk’. 

The following theorem states the main result of this paper. In this theorem the 

equilibrium distribution of the aggregated process is related to the equilibrium 

distributions of the processes in the collection. 

Theorem 2.9 (Main resuft). Consider a collection of Markov chains with transition 

rates qck), irreducible sets V” ‘, and unique equilibrium distributions rrck) at V’“‘, 

k=l,..., K. If there exists a set of constants cck’> 0, k = 1,. . . , K, such that the 

collection satisjies cross-balance with measures cCk)rrCk), k = 1, . . . , K, then the aggre- 

gated process with aggregation coeflicients rck) such that 

: r’k’c’k’= C, C>O, (2.8) 
k=l 

has an equilibrium distribution 7~ at irreducible set V = U,“_, V’k’ given by 

1 K 
r(Z) =C T r(kic(k)r(k)( n), tiE V (2.9) 

k 1 

Proof. By Lemma 2.8, the irreducible set of the aggregated process is given by V 

as defined in the theorem. It is sufficient to prove that 7~ defined in (2.9) is a 

probability distribution at V and satisfies the global balance equations (2.6). 

Assume that for some ii, GT(&,) < 0. Then (2.2) and cross-balance imply 

O= i #k;) c {c(k’,(h,(n,)q’““(n~, fit) _ C(k’,,ir’““(~‘)q’k)(~~, fi,)) 
k=l ri’f &, 

= 

,‘%,, {k!, r 

ck,,ck,~(k)(n,)q’k’)(~~, fit) _cCk’,T’k”(tiy ; r(k’q’k’(n’, no) 

k=I 

= ,,;,,, { C7T( n”)q’L”( ii,, fi’) - C’k”Trck’)( ri’)q(fi’, ti,,)} < 0. 

Thus, n( i?) 3 0 for all fi E V. Summation of r yields 

,.U)cW~(W(n) =A ; rCk)c(k) 1 ,#k’(n) = I, 
fit v L k-1 nc” 

which implies 0 6 n(n) s 1 for all n E V and n(V) = 1. Now consider 

of mutually exclusive events E, G S then, since for all k r(k) is a 

distribution 

a sequence 

probability 

=L ; r(k)C(k)r(k’ 

c k=l 

Note that (2.7) implies (2.5). Now apply Lemma 2.4 with rnck)= CUT. 0 
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Remark 2.10 (Interpretation). Consider a Markov chain that can start with K 

different sets of transition rates. If with probability r (‘-) the Markov chain starts with 

the set of transition rates qck’ with equilibrium distribution v(k) then the equilibrium 

distribution of this Markov chain is given by 

K 
rTT= c r(k)&k), 

k=, 

which is exactly the form we obtain by inserting cck)= 1, rck’> 0 such that 1, r(‘) = 1 

into Theorem 2.9. This form is obvious when we select once and for all a process 

with corresponding transition rates in advance. In contrast, the aggregated process 

presented here allows to select from a collection of transition rates qtk’ at any 

transition. With probability rck) it selects transition rate q (k) for a particular transition, 

independent of the previous or successive transitions. In this case the above form 

is no longer obvious. For the process to have this form for the equilibrium distribution 

there will be some restrictions on the transition rates qck’. These conditions are 

given by cross-balance. 

Remark 2.11 (Aggregation coejicients rck) and coeficients cck)). The coefhcients cck’ 

introduced in the main result are not essential for the theory, for example with 

cck)= 1 Theorem 2.9 remains valid. In the applications, however, these coefficients 

play a very important role. In many cases a collection of Markov chains satisfies 

cross-balance for a special choice of the cck) only (cf. Examples 3.2, 3.3). In some 

applications the coefficients c(” will replace the normalizing constant and will be 

chosen such that at the union of the irreducible sets of the processes in the collection 

the invariant measures for the processes are the same (cf. Examples 3.5, 3.6). 

In the main result above the aggregation coefficients are not necessarily positive, 

for example see Remark 2.3 and Example 3.6. Note that the aggregation coefficients 

may be chosen such that C = 1. This can, without loss of generality, be obtained 

by replacing r’k’:= r(‘) /C. Note, however, that (2.9) does not express a mixture of 

the distributions v . (k) This would be the case if rlk) > 0 for all k, which in the general 

setting is not necessary. 

Remark 2.12 (Uniqueness of T). Although the initial condition of the aggregated 

process is such that with probability 1 the process starts at U,“=, Vck’, the aggregated 

process is not necessarily irreducible, and thus, the equilibrium distribution of the 
aggregated process is not necessarily unique. In general, conditions on the processes 

in the collection and the aggregation coefficients which guarantee that the equilibrium 

distribution of the aggregated process is unique are hard to give. These conditions 

will depend on the specific form of the transition rates (cf. Examples 3.1 and 3.2). 

However, in some cases general conditions are possible. For example, in each of 

the following two cases it can easily be verified that the equilibrium distribution of 

the aggregated process is unique. 
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(1) If r(” > 0 for all k and the irreducible sets are such that 

V”‘n V(‘+‘)#fl, i=l,..., K-l. 

(2) If the irreducible sets are such that 

V”‘f? V(;+‘l#(d, i=l,..., K-l, 

V”‘\{V”-l’uV’i+“}#~, i=2,...,K-1. 

3. Examples 

This section gives some examples of collections of processes that satisfy cross- 

balance. The aim of this section is to illustrate some applications, such as the 

construction method for the equilibrium distribution in Example 3.6, and to give 

some examples of the implications of cross-balance on the transition rates of the 

processes in the collection. These examples show that the notion of cross-balance 

unifies various known special situations and leads to possible new examples. First, 

in Example 3.1, we consider a standard simple example that can directly be incorpor- 

ated in the theory. This example combined with Example 3.2 shows that the 

uniqueness of the equilibrium distribution of the aggregated process depends on 

the specific form of the transition rates of the processes in the collection. In particular, 

it depends on the transition rates between the irreducible sets of the processes in 

the collection. Examples 3.3 and 3.4 consider some well-known processes from the 

literature. In Example 3.3 we consider the truncated process, and in Example 3.4 

we show that a process and its time-reversed process satisfy cross-balance. Example 

3.5 gives a novel example. In this example two processes are combined into one 

aggregated process. The implications on the transition rates of the two processes 

are worked out in detail as to illustrate the implications of cross-balance. In Example 

3.6 the approach is different. Here we start with a process with given transition rates 

and irreducible set. We construct a collection of processes such that the aggregated 

process has the same transition rates and irreducible set as the original process and 

we use this collection of processes to derive the equilibrium distribution of the 

original process. 

3.1. Disjoint irreducible sets; reducible aggregated process 

Consider a collection of K Markov chains at state space S with transition rates 

9 (k), irreducible sets V”’ and unique equilibrium distribution z-CA’ at VCk’, k = 

1,. . . , K. Assume that V”“n V’““= 0 for all k # k’ and define V = UC=, VCk’. If the 

transition rates qtkl, k=l,...,K,aresuchthat 

qfk’( ii, 9) = 0 if fir@ VCL’ or fi’~ Vtk’ and fi E V\ V”“, (3.1) 

the collection of Markov chains trivially satisfies cross-balance with measures 

n(‘), k = 1, . . . , K. The aggregated process cannot make any transitions between the 
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irreducible sets V (k) . Therefore 3 the aggregated process is reducible and has an 

equilibrium distribution 

7i-(ti)= f P#)(fi), fi E v, (3.2) 
k=l 

for arbitrary coefficients rCk’ > 0, C, rCk) = 1. 

The following example is of interest. Consider a closed queueing network consist- 

ing of J stations, labelled j = 1, . . . , J. The state space of the Markov chain represent- 

ing this queueing network is S = N ,‘. Let process k be the process with irreducible 
set V’“‘= {ti:fi=(n,,..., n,), Cl=, nj = k}, k = 1,. . . , K, and qCk’ be the transition 

rates of process k and rr (‘) the corresponding eq uilibrium distribution. This collection 

satisfies cross-balance with measures r (k) The equilibrium distribution of the . 

aggregated process is given by (3.2), where rck) represents the probability that the 

queueing network starts with k jobs. An example similar to this example is given 

in Walrand (1988, p. 6). 

3.2. Disjoint irreducible sets; irreducible aggregated process 

The essential assumption in the example above is not that the irreducible sets of 

the processes in the collection are disjoint, but that the aggregated process cannot 

make any transitions between the irreducible sets of the processes in the collection. 

For example, consider a collection of 2 Markov chains with transition rates q”‘, q’“, 

irreducible set V”‘, V”’ and unique equilibrium distribution rr(r’ at V(l), rC2) 

at V”‘. Assume that V”‘n V’*‘- -8. Let the transition rates be as in (3.1) but add 

for fixed 17, E If(‘), ii,~ VC2’, 

q(‘)(ii2,ti,)=a,>0, q’2’(n,,n2)=a2>0. 

Then the collection satisfies cross-balance with measures 

m Cl)_ a1 (1) 
-m=> m 

(2) = A ~ (2) 
TP(fi,) . 

The aggregated process with aggregation coefficients r(l), r(‘) > 0 has a unique 

equilibrium distribution rr at V= V’“u VC2’ given by 

?T(n) = 
1 

r”)a,/7r”‘(ti,)+ rC2)a2/7rC2)(ii2) ( 
r(‘)_ 

7111Y;n,) v “‘(fi)+r”‘* 7r c*‘(n)). 

3.3. Truncation 

Consider a Markov chain with transition rates q(l), irreducible set V(l) and unique 

equilibrium distribution rr”) at V(l). Assume that there exists a set V”’ c V(l) such 

that for each state in V”’ separately the rate out of VC2) is balanced by the rate into 

VC2) i e. for all fi E VC2’ 3 . 9 
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Then the truncated process with transition rates q”’ defined as 

qC2’( ii, ii’) = 
q”‘(ri, E’), if ii’E V(‘), 
o 

9 otherwise, 

has an equuilbrium distribution r(2) at Vf2’ defined by 

d”(Z) 
,(2)(,-) =Cnc”(2, *'ll(q 

The collection q’“, q”’ satisfies cross-balance with measures 

m’l’ = &I) M(2) = p 
1 T”‘(E). 

no “(2, 

3.4. Time reversal 

Consider a Markov chain with transition rates q(l), irreducible set V and unique 

equilibrium distribution n”‘. In reversed time, the Markov chain has the same 

equilibrium distribution r(2) = 7~~‘) at irreducible set V. The transition rates q’“’ 

of the time-reversed process are defined as the set of numbers that satisfies 

(cf. Kelly, 1979) 

#‘(ti)q”‘(fi, 6’) = &“(fi’)q’2’($, fi). (3.3) 

By summation of (3.3) one directly verifies that the collection of a process and its 

time-reversed process satisfies cross-balance with measures m’” = r(l), mC2) = n(2) 

and the aggregated process has equilibrium distribution n = nTT(“. 

An intuitive interpretation of the aggregated process with aggregation coefficients 
rCl) 

,r ‘2) is the following. For process q(” the time passes by at rate 1, therefore for 

the process with transition rates r”‘q”’ time passes at rate r(l). For the time-reversed 

process with rates qC2’ time passes at rate -1, therefore for the process with rates 

rC2’q”’ time passes at rate -r”). For the aggregated process time passes at rate 
r( 1) -r(‘) but since the process is stationary the speed at which time passes does 

not play’a role in determining the equilibrium distribution. Therefore, the process 

for which time passes at rate r(l)- r”’ has the same equilibrium distribution as the 

process for which time passes at rate 1. 

3.5. Nearly disjoint irreducible sets 

In this example we consider a collection of 2 processes. We will modify the transition 

rates of these processes such that the collection satisfies cross-balance under the 

restriction that the equilibrium distributions of the processes in the collection remain 

unchanged. To this end, note that for a process with transition rates qCk’, irreducible 

set V’“’ and equilibrium distribution v(k) at VCk’ the transition rates qCk)(ii, ii’) for 

ii @ V”” can be arbitrarily changed without affecting the equilibrium distribution r(k). 

Consider a collection of 2 processes derived from a queueing network, that is, 

the transitions allowed for the processes are those allowed in a queueing network 



106 R.J. Boucherie / Aggregation of Markov chains 

only, i.e., a job is allowed to enter the system at station i corresponding to a transition 

from state ii to state Z + ei, a job is allowed to leave station i and route to station 

j corresponding to a transition from state fi to state ti - e, + e, and a job is allowed 

to leave the system from station i corresponding to a transition from state fi to 

state fi - ei. The rates at which jobs enter or leave the stations is given by 4(k) for 

process k, k = 1,2. The transition rates qCk’ for the processes are then given by 

q”)(n,n’)=~“‘(n,~‘)l(O~nl~JI”), if$=ti+e,,Z-e,,fi-ej+ej, 

(3.4) 
q’2’(ri,~‘)=~‘2’(r?,n’)l(JI”~nl~J12’), if$=ti+e,,ti-e,,E-e,+e,. 

Then the irreducible sets of the processes in the collection are given by 

V”‘={n:O~ni~Jl”,i=l )..., N}, 

V2’={fi: J!“GnniGJ\2’, i= 1,. . .) Iv}. 

Assume that equilibrium distributions n”) and z-‘*) exist, i.e., r”‘, rTT(‘) satisfy 

~,,,ili-Ly,ll{~‘*‘(n)~‘“‘(n,~‘)-~’~’(~’)~’k’(ii’,~)}=0, k=l,2. c (3.5) 

Then, for some arbitrary coefficients c(I), cl’), the collection satisfies cross-balance 

with measures rn (‘I = c(~)T’~’ if and only if the transition rates qCk)(fi, ~7’) for fi CZ V’“’ 

are defined as 

q”)(&+ ei, ti,) = 
c(‘)d’)( fi”) 

c(*)7rC2)( tiO+ e,) 
q’2’(fi,, fi,+e,), i= l,..., N, (3.6a) 

q(‘)(ri, fi’) = 0, if fi’E V’*‘\ V”‘, (3.6b) 

c?7iJ2)( fro) 
4(*)(%-e,, 6J = c(l) (,) _ rr (no_e,) q”)(fi,, h-e,), i=l,.. ., N (3.6~) 

q(*)(fi, fi’)=O, if fi’E V”‘\V’*‘, (3.6d) 

where e, denotes the ith unit vector, i.e., the vector with ith entry 1 and all other 

entries 0 and fi, = (JI”, . . . , JG’). Note that (3.6a) and (3.6~) are well-defined since 

the equilibrium distributions rrCk) are known. (3.6a), (3.6b) determine the transition 

rates of process 1 at Vc2’ and (3.6c), (3.6d) determine the transition rates of process 

2 at V' “. 
We will now show that the collection of processes with transition rates defined 

in (3.4) satisfies cross-balance with measures m(k) = cCk)rCk), k = 1,2, if and only if 

the transition rates are modified as given in (3.6a)-(3.6d). To this end, first note 

that we have to check (2.7) for k # k’ only, since for k = k’ (2.7) is already given 

by (3.5). If k = 1, k’= 2 and fi E V’“\ V’” we have that m”‘(C) = 0 and (2.7) reduces 

to 

Cm (2’( fi’)q”‘( fi’, fi) = 0. 
*‘#Pi 
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Since m”)( fi’) > 0 for all ?I’E V ‘2) this relation can hold if and only if (3&b) holds. 

For k = 2, k’ = 1 we find that cross-balance can hold for fi E V”‘\ V”’ if and only if 

(3.6d) holds. If k = 1, k’=2 and fi E V”‘\V”’ we obtain by using (3.6d), 

,;, {m”‘(n)q’2’(n, 8) - d2’(n’)q”‘(n’, fi)} 

= ,,A,,, {m”‘(n)q’yn, fi’) - rd2’(n’)q”‘(n’, ii)} 

= m(“(ri)q’2’(fi, n,,)-m’2’(n,)q”‘(n,,, ii), 

1 

if Z = 5,-e;, 

0, otherwise, 

where the last equality is obtained by observing that the process can make transitions 

allowed in (3.4) only. This implies that cross-balance can hold if and only if (3.6~) 

holds. The argument for (3.6a) can be given in a similar way. It remains to 

that with the transition rates defined in (3.6a)-(3.6d) the collection satisfies 

balance for fi = fi,. For k = 1, k’ = 2 and fi = fi, we obtain 

,,;,(, {m”‘(fi,,)q’2’(&, c’) - m’2’(fi’)q”‘(~‘, G)1 

= ,,C:CZ, {m”‘(&Jq”‘(fi,, fi’)- m’2’(fi’)q”‘(ti’, ii,)} 

check 

cross- 

= ,g, {m”‘(fiJq”‘(fi0, n,,+e,)-m’~‘(n,,+e;)q”‘(n,+e,, Q>=O, 

where the last equality is obtained by using (3.6a). For k = 2, k’= 1 and fi = & we 

find that (2.7) holds from (3.6~). 

The aggregated process with aggregation coefficients r(l) = u, r(‘) = 1 - r, 0 d r s 1 

has a unique equilibrium distribution at V= V”‘u Vt2’ given by 

~(n)=u~“‘(~)+(l-r)~“‘(n), nE v”‘U V2’. 

Remark 3.1 (Discussion). In this example, the irreducible sets V(‘), V”’ intersect in 

exactly one point. This is crucial for the simple analysis presented above. For 

example, there are no restrictions on the transition q’k’ at V”“, which, in general, 

will be the case. However, this example can be generalized to irreducible sets that 

intersect in several points. The analyses will become more complex and also there 

will be restrictions on the transition rates of the processes in the collection. However, 

this example does reflect some of the key features of a collection that satisfies 

cross-balance: 

l For 3’~’ VCk’ cross-balance implies that q’“‘( fi, 3) = 0 for all fi. 

l Relation (2.7) in the definition of cross-balance may be replaced by: For all 

?i E V’k’, 

n’fri FE “CL,’ irn 
(k’(fi)q(k’)(n, fi’) _ m (k”(fif)q’h)(fi’, fi)} = 0. 
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To illustrate the implications of (3.6a) and (3.6~) on the transition rates of the 

aggregated process, consider the following explicit example, where each process is 

a queueing network consisting of single-server queues with Poisson arrivals and 

state-independent routing. Let Jt2’ = ~0, i = 1, . . . , TV, and 

APOi 9 if fi’ = ii + ei, 

4(% fi’) = PiPtj9 iffi’=ti-e,+e,, 

LLiPiO 3 if ti’ = ii - ei. 

Furthermore, define the transition rates for process 1 and 2 as 

f$(2)( 3, ii’) = C#J( fi, ii’), 

+“‘(?i,fi’)=~$(ti,fi’), ifn,<Ji”, i=l,..., N, 

4”‘(fi,ti-e,+e,)=$(fi,fi-e,+ej), ifn,=JI”, n,<Jj”, 

~$“‘(ti,ii+q)=Ap~~‘, ifn,=Jj”, nj<Jj”, 

cS(‘)(ri+ e;, ?i) = pjP:A’ 9 if ni =.I!‘), n, CJj”, 

where p(l) will be chosen such that process 1 is reversible at the boundary. With 

{x},“=, the solution of the traffic equations 

Yi = hPOt + Z YjPjl7 i=l,..., N, 
j=l 

and pi:‘, pi:’ such that Ap&’ = pjp$), j = 1, . . . , N, both process 1 and 2 have a 

unique product form equilibrium distribution 

1 
(k)__ m 7r - c(k) ’ 

where m is given by 

m(fi)= E ri , 

0 

"I 

i=l Pi 

and l/cCk’ is the normalizing constant for process k. (3.6a), (3.6~) give the following 

relations for the transition rates. 

q”‘(fio+ei, iio)=~ihpo,, 
Yi 

(3.7a) 

pyfi _-, fi)=*X (.I) 0 !, 0 *PPO. (3.7b) 

If the transition rates satisfy these equations then the equilibrium distribution of 
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the aggregated process with aggregation coefficients r(I), r”) is given by 

i 

r(l) N 
YI 

rI (3 
“8 

r(“c(“+ pp i=l pi ’ 
if 6 E V”‘\ V”‘, 

if fi E V2’\ V”‘. 

(3.8) 

Interpretation 3.2. Note that, although the equilibrium distributions of the processes 

in the collection are of product form, the equilibrium distribution of the aggregated 

process is not of product form since the ‘normalizing constants’ are not the same 

for all states. 

The transition rates given in (3.7a), (3.7b) seem to have a strange form. However, 

they can be rewritten as 

q”‘(fi,+ ei, fi,) = puipFO, 

q”‘( n, - ei, fi,) = Ap;;’ ) 

where p* are the transition probabilities of the time-reversed process for process 2. 

Thus, (3.7a) represents a departure from the network and (3.7b) represents an arrival 

to the network. The transition rates of the aggregated process are given by 

r”‘C$(n, E’), if Z’E V”‘\V2’, 

q(fi, ii’) = 
/_l (P’p~+ Pp ) 
~;r”‘p:,j~+r’?‘p~‘;, 

iffi=ti,+ei, n’=n,, 

iffi=fi,-e,, ti’=n,, 

r’2’4(5, fi’), if fi’ E V2’\ V’“. 

The probability of leaving the system from state &,+e, is changed and also the 

probability of entering the system to state fiO is changed. The form of the transition 

rates of the aggregated process, however, is exactly the same as the form of the 

transition rates of the processes in the collection. 

3.6. Construction method 

In the previous example, the irreducible sets V”) and V2’ intersect in exactly one 

point. In that case, we were able to construct transition rates q”’ at V”’ and q”’ 

at V’” such that the collection satisfies cross-balance. In the case of identical 

invariant measures for both processes in the collection one would expect that the 

aggregated process allows the same invariant measure. However, as can be seen 

from (3.8) for the special case of product form invariant measures, this is not true. 

In this example, we extend the previous example to state spaces that intersect in 

several points. Also, in the case of identical invariant measures for the processes in 

the collection, we will show that it is possible to construct an aggregated process 
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such that the aggregated process allows the same invariant measure. Moreover, this 

example shows that for a given process, we can construct a collection of processes 

such that the aggregated process has the same transition rates as the original process. 

This implies that the equilibrium distribution for the original process is given by 

the equilibrium distribution of the aggregated process. Thus, this section gives a 

construction method for constructing the equilibrium distribution for a process via 

the equilibrium distributions for the processes in the collection. For simplicity, we 

restrict our attention to a Markov chain representing a two station queueing network. 

This example can be generalized to queueing networks with N queues (N 3 1). 

Consider a Markov chain representing a two station queueing network with 

transition rates 

1 

4(% fi’), if ii, iI’E V, 

q( n, ii’) = and E’ = fi + e,, ti’=fi-ei, fi’=?i-e,+e,, (3.9) 

0, otherwise, 

where V is given by 

We will now construct a collection of queueing networks that satisfies cross-balance 

such that the aggregated process has transition rates q as defined above and give 

the equilibrium distribution for the aggregated process and thus for the process 

with transition rates q explicitly. 

First, consider the following collection of 2 queueing networks with transition 

rates q (‘-) of network k defined by 

q”‘(ii, ii’) = q(3, ii’)l(OG n,, nI<J;), 

q’yn, ii’) = q(fi, ii’)l(J, - 1 s ni, n:). 

Then the irreducible sets of the networks in the collection are given 

V”‘={n: O<niGJi}, P’ = {?I: J, - 1 S n,}. 

by 

Assume that there exist invariant measures for these processes, i.e., some sets of 

non-negative numbers m(I), m’*’ that satisfy 

n,r~A,iV,Li{m’k’(n)q”‘(q ri’)-mck’(,_‘)q’k’(n’, ii)}=O, c k= 1,2. 

As can be seen from Figure 1, the state spaces V”’ and Vc2) intersect in exactly 

four points. In order to guarantee that the collection satisfies cross-balance we have 

to assume that q’“, q”’ satisfy the following relations at the intersection of the 

irreducible sets. In these relations the states are labelled as depicted in Figure 1, 

where, for example ti3 = (Jl - 1, J2), fi4 = (Jl, J2), iiT = (5, - 1, J2 - l), fi8 = (J,, J2 - 1). 

The first relation (3.10a) represents cross-balance for state rid, the second relation 
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fil0 

1 
611 

VW 
. 

Fig. 1. State spaces and labelling of states. 

(3.10b) represents cross-balance for state fi, and the third relation (3.10~) expresses 

that the total flow in the box consisting of fi,, ii,, ii,, fix is balanced. 

m”‘(fi,){q”‘(fi,, FQ+q”‘(il,, &)I 

= m”‘(n,)q’2’(n,, n4)+rP(n,)q”‘(fi,, ri‘$), (3.10a) 

m”‘(r?,){q”‘(n,, n3)+q’2’(n,, FQ) 

= m’yn,)q”‘(n,, n,)+m”‘(n,)q”‘(n,, n,), (3.10b) 

m”‘(ti3){q’2yn,, &) + qyn,, fi,) + qyn,, fix)} 

+m”‘(n‘$){q’2yfi4, &)fq”‘(fi,, fix)} 

+m”‘(n,){q(2’(fi,, n,)+q’yn,, &)} 

+m”‘(Q{q’2’(fi,, fi,)+q’2)(fi8, fi,)+q’2’(fig, fi7)) 

= d2’(n,){q”‘(n,, tQ+qq”‘(n,, n,)+q”‘(ti,, fig)} 

+m’2’(ri,){q”‘(&, fi,)-tq”‘(fi,, fix)} 

+m’yn,){q”‘(?7,, n,)+q”‘(n,, ri*)} 

+m’2’(~,){q”‘(~x, fQ+q”‘(fi,, n,)+q”‘(n,, n,)}. (3.1Oc) 

Furthermore, as in Example 3.5, we have to define the transition rates q”’ at V(‘) 

and qC2’ at V(‘) such that the collection satisfies cross-balance. Note that this does 
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not affect the invariant measures m (” To this end, by analogy with (3.6a) and . 

(3.6c), define the following transition rates. 

q”‘( IT,) ?Q = 
m”‘( n,){q’2’( fix, ii,) + qC2’( 33) n,)+q’2’(t73, fi,)+q’2’(fi,, fi8)} 

mC2’( fi,) 

_{m(2)(n,)q”)(n4, n,)+m’2’(n,)q”‘(fi,, n,)+rrP’(n,)q”‘(n,, rQ} 

mC2’( n,) 
9 

q”‘( ti,, ?Q = 
m”‘(Qq’2’(fi3, fid+m”‘(fiJd*‘(%, %J)_~~,~~~~ fi3j 

m'2'(iio) 
3 7 

q”‘( n, ) 34) = 

m(‘)( rQq’2’( &, ri’) 

m'2'(ii,) ’ 

q”‘( n,, ii4) = 
m”‘(C,)q’*‘(ii,, iis) 

m'2'(fi,) ’ 

q"'(fi,, fix)= 

m"'(Q{q'*'(ii,, fi,)+q"'(ri,, ii,)+q'2'(iig, ii,)+q'2'(ii,, fig)} 

m'*'(ii,) 

_{m'*'(fi,)q")(ri,, ii,)+m'2)(fi4)q(')(~4r ii,)+m'*'(ti,)q"'(&, f&J} 

m'2'(ii,) 
2 

q(')(fi,, ii,)= 

m"'(fi,)q'2'(ii,, ii,)+m"'(fi8)q'2'(iis, ii,) 

m'*'(ri,) 
-q('Yfi,, &), 

q'2'(fi,, ii3) = 
m'2)(ii,){q"'(fi,, fi,)+q"'(fi,, iiJ+q"'(fi,, &)+q"'(fi,, 63)) 

m"'(fi,) 

_(m”‘(ii,)q’2’(fi,, fi,)+m"'(ti,)q'2'(fi,, ii,)+m"'(fi,)q'2'(fi8, ii3)} 

m"'(ii,) 

9 

qyn,, ii,)= 
m(*‘( fi,)q"'(&, iiz)+ m'2'(ii,)q"'(ri,, ii2) 

m"'(ii,) 
-qC2)(C2, fix), 

qyn,, ii,)= 

m'*'(ii,)q"'(fi,, &) 

m"'(ii,) ’ 

q(2)(fi,,, ii,)= 

m'*'(ii,)q"'(fi,, file) 

m"'(ii,,) ' 

q(2)(ii,,, fig)= 
m'2'(ii,){q"'(ii,, fi,)+q"'(&, ri,)+q"'(&, fi,)+q"'(&, fi")} 

m(')(ii,,) 

_{m (')(fi,)q'2'(ii,, ii*)+ m"'(fi,)q'2'(ii,, ii,)+ m"'(fi,)q'2'(&, %)) 

m("(ii,,) 
9 

q(2)(fi,,, ii,)= 
m(2)(fi7)q(')(fi,, n,,)+m'2'(~x)q"'(n~, till) 

m"'(ii,,) 

-qyfi,,, fig). 
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The collection of processes with transition rates q(l), qC2’ as specified above satisfies 

cross-balance and the aggregated process with aggregation coefficients r”‘, r(*) has 

a unique equilibrium distribution rr at V given by 

where B is a normalizing constant. The transition rates of the aggregated process, 

however, are not equal to the transition rates of the original process (3.9). Therefore, 

we have to add another network to the collection to correct for this difference. To 

this end, define the process with transition rates q’j’ given by 

i 

qyri, fi’), if fi E V’*‘\ V(‘), 

qt31cn, .-,) = qc2)(fi, U, if 6 E V”‘\V’*‘, 

dfi, v, if fi, Z’E V’“n V”‘, 

(0, otherwise. 

The aggregated process with aggregation coefficients r”‘= 1, rC2’ = 1, r(j) = -1 has 

transition rates q as given in (3.9). Therefore, we have now constructed a collection 

of queueing networks such that the transition rates of the aggregated process equal 

the transition rates of the original process. Now we have to construct the equilibrium 

distribution for the aggregated process. To this end, assume that process 3 allows 

an invariant measure WI(~) at V”‘= V”) n Vt2’. As before, we can give general 

condition on q’“, qC2’, q”’ such that the collection satisfies cross-balance with 

measures m(“, 112’*), mt3’. Under these conditions we can then conclude the equili- 

brium distribution of the aggregated process and thus the equilibrium distribution 

of the original process. However, to illustrate the implications of these assumptions 

on the transition rates of the original process, we will consider a special case. Assume 

that for fi E V’“’ the invariant measures satisfy 

m”‘(n) = m’2’(n) = m’3)(fi) = m(n), 

Then it is obvious that under the assumptions previously made for q”’ and q”‘, 

without any further assumptions on q”‘, the collection satisfies cross-balance. The 

transition rates for the aggregated process with aggregation coefficients r(” = 1, 

rC2’ = 1, rC3’ = -1 are given in (3.9). Furthermore, the aggregated process has a unique 

equilibrium distribution x at V given by 

where B is a normalizing constant. 

In order to derive the equilibrium distribution of the aggregated process we only 

need the following assumption on the processes in the collection and thus on the 

original process. 

l There exists a measure m for the original process that satisfies the global balance 

equations at V ‘k) k = 1,2,3, i.e., for all 6 E V’k’ , and for k = 1,2,3, m is a solution 

to 

n,fA,il,t”‘“, {m(fi)s(fi, 6’) - m(fi’)q(fi’, fi)> = 0. c 
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The other assumptions made on the transition rates of the processes in the 

collection, i.e., (3.10a)-(3.10c) are implied by this assumption. (3.10a) is implied 

by global balance at fi4 for process 1, (3.IOb) by global balance at PI, for process 2, 

and (3.10~) is trivially satisfied since m”‘= rn(‘) and q”‘= q(‘) at Vc3’. 

4. Concluding remarks 

In this paper we have considered collections of Markov chains. For a collection of 

Markov chains we have introduced the aggregated process. Based on cross-balance 

we have shown that the equilibrium distribution for the aggregated process is a 

mixture of the equilibrium distributions of the processes in the collection. In the 

examples we have shown that collections such as a process and its truncated process 

or a process and its time-reversed process satisfy cross-balance. Also, for an explicit 

example, we have given a construction method for constructing the equilibrium 

distribution based on cross-balance. 

References 

F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, Open closed and mixed networks of queues 

with different classes of customers, J. Assoc. Comput. Mach. 22 (1975) 248-260. 

R.J. Boucherie and N.M. van Dijk, Spatial birth-death processes with multiple changes and applications 
to batch service networks and clustering processes, Adv. Appl. Probab. 22 (1990) 433-455. 

R.J. Boucherie and N.M. van Dijk, Product forms for queueing networks with state dependent multiple 

job transitions, Adv. Appl. Probab. 23 (1991) 152-187. 

W. Henderson, C.E.M. Pearce, P.G. Taylor and N.M. van Dijk, Closed queueing networks with batch 

services, Queueing Syst. 6 (1990j 59-70. 

W. Henderson and P.G. Taylor, Product form in networks of queues with batch arrivals and batch 

services, Queueing Syst. 6 (1990) 71-88. 

A. Hordijk and N.M. van Dijk, Networks of queues Part I: Job-local-balance and the adjoint process. 

Part II: General routing and service characteristics, Lecture notes in Control and Inform. Sci. No. 

60 (Springer, Berlin, 1983) pp. 158-205. 

J.R. Jackson, Networks of waiting lines, Oper. Res. 5 (1957) 518-521. 

F.P. Kelly, Networks of queues, Adv. Appl. Probab. 8 (1976) 416-432. 

F.P. Kelly, Reversibility and stochastic networks (Wiley, New York, 1979). 

P.K. Pollen, Connecting reversible Markov processes, Adv. Appl. Probab. 18 (1986) 880-900. 
R.F. Serfozo, Markovian network processes: congestion dependent routing and processing, Queueing 

Syst. 5 (1989) 5-36. 

J. Walrand, An Introduction to Queueing Networks (Prentice-Hall, Englewood Cliffs, NY, 1988). 

J. Walrand and P. Varaiya, Interconnections of Markov chains and quasi-reversible queueing networks, 
Stochastic Process. Appl. 10 (1980) 209-219. 

P. Whittle, Weak coupling in stochastic systems, Proc. Roy. Sot. London Ser. A 395 (1984) 141-151. 


