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We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with 
fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum 
solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with 
SL(2, R) × U (1)d−3 isometries which has vanishing SL(2, R) and constant U (1) charges. We construct 
an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In 
four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar 
Virasoro algebra, while in d > 4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely 
many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole 
entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor 
which depends upon a single periodic function of d − 3 angular variables associated with the U (1)

isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical 
description of extremal rotating black hole microstates.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Questions regarding black holes have been at the frontiers of 
astrophysics and high energy physics. On the theoretical side the 
possible microscopic origin of thermodynamical aspects of black 
holes [1], the information loss problem and its the recent develop-
ments [2], have been active research areas in the last forty years. 
These questions are usually regarded as test grounds for, and win-
dows to, models of quantum gravity. On the observational side, 
and with the advance in X-ray astronomy (see e.g. [3]), we now 
have several approved candidates of black holes in a wide range 
of masses and spins. Extremal spinning black holes, namely black 
holes with maximum possible spin for a given mass, are an im-
portant special class of black holes to study. Remarkably, several 
near-extremal Kerr black holes have been observationally identi-
fied [4]. In the extremal limit, the Hawking temperature vanishes 
and very close to the horizon one finds a Near-Horizon Extremal 
Geometry (NHEG) with enhanced SL(2, R) × U (1) isometry where 
the dynamics is decoupled from the region far from the black hole 
horizon [5]. The Kerr NHEG can therefore be an appealing starting 
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point for analytic modeling of physical phenomena around astro-
physical near-extreme rotating black holes.

Earlier analyses have established uniqueness of the Kerr NHEG 
as the 4d Einstein vacuum solution with SL(2, R) × U (1) isome-
try [6]. This uniqueness has been extended to more general solu-
tions to pure Einstein vacuum gravity (with or without cosmologi-
cal constant) in d dimensions with SL(2, R) ×U (1)d−3 isometry [7]. 
The latter is the class of solutions we focus on in this work. The 
metric has the general form

ds2 = �(θ)
[

ds2
2 + dθ2 + γi j(θ)(dϕ i + kirdt)(dϕ j + k jrdt)

]
(1)

where ds2
2 = −r2dt2 + dr2

r2 and i, j = 1, 2, · · · , d − 3. We require 
the geometry to be smooth and Lorentzian. The latter implies 
� > 0 and the eigenvalues of γi j to be nonnegative. We work with 
Poincaré coordinates for AdS2 since these coordinates appear nat-
urally in the near-horizon limit and are preferred to match the 
region outside the near-horizon region. Our results, as we discuss, 
are independent of this choice.

The solution (1) is specified by d −3 constant parameters �k =
(k1, . . . , kd−3) which are thermodynamically conjugate to angular 
momenta �J . One can associate an entropy S to this geometry 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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which is a Noether–Wald [8] conserved charge [9] and obeys the 
entropy law [9,10]

S

2π
≡ 1

8πG

∮
H

dθ d �ϕ�
d−2

2
√

detγ = �k · �J . (2)

Here, H denotes codimension two, constant arbitrary t, r surfaces. 
Such H’s form infinitely many bifurcation surfaces of the geome-
try (1), as detailed in [9,11].

There have been many proposals for understanding the pos-
sible microscopic origin of the extremal black hole entropy. One 
can recognize two classes of such proposals. In the top-down ap-
proach, the extremal black hole is embedded into a consistent 
quantum gravity such as string theory. Microstates of some classes 
of supersymmetric black holes can then be counted microscopi-
cally, see e.g. [12,13]. In the bottom-up approach, one builds upon 
classical and semiclassical properties of not necessarily supersym-
metric black holes and then infer a possible holographic theory, 
inspired by the AdS/CFT correspondence [14], which allows to ef-
fectively count the number of microstates, see e.g. [15,16]. Such an 
approach relies on the appearance of an AdS2 factor in the near-
horizon region and benefits from the universality of the attractor 
mechanism [17].

In this paper, we introduce the framework of a new kind of 
bottom-up proposal. We construct the NHEG phase space: the set 
of all geometries which are diffeomorphic to, but physically dis-
tinct from, (1). The distinction comes from conserved charges as-
sociated with each geometry in the phase space. The geometries 
in the phase space fall into representation of the NHEG algebra, 
the symmetry of the phase space realized as the Dirac bracket of 
the associated conserved charges. The symmetry algebra admits a 
central charge which is the black hole entropy. The existence of a 
symplectic structure, which we explicitly construct here, allows for 
a semiclassical quantization of the phase space. Here, we summa-
rize our results while details of the analysis will be given in [11]. 
We also comment on the quantization of the phase space and the 
relationship with the Kerr/CFT proposal [16] in the discussion sec-
tion.

1. Summary of the results

The NHEG phase space. Our main motivation for considering dif-
feomorphisms as the basis for the construction of our phase 
space comes from the absence of dynamical physical perturbations 
around the background as explicitly shown for vacuum four di-
mensional Einstein gravity in [18]. Since the main arguments of 
[18] rely on the existence of an AdS2 factor which appears in 
any dimension, we expect that these arguments extend to generic 
NHEG backgrounds. Moreover, assuming that perturbations are in-
variant under the 2d subgroup of SL(2, R) it was proved in [19]
that the “no dynamics” argument extends to generic near horizon 
extremal geometries which admit a background uniqueness theo-
rem [7]. Therefore, we are naturally led to construct the (semi)clas-
sical phase space of near-horizon extremal geometries with given 
angular momenta by the action of diffeomorphisms on (1). The 
vector field which, as we will outline, is appropriate for this pur-
pose is within the family χ [ε( �ϕ)]

χ [ε( �ϕ)] = ε( �ϕ)�k · �∂ϕ − �k · �∂ϕε (
1

r
∂t + r∂r), (3)

where ε( �ϕ) is an arbitrary periodic function of ϕ1, . . . ϕd−3. Under 
the xμ → xμ − χμ diffeomorphisms, metric (1) changes as gμν →
gμν + Lχ gμν , where Lχ is the Lie derivative along χ . The finite 
coordinate transformation built from (3) is x̄μ → xμ where
ϕ̄ i = ϕ i + ki F ( �ϕ), θ̄ = θ,

r̄ = re−�( �ϕ), t̄ = t − (e�( �ϕ) − 1)

r
, (4)

and � is defined through

e� = 1 + �k · �∂ϕ F ( �ϕ). (5)

With F ( �ϕ) = ε( �ϕ) infinitesimal, one recovers the infinitesimal dif-
feomorphism (3).

With the above we construct the phase space G[{F }] as the 
family of metrics obtained through (4), viewed as an active trans-
formation. G[{F }] is the collection of all metrics with arbitrary 
periodic function F ( �ϕ) explicitly given by

ds2 = �(θ)
[
− (σ − d�)2 +

(dr

r
− d�

)2

+ dθ2 + γi j(dϕ̃ i + kiσ )(dϕ̃ j + k jσ )
]
, (6)

where τ = t + 1
r and

σ = e−�rdτ + dr

r
, ϕ̃ i = ϕ i + ki(F − �) .

The background (1) is the F = 0 element in G[{F }]. Obtained from 
diffeomorphisms (4), G[{F }] contains metrics which are smooth 
everywhere. We will be defining the conserved charges through in-
tegration of (d −2)-forms on the constant t, r surfaces H which are 
bifurcation surfaces of Killing horizons of NHEG geometry [9,11].1

An interesting property of the phase space G[{F }] is that the in-
duced metric on surfaces H is smooth and has the same form for 
any constant t, r surface and for any configuration of the phase 
space,

ds2
H = �(θ)

[
dθ2 + γi j(θ)dϕ̃ i dϕ̃ j

]
. (7)

Given our construction above, one clearly sees that the SL(2, R) ×
U (1)d−3 isometries of the background extend to each metric of the 
form (6) in the phase space G[{F }]. Notice that the angular mo-
menta are not associated with ∂ϕi but rather with the background 
U (1) Killing vector fields transformed by the diffeomorphism (4)
[11]. This implies that the angular momenta, defined as Komar 
integrals, are constant over the phase space. Also, each bifurcate 
Killing horizon has a bifurcation surface with the same area as the 
background. In that sense, the phase space contains geometries of 
equal entropy S and angular momenta �J .

The most important property of the NHEG phase space is the 
existence of a finite and conserved symplectic structure, allow-
ing one to define the classical and semiclassical dynamics. The 
standard Lee–Wald symplectic structure [20] built from the Ein-
stein action diverges, as was noted in [21]. Nonetheless, as we 
will discuss below, there exist boundary terms which once added 
remove the divergences. The resulting symplectic form vanishes 
everywhere on-shell. In the analogous case of vacuum Einstein 
gravity in three dimensions, there is also no bulk dynamics while 
boundary conditions exist which enjoy two copies of the Virasoro 
algebra as symmetry algebra [22]. In that setting, it has been re-
cently shown in [23] that the symplectic form vanishes on-shell on 
the phase space [24], which implies that the symmetries act every-
where in the bulk spacetime. The situation is analogous here. Since 

1 We note that the Killing horizons of the NHEG geometry should not be confused 
with the Killing horizon of the extremal black hole whose near horizon limit leads 
to the NHEG. In particular note that the NHEG has infinitely many bifurcate Killing 
horizons [9,11], while the horizon of any extremal black hole is degenerate and 
non-bifurcate.
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the symplectic form is zero on-shell instead of at infinity only, the 
asymptotics is not a special place and symmetries act everywhere. 
We will hence refer to them as symplectic symmetries in contrast 
with asymptotic symmetries.

The NHEG symplectic symmetry algebra. Since the symplectic 
structure is nontrivial off-shell, one can define physical surface 
charges associated with the symplectic symmetries χ [ε�n], where 
ε�n = ei�n· �ϕ , ni ∈ Z. The generators of these charges is denoted by 
L�n . As is standard practice; e.g. see [25], once given the symplectic 
structure one can read off the classical algebra of charges and the 
corresponding central charge. This algebra can then be quantized 
by replacing the classical bracket by −ih̄ times the commutator. 
We hence obtain the quantum algebra of charges, the NHEG alge-
bra V̂�k,S :

[L �m, L�n] = �k · ( �m − �n)L �m+�n + S

2π
(�k · �m)3δ �m+�n,0 . (8)

The angular momenta J i and the entropy S obeying (2) commute 
with L�n and are therefore central elements of the algebra. The full 
symmetry algebra of the semiclassical phase space is then

SL(2,R) × U (1)d−3 × V̂�k,S . (9)

For the four dimensional Kerr case, k = 1 and one obtains the 
familiar Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12
m3δm+n,0 (10)

with central charge c = 12 S
2π = 12 J , which is the same algebra 

appearing in Kerr/CFT setup [16]. Note that despite the similarity, 
as we will discuss further at the end of this Letter, our construction 
has crucial conceptual and technical differences with Kerr/CFT.

In higher dimensions, the NHEG algebra (8) is a new infinite-
dimensional algebra in which the entropy appears as the central 
extension. For d > 4 the algebra contains infinitely many Virasoro 
subalgebras. To see the latter, one may focus on the generators 
L�n where �n = n�e for any given vector on the lattice �e, �e · �k �= 0. 
It is then readily seen that �n ≡ 1

�k·�e L�n form a Virasoro algebra 

of the form (10) with central extension c = 12S
2π

�k · �e. The entropy 
might then be written in the suggestive form S = π2

3 c T F .T . where 
T −1

F .T . = 2π�k · �e is the inverse Frolov–Thorne temperature, as re-
viewed in [26]. The algebra also contains many infinite dimen-
sional Abelian subalgebras spanned by generators of the form L�n
where �n = n�v and �v · �k = 0, under the condition that �v is on the 
lattice.

On the choice of symmetry generator. The background (1) enjoys 
SL(2, R) × U (1)d−3 isometry. Let us denote the SL(2, R) generators 
by ξ−, ξ0, ξ+

ξ− = ∂t , ξ0 = t∂t − r∂r,

ξ+ = 1

2
(t2 + 1

r2
)∂t − tr∂r − 1

r
�k · �∂ϕ. (11)

We also define the two vectors

η1 = 1

r
∂t , η2 = r∂r , (12)

and denote by ξ−, ξ0, ξ+, η1, η2 the push-forward of these vectors 
on a generic element of the phase space after acting with the dif-
feomorphism (4). Starting with the most general diffeomorphism 
generator χ , we highlight conditions singling out (3), which is the 
basic object both in construction of the phase space G[{F }] and the 
algebra (8). The following six requirements uniquely fix χ given 
in (3). These requirements are mainly aimed at providing a ra-
tionale for selecting the diffeomorphism which was found by an 
ansatz.

1. [χ, ξ−] = 0 = [χ, ξ0]. This condition implies

χ = 1

r
εt∂t + rεr∂r + εθ∂θ + �ε · �∂ϕ,

where all components are functions of θ, �ϕ . This implies that 
ξ− = ξ− and ξ0 = ξ0 are Killing isometries of each element of 
the phase space G[{F }].
An arbitrary t, r can be mapped onto any given constant t0, r0
under a ξ−, ξ0 transformation. ξ−, ξ0 invariance implies that 
the charges associated with geometries in the NHEG phase 
space G[{F }] are independent of the codimension two surface 
H (bifurcation horizons of the NHEG) over which the charges 
are defined.
We also comment that ηa are ξ−, ξ0 invariant; i.e. [ηa, ξb] =
0, a = 1, 2, b = −1, 0.

2. ∇μχμ = 0 and hence the volume element ε ,

ε = 1

d!
√−gεμ1μ2···μd dxμ1 ∧ dxμ2 ∧ · · · ∧ dxμd , (13)

is the same for all elements in G[{F }], i.e. δχ ε = 0.
3. δχ L = 0, where L = 1

16πG Rε is the Einstein–Hilbert Lagrangian 
d-form computed over the background ansatz (1) before im-
posing the equations of motion. The above two properties lead 
to εθ = 0 and εr = −�∂ϕ · �ε .

4. We fix εt = −b �∂ϕ · �ε . Upon further imposing b = 1, the diffeo-
morphism then preserves one of two expansion-free rotation-
free and shear-free null geodesic congruences which is labelled 
by the normal to constant v = t + 1

r surfaces (the other con-
gruence is related to u = t − 1

r ) [11,27].
5. We impose �ε to be θ independent. This condition along with 

condition 4 above lead to

χb[ε( �ϕ)] = ε( �ϕ)�k · �∂ϕ − �k · �∂ϕε (
b

r
∂t + r∂r).

Let us study the smoothness of the t, r constant surfaces H. 
For a generic choice of b we would have

ds2
H = �(θ)

[
(1 − b2)d�2 + dθ2 + γi j(θ)dϕ̃ i dϕ̃ j

]
. (14)

The first term violates the smoothness of H at poles unless 
b = ±1. We kept the dependence in b to demonstrate that the 
choice b = 0 which was used in [16] leads to a lack of smooth-
ness of H. (Moreover, this choice does not preserve one of the 
special geodesic congruences.) We take b = 1 from now on. 
Note that the lack of θ dependence also makes the volume of 
H be invariant under χ -diffeomorphisms, as is explicit from 
(14) after checking ϕ̃ i ∼ ϕ̃ i + 2π , which leads to a conserved 
entropy.

6. We require finiteness, conservation and regularity of the sym-
plectic structure. This leads to �ε = �vε where �v is a constant 
fixed direction. If �v is along �k the function ε can be a function 
of all coordinates �ϕ , otherwise it can be only a function of the 
coordinate along �v . That is, we have two families of genera-
tors: (i) �ε ·∂ �ϕ = ε(φ)∂φ where φ is a specific SL(d −3, Z) choice 
of circle in the (d −3)-torus spanned by �ϕ; (ii) �ε = �kε( �ϕ).
The first choice leads to a family of “Kerr/CFT phase spaces”, 
that we will discuss in [11]. The second choice leads to the 
NHEG phase space G[{F }] that we describe here.
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The symplectic structure. The solution space G[{F }] can be pro-
moted to a phase space only when the symplectic structure is 
defined. It is well-known that the Lee–Wald (d −1) symplectic form 
ωLW [δ1�, δ2�; �] for a generic theory with fields � and field vari-
ations δ� is ambiguous up to the addition of boundary terms [20]. 
According to the holographic renormalization framework, the total 
symplectic form takes the form

ω[δ1�,δ2�;�] = ωLW + d(δ1Y [δ2�,�] − δ2Y [δ1�,�]), (15)

where Y [δ�, �] is the (d −2)-form boundary pre-symplectic po-
tential [28]. The symplectic structure is then defined for a codi-
mension one surface � as 

∫
�

ω. Since we only consider diffeomor-
phisms, metric variations are Lie derivatives, δχ gμν =Lχ gμν .

We fix the ansatz for Y [δ�, �] by requiring the following. (a) 
Since the bulk action has two derivatives, we require Y to have at 
most one derivative. (b) We allow Y to depend on the metric and 
on η1, η2. We then restrict the corresponding coefficients through 
the following requirements: (i) The symplectic structure should be 
finite and conserved. Given the ξ−, ξ0 invariance, one has ωt ∼
1/r, ωr ∼ r. This leads to a logarithmically divergent symplectic 
structure with infinite flux unless ωt = 0 = ωr on-shell, which we 
therefore require. (ii) We require that ωθ = 0 = ωϕ i

on-shell. It 
implies that any smooth deformation of the surface H will lead 
to the same conserved charges. (iii) We require that the central 
charge should be independent on b. We find that a boundary term 
which guarantees these requirements is

Y = −iη1+η2 · � + 1

16πG
(ηα

1 + ηα
2 )δgαβη

β

1 � ε⊥ (16)

where �[δgμν, gμν ] is the d − 1 form appearing in the on-shell 
variation of the Einstein action δL ≈ d� [8] and ε⊥ is the binormal 
to the two shear-free expansion-free and rotation-free null congru-
ences, normalized as ε⊥ = dt ∧dr on the background. No boundary 
term in the class exists when �ε = �Kε(ϕ i), with ε an arbitrary func-
tion of all angles ϕ i and �K �= �k, which justifies the last requirement 
in the choice of symmetry generator.

Integrability condition. Given the symplectic form ω, we can de-
fine variations of surface charges around any element of the phase 
space (6). One consistency requirement is to be able to inte-
grate these charge variations into finite charges. The latter is 
known as the integrability conditions which read as [29]

∫
H χ ·

ω[δ1�, δ2�; �] = 0 for any field variations δ1�, δ2� and fields �
and any symmetry generator χ . In our case the integrability con-
ditions are obeyed as a consequence of χ tωr = χ rωt which holds 
off-shell.

The conserved charges. Given the symplectic structure one can 
compute the charges Q χ [20]. To this end one may start from the 
fact that charge variations are defined through the Poisson bracket 
of charges, δχ2 Q χ1 = {Q χ1 , Q χ2} = Q {χ1,χ2} + C(χ1, χ2), where C
is the central element, and then deduce the charges Q χ . It is 
straightforward to check that acting on the phase space with the 
symmetry generator χ [ε( �ϕ)], keeps the metric in the same func-
tional form as (6) but with F shifted as δε F = (1 + ∂ F )ε = e�ε
where ∂ denotes the “directional derivative” ∂ ≡ �k · �∂ . One can 
translate this transformation law in terms of � defined in (5) as

δε� = ε∂� + ∂ε. (17)

Therefore � transforms like a Liouville field, which we dub as the 
NHEG boson and

T [�] = 1 (
(∂�)2 − 2∂2� + 2e2�

)
, (18)
16πG
transforms as

δε T = ε∂T + 2∂εT − 1

8πG
∂3ε. (19)

The charges associated with χ [ε( �ϕ)] then turn out to be

Q χ =
∫
H

dH T [�]ε, (20)

where dH = �
d−2

2
√

detγ dθd �ϕ . If Q χ for ε = ei �m· �ϕ is denoted by 
L �m , the charge algebra {Q χ , Q χ ′ } ≡ δχ ′ Q χ exactly reproduces the 
NHEG algebra (8).

2. Discussion and outlook

In this work we put forward a proposal for the semiclassical 
phase space of near-horizon extremal geometries which are solu-
tions to vacuum Einstein gravity with SL(2, R) × U (1)d−3 isometry. 
We started with a solution of general relativity (1), and showed 
that there is an infinite set of metrics (6) which, despite being 
diffeomorphic to each other, are physically distinct at the clas-
sical and semiclassical level, as they are labelled by the charges 
of the near-horizon generalized Virasoro symmetry algebra V̂�k,S
(8), which we derived. This algebra has the entropy as its central 
charge and carries most of the information about the background. 
In particular, �k which measures the rate of change of the angu-
lar velocity at extremality with respect to the Hawking tempera-
ture, appears in its structure constants. Our analysis may hence be 
viewed as first steps toward a possible bottom-up construction of 
the extremal black hole microstates.

Despite sharing the common goal of describing symmetries of 
extremal black holes using the covariant phase space formalism, 
our results have crucial conceptual and technical differences with 
the Kerr/CFT correspondence [16] and its variants and extensions 
[26] in several respects: (i) Instead of specifying boundary condi-
tions for metric perturbations, we specify the metric perturbations 
everywhere in spacetime. Moreover, we are able to exponentiate 
these perturbations to build a smooth phase space; (ii) Since our 
phase space admit a transitive action mapping any two points 
on AdS2, surfaces charges are defined anywhere in the bulk, not 
only at infinity. The corresponding symmetries are therefore sym-
plectic instead of asymptotic; (iii) Unlike the Kerr/CFT proposal, 
our symmetry algebra is not extension of a U (1) isometry of the 
background. Instead, it forms an additional direct product, cf. (9). 
All the points in the phase space are SL(2, R) × U (1)d−3 invari-
ant and the angular momenta are constant over the phase space; 
(iv) The choice of symmetry generator which preserves one null 
expansion-free congruence (b = 1) allows us to build a smooth set 
of geometries, bypassing technical difficulties (conical defects, etc) 
of building a phase space for the choice of the Kerr/CFT genera-
tor (b = 0) [21]; (v) All the U (1) directions appear democratically 
in our construction, both in the phase space and in the symmetry 
algebra. All expressions are manifestly SL(d − 3, Z) covariant.

The conserved charges labelling each geometry are built from 
an effective stress-tensor in terms of a field � on the torus 
U (1)d−3 which we named the NHEG boson. This field provides a 
representation of the V̂�k,S algebra (8) which resembles a d − 2
dimensional version of the Liouville field theory. Such a theory 
is familiar for Einstein gravity in AdS3 [30] but, to our knowl-
edge, never appeared in relationship with extremal black holes in 
four and higher dimensions. Interestingly, we note that the expres-
sion for the stress-tensor (18) implies that the zero mode of the 
generalized Virasoro algebra V̂�k,S , L�0, is a positive definite opera-
tor over the semiclassical phase space and can hence be a good 
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candidate for defining a Hamiltonian. We expect that in a fully 
quantized phase space, the algebra (8) appears as the fundamen-
tal symmetry and the field theory based on � may appear as 
an effective description. It is of course very exciting to explore 
this direction which may be useful for a semiclassical microstate 
counting.
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