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Abstract

Background: Recent emergence of artemisinin-resistant P. falciparum has posed a serious hindrance to the elimination
of malaria in the Greater Mekong Subregion. Parasite clearance time, a measure of change in peripheral parasitaemia in
a sequence of samples taken after treatment, can be used to reflect the susceptibility of parasites or the efficiency of
antimalarials. The association of genetic polymorphisms and artemisinin resistance has been documented. This study
aims to examine clearance time of P. falciparum and P. vivax parasitemia as well as putative gene mutations associated
with residual or recurred parasitemia in Myanmar.

Methods: A total of 63 P. falciparum and 130 P. vivax samples collected from two internally-displaced populations and
one surrounding village were examined for parasitemia changes. At least four samples were taken from each patient,
at the first day of diagnosis up to 3 months following the initial treatment. The amount of parasite gene copy number
was estimated using quantitative real-time PCR based on a species-specific region of the 18S rRNA gene. For samples
that showed residual or recurred parasitemia after treatment, microsatellites were used to identify the ‘post-treatment’
parasite genotype and compared such with the ‘pre-treatment’ genotype. Mutations in genes pfcrt, pfmdr1, pfatp6,
pfmrp1 and pfK13 that are potentially associated with ACT resistance were examined to identify if mutation is a factor
for residual or persistent parasitemia.

Results: Over 30 % of the P. falciprium infections showed delayed clearance of parasitemia after 2–3 days of treatment
and 9.5 % showed recurred parasitemia. Mutations in codon 876 of the pfmrp1 corroborated significance association
with slow clearance time. However, no association was observed in the variation in pfmdr1 gene copy number as well
as mutations of various codonsinpfatp6, pfcrt, and pfK13 with clearance time. For P. vivax, over 95 % of the infections
indicated cleared parasitemia at days 2–3 of treatment. Four samples were found to be re-infected with new parasite
strains based on microsatellite genotypes after initial treatment.

Conclusion: The appearance of P.falciparum infected samples showing delayed clearance or recurred parasitemia after
treatment raises concerns on current treatment and ACT drug resistance.

Keywords: P. falciparum, P. vivax, Malaria, Artemisinin-combined therapy, Quantitative PCR, Parasite clearance, Resistance
genes, Microsatellite

* Correspondence: guiyuny@uci.edu
1Program in Public Health, University of California at Irvine, Irvine, CA
92697-4050, USA
Full list of author information is available at the end of the article

© 2016 Lo et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lo et al. BMC Infectious Diseases  (2016) 16:154 
DOI 10.1186/s12879-016-1482-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81156757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-016-1482-6&domain=pdf
mailto:guiyuny@uci.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Internal conflict and associated large-scale human move-
ment in Myanmar during the past few years have in part
attributed to an increase of malaria cases within the
country and to its spread beyond the national border
into Thailand and China [1]. Along with the high mal-
aria burden, multidrug-resistant Plasmodium falciparum
malaria has also emerged and widespread in endemic
areas of the Greater Mekong Subregion (GMS) [1]. In
the 1960s and 1970s, chloroquine (CQ) resistance had
spread throughout the region and subsequently, in the
1980s, resistance to sulphadoxine and pyrimethamine
(SP) was reported [2]. Nevertheless, SP combination is
still the drug treatment recommended by WHO for
intermittent preventive treatment (IPT) in vulnerable
populations because of its safety in pregnant women and
infants and its long-lasting action. Following the decline in
clinical efficacy of CQ and SP, the artemisinin-based
combination therapy (ACT) using the artesunate-
mefloquine combination was introduced as first-line
treatment in the 1990s [3]. However, the recent emer-
gence of artemisinin-resistant P. falciparum in the
GMS has posed a serious hindrance to the elimin-
ation of malaria [4]. The reduced susceptibility to
ACT may have also spread to the African continent
where some of the affected countries have adopted
ACT as first-line antimalarial treatment [5].
Parasite Clearance Time (PCT), a measure of change

in peripheral parasitaemia in a sequence of samples
taken after treatment, can be used to reflect the suscep-
tibility of parasites or the efficiency of antimalarials.
Typically, malaria parasite densities are expected to be
reduced by a factor of 108 after a 3-day treatment course
with an ACT, with 95 % of patients’ microscopic results
to be negative 48 h after treatment [6]. However, con-
trary to this expectation, an increasing number of cases
of delayed parasite clearance after treatment with an
artemisinin derivative have been reported in Cambodia
[7–9]. Along the Thailand-Cambodia border, the time to
reach the clearance of parasites after artesunate-
mefloquine combination therapy has also become longer
[10, 11]. In Kenya, over 30 % of children were reported
with residual submicroscopic parasitemia after ACT [5].
These children were significantly more likely to experi-
ence recurrent parasitemia during follow-up. Parasite
clearance time is influenced by parasite drug susceptibil-
ity, parasite density before initiation of treatment, and
inter-individual differences in antimalarial pharmacokin-
etics and immunity [12]. A recent study with clonally
identical parasites has shown that clearance time was
primarily dictated by the parasite’s genetic background
and less by host factors, which allows the identifica-
tion of these parasite factors through genome-wide
association [13].

The genetic basis of resistance to antimalarials, such as
chloroquine (CQ) and sulfdoxine/pyrimethamine (SP), has
been well documented. Numerous molecular studies have
indicated multiple independent origins of CQ resistance
associated with mutations in the chloroquine-resistance
transporter gene (crt) [14–16], and the multidrug resist-
ance transporter gene (mdr1) [17–19], as well as SP resist-
ance associated with mutations in the genes encoding
dihydrofolate reductase (dhfr) and dihydropteroate syn-
thase (dhps) in P. falciparum [20–23]. However, for other
antimalarials such as ACT, the molecular mechanism of
resistance still remains unclear. Previous studies have
shown the association of several mutations with moder-
ately altered susceptibility to one or more artemisinin
derivatives. For example, mutations in gene pfmrp1 were
likely associated with resistance to CQ, mefloquine (MQ),
and artemisinin derivatives [24, 25]. Likewise, Gupta et al.
[25] indicated signature of positive selection in pfmrp1
that was associated with reduced susceptibilities to CQ,
MQ, pyronaridine, and lumefantrine in the northeast
Myanmar P. falciparum isolates. Other studies have
shown that changes in amino acids 263 and 769 of thep-
fatp6 gene were related to reduced in vitro artemisinin in-
hibition [26-28], but no variations were detected in these
positions among natural falciparum populations [29, 30].
Recently, a strong association was detected between muta-
tions in pfmdr1 gene and reduced susceptibility of P. falcip-
arum isolates to MQ, artesunate, and quinine in areas
along the Thai-Cambodian and Thai-Myanmar borders
[18, 30]. Furthermore, several mutations in thepfK13-pro-
peller gene (K13), PF3D7_1343700, have been reported in
the China-Myanmar border area, and those mutations may
associate with artemisinin resistance [31].
In Myanmar, reduced susceptibilities to ACT have been

continuously reported [32–34]. Detailed monitoring of
parasite clearance dynamics after antimalarial treatment is
needed to determine whether parasite responsiveness to
ACT is changing. For such purposes, quantitative poly-
merase chain reaction (qPCR) method has been proposed
for the analysis of sequentially collected daily filter paper
blood samples after initiation of treatment to sensitively
detect and quantify parasites below the microscopic
threshold [35]. In this study, we aimed to first measure
parasitemia level of Plasmodium falciparum and P. vivax
infections detected in Internally Displaced Population
(IDP) settlement and surrounding villages of Myanmar
over duration of 42 days or longer after initial drug treat-
ment; second, to identity the proportion of individuals
with residual/persistent parasitemia or with recurring in-
fections. We then asked whether the recurring infections
were attributed to the same or different parasite strain.
Third, we compared sequences of a panel of antimalarial
drug resistance genes between infections of fast and
delayed clearance to examine the associated mutations.
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Methods
Sample collection
Nearly 100 patients diagnosed with P. falciparum and P.
vivax infections were included in this study. These indi-
viduals were selected from clinics/hospitals located in
the IDP settlement (Je Yang Hka) and surrounding vil-
lage (Laiza) in Myanmar from 2011 to 2013. All studied
individuals showed fever or malaria-related symptoms at
the first day of diagnosis. They were diagnosed with
falciparum and/or vivax infection by microscopic exam-
ination and later confirmed by PCR assays. Patients
diagnosed with uncomplicated P. falciparum malaria
were treated with dihydroartemisinin-piperaquine (DP)
and those with P. vivax malaria were treated with
chloroquine (CQ). For each patient, at least four samples
were taken from day 0 (before antimalarial treatment)
and then at days 1, 2, 3, 7, 14, 28, 42, and up to 3 months
after beginning of treatment. All samples of each of the
patients were run in parallel to estimate the level of
parasitemia during treatment. For each sample, 30–50 μl
of blood was blotted onto Whatman 3MM filter papers.
Filter papers were air-dried and stored in zip-sealed plas-
tic bags with silica gel absorbent at room temperature
until DNA extraction. Parasite DNA was extracted from
dried blood spots by the Saponin/Chelex method [36].
Samples that showed cleared parasites on day 2 or 3
were classified as fast clearance, whereas those that
showed cleared parasites after day 3 of the initial drug
treatment were classified as delayed clearance [37–39].
In addition, we calculated parasite reduction ratio after
the first 48 h of antimalarial treatment (PRR48) as follow:
(parasitemia after 48 h of treatment)/(initial parasitemia)
[40–42]. We used a PRR value of 0.01 as cut-off, i.e.
99 % of the initial parasitemia cleared after 48 h of drug
treatment and compared the results between samples of
fast and delayed clearance.

Quantification of parasitemia by real-time qPCR assays
Quantitative real-time PCR specifically the SYBR Green
detection method [43] was employed using P. falcip-
arum-specific primers (forward: 5’AGTCATCTTTC
GAGGTGACTTTTAGATTGCT-3’; reverse: 5’- GCC
GCAAGCTCCACGCCTGGTGGTGC-3’) and P. vivax-
specific primers (forward: 5’-GAATTTTCTCTTCGGA
GTTTATTCTTAGATTGC-3’; reverse: 5’GCCGCAAG
CTCCACGCCTGGTGGTGC-3’) that targeted on the
plasmodial 18S rRNA region [43]. Amplification was
conducted in a 20 μl reaction mixture containing 2 μl of
genomic DNA, 10 μl of 2 × SYBR Green qPCR Master
Mix (Thermo Scientific), and 0.5 μM primer. Reaction
was performed in CFX96 Touch™ Real-Time PCR
Detection System (BIORAD), with an initial denatur-
ation at 95 °C for 3 min, followed by 45 cycles at 94 °C
for 30 s, 55 °C for 30 s, and 68 °C for 1 min with a final

95 °C for 10 s. This was then followed by a melting
curve step of temperature ranging from 65 °C to 95 °C
with 0.5 °C increments to determine the melting
temperature of each amplified product. Each assay in-
cluded positive controls of both P. falciparum7G8
(MRA-926) and HB3 (MRA-155) isolates as well as P.
vivax Pakchong (MRA-342G) and Nicaragua (MRA-
340 g) isolates, in addition to negative controls including
uninfected samples and water. A standard curve was
produced from 10-fold dilution series of the control plas-
mids (P. falciparum and P. vivax) and laboratory culture
(P. falciparum) ranging from 1 % to 1.75 × 10−12% to
evaluate qPCR efficiency as well as to extrapolate
parasite density from gene copies. Melting curve ana-
lyses were performed for each amplified sample to
confirm specific amplifications of the target sequence.
The slope of the linear regression of threshold cycle
number (Ct) versus log10 (Gene Copy Number) was
used to calculate amplification efficiency (E). The
amplification efficiency ranges from 92 ± 2 % among
all runs. For the measure of reproducibility of the
threshold cycle number (Ct), the mean Ct value was
calculated from triplicates in two independent assays.
A cutoff threshold of 0.02 fluorescence units that ro-
bustly represented the threshold cycle at the log-
linear phase of the amplification and above the back-
ground noise was set to determine Ct value for each
sample. Samples yielding Ct values higher than 40 (as
indicated in the negative controls) were considered
negative for Plasmodium species. The parasite gene
copy number (GCN) in a sample was quantified
based on the threshold cycle using the follow equa-

tion: GCNsample ¼ e
E�ΔCtsample½ � ; where GCN stands for

gene copy number, ΔCt for the difference in threshold
cycle between the negative control and the sample,
and E for amplification efficiency.

Microsatellite genotyping
For patients who showed residual or recurred parasitemia
after treatment, multilocus genotypes based on microsa-
tellites were compared between samples collected at day 0
(before treatment) and the day that indicated recurred
parasitemia subsequent to treatment. Thirteen single-copy
microsatellites with tri- or tetranucleotide repeats, which
mapped to 14 chromosomes,were typed for P. falciparum.
Alleles were PCR-amplified with the published oligo-
nucleotide primers [44, 45]. For each PCR reaction, 2 μl of
genomic DNA were used with 2 mMMgCl2, 2 μM of each
primer, 0.1 mM of each dNTP, 1 U of recombinant Taq
polymerase, and 10 μl of 2 × Taq polymerase buffer in a
final volume of 20 μl. All reagents were purchased from
Thermo-Scientific, except for primers (both labeledwith
fluorescent dyes and unlabeled), which were supplied by
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Applied Biosystems (Foster City, CA). PCR cycling condi-
tions were as follow: 2 min, 94 °C; (30 s, 94 °C; 40 s, 58 °C;
50 s, 72 °C) for 40 cycles; 5 min, 72 °C. After PCR amplifi-
cation, products were pooled as follows: TAA87 + PFPK2
+ POLY2 + 9735, TA1 + TAA42 + TA81 + TA109, PE87a +
PfG377 POLYα +TA124, TA80 + TA116 according to
their sizes and fluorescent labels. All alleles were deter-
mined and visualized in Peak Scanner. The identity or dif-
ferences in genotypes allowed us to determine whether
recurred parasitemia was attributed to the same or new
parasite strain(s) after treatment.

Resistance gene sequencing of P. falciparum
To examine the association between resistance gene
mutations and parasitemia clearance time, five gene
regions (pfcrt, pfmdr1, pfatp6, and pfmrp1, and pfK13)
that are putatively associated with ACT resistance, were
sequenced with P. falciparum day 0 samples (before anti-
malarial treatment). Polymorphisms were examined for
the following codons of each respective gene: pfcrt gene –
codon76; pfmdr1– codons 86, 184, 1034, 1042, and 1246;
pfatp6– codons 37, 89, 693, 769; pfmrp1– codons 191,
437,866, 876, 1390 and 1466; pfK13 – codon446 (of which
mutant was shown to be prevalent in Myanmar) [31, 32].
Amplification was conducted in a 20 μl reaction mixture
containing 3 μl of genomic DNA, 12.5 μl of 2 × DreamTaq
Green PCR Master Mix (Thermo Scientific, Waltham,
MA), and 10 nmol of forward and reverse primes. We
used the primers as well as the PCR conditions of the pub-
lished protocols [31, 46–50]. PCR products were then
purified the by the SAP-ExoI method (Affymetrix, Santa
Clara, CA) and sequenced in both directions by Sanger
sequencing (GENEWIZ).

Pfmdr1 gene copy estimation
The pfmdr1 gene copy number of P. falciparum day 0
samples were assessed by real-time PCR. Genomic DNA
of P. falciparum clones 3D7 (which has a single copy of
pfmdr1) was used as a calibrator and pfβ-tubulin, a
house-keeping gene, was used as an internal control.
The primers for the amplifications ofpfmdr1 and β-tubu-
lin were described previously [51]. Amplification was
performed in triplicate in a total volume of 20 μl con-
taining 10μlof SYBR Green PCR Master Mix, 0.75 μl of
each of the sense and anti-sense primers (10 μM), 20 ng
of genomic DNA and 3.5 μl of water. PCR condition was
as follow: 95 °C for 10 min, followed by 40 cycles at 95 °C
for 15 s and at 60 °C for1 min. A negative control with no
template was used in each run. Each sample was run in
triplicates and the Ct values and melting temperature were
recorded at the end of the reactions. The average and
standard deviation of the three Ct values were calcu-
lated, and the average value was accepted if the SD was
lower than 0.32. In this study, the 2-ΔΔCt method for

relative quantification [52] was used to estimate the
copy numbers of pfmdr1 gene by the following equa-
tion: ΔΔCt ¼ Ct target gene–Ctpfb‐tubulin

� �
unknown sample

–

Ct target gene–Ctpfb‐tubulin

� �
3D7. The result for each sample

was expressed in N-fold changes in unknown samples
(2-ΔΔCt). A minimum of two independent runs was con-
ducted for each sample and the results were expressed
as the N-fold copy number of a given gene relative to
P. falciparum 3D7 by calculating the mean between the
two runs. N-fold copy numberbetween0.8 and 1.4 was
considered as a single copy and N-fold copy number
greater than 1.5 was considered as multiple copies of
the target gene [52, 53].

Statistical analyses
Ordered logistic regression, both univariate and mul-
tiple, was used to analyze the association between clear-
ance time and resistance gene mutations. The following
combination of orders of parasite clearance time were
tested: i) parasite cleared within 3 days (order 1), 7 days
(order 2), 14 days (order 3), not cleared (order 4); ii)
parasite cleared within 3 days (order 1), 7–14 days
(order 2), not cleared (order 3); iii) parasite cleared
within 3 days (order 1), 7 days (order 2), 14 days or not
cleared (order 3); iv) parasite cleared within 3 days
(order 1) and the rest (order 2). In addition, Fisher’s
exact test (given small sample size) was used to test for
significant differences in age (below and above 18) and
initial parasitemia between samples that showed fast and
delayed parasite clearance time. All statistical analyses
were performed in R (R Core Team 2013).

Results
Change in parasitemia after initial drug treatment
For the 130 patients who were diagnosed with P. vivax,
124 (95.4 %) showed cleared parasitemia at days 2 or 3.
These samples indicated a PRR48 value of <0.01, which
means over 99 % of the initial parasitemia was cleared
after 48 h of treatment. Only two samples (1.5 %)
showed delayed clearance where residual parasitemia
remained at day 3 but cleared at day 7 (Table 1; Fig. 1).
Four of the samples indicated initial decline but recurred
parasitemia at day 14 and 28 (Fig. 1). These four samples
showed different microsatellite genotypes between the
initial and recurred infections, suggestive of a newly in-
fected parasite strain that caused recurred parasitemia
after initial drug treatment.
For the 63 patients diagnosed with P. falciparum, 37

(58.7 %) showed cleared parasitemia at day 2 or 3 after
treatment (Table 1; Fig. 2); 20 (31.7 %) showed delayed
clearance where residual parasitemia was detected at day
3 but cleared at day 7; and six (9.5 %) showed initial
decline but recurred parasitemia after day 14 of the
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treatment (Fig. 2). Results based on PRR48 were largely
consistent with those based on day-3 positivity. All sam-
ples that were defined as fast clearance (cleared on day 2
or 3) indicated >99 % parasite clearance after 48 h. For
samples that showed delayed clearance, parasites were
only reduced to >99 % after day-3 with the exception of
one sample that showed >99 % clearance at day-3 after
normalization with initial parasitemia.
When we stratified our samples by age, a greater pro-

portion of samples that displayed fast parasite clearance
time were adults (23 out of 37; Additional file 1),
whereas a greater proportion of samples that displayed
delayed parasite clearance time belong to the younger
age group (16 out of 26). Such differences, however,
were not significant likely due to small sample size.

Interestingly, samples from the younger age group with
delayed clearance time indicated a significantly higher
initial parasitemia compared to those with fast clearance
time (Fig. 3). Nonetheless, the level of initial parasitemia
did not shown to be significantly different by parasite
clearance time in adults.
Among the recurred infections, four showed microsat-

ellite genotypes different from the initial infections, sug-
gestive of a newly infected parasite strain that caused
recurred parasitemia; whereas the remaining two sam-
ples showed identical genotypes. Between samples that
showed fast (parasite cleared at day 2 or 3) and delayed
(parasite observed at day3 or after) clearance of P. falcip-
arum, no genetic differentiation was observed based on
microsatellite loci despite that these samples were clus-
tered by geographical sites (Fig. 4).

Resistance gene polymorphisms in P. falciparum
Because only two out of the 130 P. vivax samples indi-
cated delayed parasitemia clearance, resistance gene mu-
tation was not examined on P. vivax. For the 63 P.
falciparum samples that indicated varied parasite clear-
ance time, all had the wild type genotype K76 of the
pfcrt gene (Fig. 4; Additional file 2). Likewise, for
pfmdr1all samples showed the wild type N86, N1042,
and D1246, except for codon 184, of which approxi-
mately 50 % of the patients with fast and delayed
parasite clearance showed Y184 and 184 F, respect-
ively (Fig. 5; Additional file 2). Nevertheless, based on
regression analyses, mutation at this codon position was
not significantly associated with delayed clearance in our
samples (Additional file 3). Our qPCR data indicated that
patients with delayed parasite clearance contained almost
an equal proportion of single, duplicate, and more copies
of the pfmdr1 gene, whereas those with fast parasite clear-
ance contained mostly two or more copies. The difference
observed in pfmdr1 copy number was not shown to be
significantly associated with parasite clearance time.
Amplification and sequencing of the entire pfatp6

gene indicated polymorphisms at codons 89 and 769,
but no mutations at codons 37, 639, and 898 among the
P. falciparum samples. For codon 89, the majority of the
samples (86.7 %) showed to have the wild typeI89 geno-
type, while the remaining eight samples (fast clearance)
had the mutant 89 T (Fig. 5; Additional file 2). On the
other hand, for codon 769,70.6 % of the patients with
fast parasite clearance and all of those with delayed
clearance had the mutant 769A, whereas only 10 sam-
ples (patients with fast clearance) had the wild type
D769 genotype (Fig. 5; Additional file 2). These muta-
tions were shown to be not significantly associated with
difference in the parasite clearance time.
For the pfmrp1 gene, polymorphisms were detected at

four codon positions (H191Y, S437A, H866N, and I876V).

Table 1 Parasite clearance and recurred infection of P.
falciparum and P. vivax cases in Myanmar

P. falciparum

IDP settlement

Clearance time No. of cases (%)

2 days 11 (29.7)

3 days 12 (32.4)

7+ days 12 (32.4)

Recurred infection 2 (5.4)

Total 37

Village

Clearance time No. of cases

2 days 9 (34.6)

3 days 5 (19.2)

7+ days 8 (30.7)

Recurred infection 4 (15.4)

Total 26

P. vivax

IDP settlement

Clearance time No. of cases

2 days 78 (74.3)

3 days 21 (20)

7+ days 2 (1.9)

Recurred infection 4 (3.8)

Total 105

Village

Clearance time No. of cases

2 days 25 (100)

3 days 0

7+ days 0

Recurred infection 0

Total 25
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The proportion of wild type and mutant at codons 191 and
437 were roughly 50 %, respectively, among the patients
with fast and delayed parasite clearance, whereas at codons
866 and 876 over 65 % and 80 % of the samples showed to
have the wild type respectively (Fig. 5; Additional file 2).
No samples indicated any mutation at codon 1466 but wild
type K1466, similar to the findings of Pirahmadi et al. [50].
Among all the detected polymorphisms, logistic regression
analyses indicated significant association between the
mutation in codon 876 of Pfmrp1 and clearance time
(χ2 = 7.92, d.f. = 1, P = 0.005).
For the small fragment of the K13 gene, mutations

were detected at the amino acid position 446, of which
66 % had the wild type F and 34 % had the mutant I
among all samples. However, this mutation was not sig-
nificantly associated with the parasite clearance time.

Discussion
In the present study, blood samples of malaria patients
who received antimalarial treatment were monitored for

at least 28 days. The efficacy of antimalarial therapy was
interpreted by the reduction of the parasite load for
these patients. Changing patterns of morphological ap-
pearances of parasite species possibly due to drug pres-
sure or strain variation can present difficulty to quantify
parasite load by microscopy [54]. Quantifying parasit-
emia based on qPCR provides a sensitive means in
measuring samples of low or submicroscopic parasitemia
particularly during antimalarial treatment [43]. However,
it is noteworthy that in the present study human DNA
was not amplified as internal controls for our samples.
Despite that amplification was done in triplicate for each
of our samples, we cannot rule out the possibility that
DNA extraction or PCR errors may slightly influence
the quantification of parasite DNA.
In Southeast Asia, artemisinin derivatives have been

used for more than two decades as first-line malaria
treatment. However, recent reports of delayed parasite
clearance after artemisinin-based treatment raises con-
cerns about the effectiveness of the drug as well as the
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spread of resistance especially in malaria endemic coun-
tries [8, 55, 56]. For instances, previous studies have
shown delayed parasite clearance after ACT treatments
in southeastern Myanmar and border area of Myanmar-
Thailand where artemisinin has been used for several
years [11, 32, 57–60]. A study by Wang et al. [61] dem-
onstrated an overall 42-day cure rate of 100 % for DP
treatment of uncomplicated P. falciparum malaria at the
China-Myanmar border area and a day-3 parasite-
positive rate of 7 %. Up to 18 % (13/71) of the patients
showed detectable gametocytes and a large proportion
of them were persistent from the first 3 days of antimal-
arial treatment [61]. In Thailand, parasites with delayed
clearance after ACT did not show increased resistance
to artemisinin compounds based on conventional in
vitro experiments [8]. In Western Cambodia, there is
evidence that P. falciparum parasites clear slowly from

the blood after ACT treatment and that the variation in
clearance rate is largely explained by genotypic differ-
ences observed among parasite strains [55], despite fac-
tors such as host immunity and splenic function that
cannot be ruled out. Microsatellites indicated that our P.
falciparum samples were genotypically differentiated by
sites specifically between the IDP settlement and local
village in Myanmar but not differentiated by parasite
clearance time of the samples. Age has been shown as a
factor influencing parasite clearance time [37, 62]. It is
possible that higher initial parasitemia associated with
multiple infections and/or weaker immunity in the
younger age group could delay the parasite clearance
time. This observation merits further investigation with
expanded samples.
The development of resistance to antimalarial drug in

a parasite is a multifactorial molecular process and more
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than a single gene could be involved in reduced suscep-
tibility. Various mutations in genes such as pfatp6,
pfmdr1 and pfmrp1 have been suggested to account for
ACT resistance. Recently, mutations in the Kelch-13
propeller gene were proposed to be involved in ACT
resistance. In Mynamar, ACT has been used as first-line
antimalarial treatment since the 1990s subsequent to
decline in clinical efficacy of CQ and SP [3]. Earlier

studies showed that complete withdrawal or reduced
usage of CQ as first-line antimalarials can result in a
decreased prevalence of pfmdr1 86Y and pfcrt 76 T
mutations [63, 64]. Despite our small sample size, our
data agrees with this finding and reveals a dominance of
wild type genotypes in both genes (except pfmdr1 codon
184) that relate to CQ resistance among the P. Falcip-
arum samples. Given that CQ has not been used for
more than a decade in Mynamar, a relaxation of select-
ive pressure likely resulted in high susceptibility of P.
falciparum to this drug.
The role of pfmdr1 gene mutations in artemisinin-

based drug resistance is unclear. Previous in vivo studies
showed that mutations at codons 86 and 1246 play an
important role in the resistance of P. falciparum to mef-
loquine and artemisinin [65]. In the Thai-Myanmar
border region, 1226Y mutant was prevalent among P.
falciparum parasites and significantly associated with in
vitro response to artemisinin [30]. However, these muta-
tions were not observed in our samples. The 184 F allele
was reported to be associated with increased IC50 of
artesunate based on in vitro study [66]. Approximately
86 % of the 184 F allele was reported in western
Cambodia where the level of MQ resistance was signifi-
cant [67]. Imwong et al. [68] has also shown that 184 F
of pfmdr1 is the only mutation associated with slow
parasite clearance rates, despite the fact that such associ-
ation did not persist when the results were adjusted by
site. Although184F was found to be prevalent among
our samples, this mutation was not significantly corre-
lated with the parasite clearance time in the present
study. Furthermore, while various studies showed that
increased pfmdr1 gene copy number is significantly
related to a reduced sensitivity of P. falciparum to meflo-
quine, quinine, and artesunate resistance [18, 30, 53, 69],
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our samples showed no significant correlation between
gene copy number and parasite clearance time.
Previous studies suggested that mutations in the gene

pfatp6, which encodes the sarcoplasmic and endoplas-
mic reticulum Ca2+ -ATPase (SERCA)-type protein in
P. falciparum may alter the parasite sensitivity to artemi-
sinin [70]. For instances, Jambou et al. [27] reported a
significant decrease in invitro sensitivity to artemether in
P. falciparum isolates from French Guiana and that this
reduced efficacy was associated with a S769N poly-
morphism in the pfatp6 gene. Several polymorphisms
have also been identified in the pfatp6 gene including
the mutations E431K and A623E in Senegal [71],
I89T in Thailand [53], H243Y in Central Africa [72],
T2694 in São Tomé and Principe [52], as well as
R37K and A630S in Brazilian Amazon [73]. In 2008,
Dahlstrom et al. [28] identified 33 single nucleotide
polymorphisms (SNPs), three of which were found in
a frequency higher than 5 % in codons H431K,
N569K and A630S among the P. falciparum isolates
from East and West Africa. In this study, polymorph-
ism was detected only in codons 89 and 769. How-
ever, no significant correlation was observed between
these mutations and parasite clearance time. While
our small sample size may have hidden other possible
mutations or underestimated the frequency of the
observed mutations, it is also possible that pfatp6
does not play a key role in ACT resistance as shown
in recent studies [29, 73, 74].

Apart from the pfatp6, pfmrp1 from the ATP-binding
cassette (ABC) family of transporters has recently
emerged as a potential genetic target for multiple drugs.
The mutations in the gene pfmrp1have been shown to
be associated with resistance to chloroquine, quinine,
sulfadoxine/pyrimethamine and artemisinin derivatives
in P. falciparum [24, 25, 66, 75–78]. Although recent
studies indicated that mutations 1390I and 1466 K were
associated, respectively, with artemisinin and SP resist-
ance [78], our samples all showed wide type allele in
these codon positions despite the limited sample size.
These results suggest either a marked reduction of selec-
tion pressure with these antimalarials in the study area
or there are other mutations that play a more vital role
in determining resistance. In this study, the only muta-
tion that was significantly associated with delayed para-
site clearance is 876 V. Although this mutation has been
shown to play a significant role in changing the func-
tionality of the protein [78] and recent studies have
reported its association with in vivo ACT response
[24, 30] as well as in vitro susceptibility to chloroquine
[34], the low frequency of this mutation among our sam-
ples suggests potentially other mutations that were not
examined here are responsible for delayed clearance.
A recent population study of the K13-propeller

polymorphisms has shown a predominant F446I mu-
tation in P. falciparum from the China-Myanmar
border area [31, 32]. This mutation was shown to be
equally prevalent in our patients with fast and delayed
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parasite clearance, and no association was found between
its mutation and delayed parasite clearance time. The full
sequence of the K13 gene will be examined on broad sam-
ples based on pyrosequencing and the frequency of other
mutations will be reported elsewhere.

Conclusions
The majority of the P. vivax infections showed parasite
clearance at day-2 or −3 subsequent to first day drug
treatment, indicative of continual effectiveness of chloro-
quine on P. vivax in Myanmar. By contrast, over 40 % of
the P. falciparum infections indicated parasite positivity
after ACT drug treatment. This raises concern to the
present antimalarial treatment of P. falciparum malaria
in combat with the emergence and spread of ACT
resistance.

Ethics statement
Scientific and ethical clearance was given by the institu-
tional scientific and ethical review boards of Kunming
Medical University, China; University of California at
Irvine, USA; Pennsylvania State University, USA; and
the Bureau of Health of Kachin State, Myanmar. Written
informed consent/assent for study participation was ob-
tained from all consenting heads of households or
parents/guardians (for minors under age 18) and from
each individual who was willing to participate in the
study.

Availability of data and materials
The age distribution of patients that showed fast as well
as delayed parasite clearance can be found in Additional
file 1. Mutation type of the different codon positions of
each sample can be found in Additional file 2. The
frequency of mutations in various gene codons among
the study samples can be found in Additional file 3.

Additional files

Additional file 1: Histogram showing the number of patients that
indicated fast parasite clearance (cleared at day 2 or 3) as well as delayed
clearance (parasite cleared after day 3) with respect to two age groups
(blue: aged below 18; red: aged above 18). The level of significance was
indicated. (EPS 280 kb)

Additional file 2: Mutation type of each of the targeted codon
positions of respective genes as well as mdr1 gene copy number
among fast and delay clearance P. falciparum samples. (XLSX 15 kb)

Additional file 3: Frequency of mutations in various gene codons
among samples that showed fast (parasite cleared at day 2 or 3) and
delayed (parasite cleared after day 3) clearance of P. falciparum. Bold
denotes codon of which the mutation frequency is significantly
associated with the parasite clearance time. (DOCX 77 kb)

Abbreviations
ACT: Artemisinin Combined Therapy; atp: adenosine triphosphate;
CQ: chloroquine; crt: chloroquine resistance transporter; dhfr: dihydrofolate
reductase; dhps: dihydropteroate synthase; DP: dihydroartemisinin-

piperaquine; GCN: gene copy number; GMS: Greater Mekong Subregion;
mdr1: multi-drug resistance gene; mrp: multidrug-resistance protein;
MQ: mefloquine; PCT: Parasite Clearance Time; PRR: parasite reduction ratio;
qPCR: quantitative Real-Time PCR; SP: sulphadoxine and pyrimethamine.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EL LC GY conceived and designed the experiments; JN WO EL performed
the experiments and collected the data; EL GZ analyzed the data; EL JN EH
wrote the paper; ZY LC GY revised and approved the manuscript before
submission. All authors read and approved the final manuscript.

Author’s information
Dr. Eugenia Lo is a project scientist in the Program in Public Health
at University of California, Irvine. Her research focuses on molecular
epidemiology and population genetics of parasite and host related to
infectious disease.

Acknowledgments
The authors thank the field team for their technical assistance. We are
grateful to the communities and hospitals for their support and willingness
to participate in this research.

Funding
This project was funded by the National Institute of Health (Grant no. U19
AI089672). The funders have no role in study design, data collection and
analysis, decision to publish or preparation of the manuscript.

Author details
1Program in Public Health, University of California at Irvine, Irvine, CA
92697-4050, USA. 2Department of Pathogen Biology and Immunology,
Kunming Medical University, Kunming, China. 3Department of Entomology,
Pennsylvania State University, University Park, PA, USA.

Received: 9 September 2015 Accepted: 25 March 2016

References
1. Cui L, Yan G, Sattabongkot J, Chen B, Cao Y, Fan Q, Parker D, Sirichaisinthop

J, Su XZ, Yang H, Yang Z, Wang B, Zhou G. Malaria in the Greater Mekong
Subregion: heterogeneity and complexity. Acta Trop. 2012;121:227–39.

2. Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T. Intercontinental
spread of pyrimethamine-resistant malaria. Science. 2004;305:1124.

3. Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum
drug resistance. Parasitol Int. 2009;58:201–9.

4. Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium
falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect.
2013;19:908–16.

5. Beshir KB, Sutherland CJ, Sawa P, Drakeley CJ, Okell L, Mweresa CK, Omar
SA, Shekalaghe SA, Kaur H, Ndaro A, Chilongola J, Schallig HDFH, Sauerwein
RW, Hallett RL, Bousema T. Residual Plasmodium falciparum parasitemia in
Kenyan children after artemisinin-combination therapy is associated with
increased transmission to mosquitoes and parasite recurrence. J Infect Dis.
2008;2013:2017–24.

6. White NJ. Qinghaosu (artemisinin): the price of success. Science. 2008;320:
330–4.

7. Denis MB, Tsuyuoka R, Poravuth Y, Narann TS, Seila S, Lim C, Incardona S,
Lim P, Sem R, Socheat D, Christophel EM, Ringwald P. Surveillance of the
efficacy of artesunate and mefloquine combination for the treatment of
uncomplicated falciparum malaria in Cambodia. Trop Med Int Health. 2006;
11:1360–6.

8. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F,
Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K,
Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh
N, Socheat D, White NJ. Artemisinin resistance in Plasmodium falciparum
malaria. N Engl J Med. 2009;361:455–67.

9. Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, Zhou C,
Mao S, Anderson JM, Lindegardh N, Jiang H, Song J, Su XZ, White NJ,
Dodorp AM, Anderson TJ, Fay MP, Mu J, Duong S, Fairhurst RM. Artemisinin-

Lo et al. BMC Infectious Diseases  (2016) 16:154 Page 10 of 12

dx.doi.org/10.1186/s12879-016-1482-6
dx.doi.org/10.1186/s12879-016-1482-6
dx.doi.org/10.1186/s12879-016-1482-6


resistant Plasmodium falciparum in Pursat province, western Cambodia:
a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.

10. Wongsrichanalai C, Meshnick SR. Declining artesunate-mefloquine efficacy
against falciparum malaria on the Cambodia–Thailand border. Emerg Infect
Dis. 2008;14:716–9.

11. Carrara VI, Zwang J, Ashley EA, Price RN, Stepniewska K, Barends M,
Brockman A, Anderson T, McGready R, Phaiphun L, Proux S, van Vugt
M, Hutagalung R, Lwin KM, Phyo AP, Preechapornkul P, Imwong M,
Pukrittayamakee S, Singhasivanon P, White NJ, Nosten F. Changes in
the treatment responses to artesunate-mefloquine on the northwestern
border of Thailand during 13 years of continuous deployment. PLoS
One. 2009;4:e4551.

12. White NJ. The parasite clearance curve. Malar J. 2011;10:278.
13. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko

A, Su X-Z, Noruma T, Fidock DA, Wellems TE, Plowe CV. A molecular marker
for chloroquine resistant falciparum malaria. N Engl J Med. 2001;344:257–63.

14. Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium
falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;298:
210–3.

15. Chen N, Kyle DE, Pasay C, Fowler EV, Baker J, Peters JM, Cheng Q. Pfcrt
allelic types with two novel amino acid mutations in chloroquine resistant
Plasmodium falciparum isolates from the Philippines. Antimicrob Agents
Chemother. 2003;47:3500–5.

16. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates
sensitivity and resistance to multiple antimalarials in Plasmodium falciparum.
Nature. 2000;403:906–9.

17. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind
L, Cooper RA, Wootton JC, Xiong M, Su XZ. Multiple transporters associated
with malaria parasite responses to chloroquine and quinine. Mol Microbiol.
2003;49:977–89.

18. Phompradit P, Muhamed P, Wisedpanichkij R, Chaijaroenkul W,
Na-Bangchang K. Four years’ monitoring of in vitro sensitivity and
candidate molecular markers of resistance of Plasmodium falciparum
to artesunate-mefloquine combination in the Thai-Myanmar border.
Malar J. 2014;13:23.

19. Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ. Amino acid changes
linked to pyrimethamine resistance in the dihydrofolate reductase-
thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci
U S A. 1988;85:9109–13.

20. Triglia T, Menting JG, Wilson C, Cowman AF. Mutations in dihydropteroate
synthase are responsible for sulfone and sulfonamide resistance in
Plasmodium falciparum. Proc Natl Acad Sci U S A. 1997;94:13944–9.

21. Plowe CV, Kublin JG, Doumbo OK. Plasmodium falciparum dihydrofolate
reductase and dihydropteroate synthase mutations: epidemiology and role
in clinical resistance to antifolates. Drug Resist Updates. 1998;1:389–96.

22. Zhang Y, Yan H, Wei G, Han S, Huang Y, Zhang Q, Pan W. Distinctive origin
and spread route of pyrimethamine-resistant Plasmodium falciparum in
Southern China. Anitmicrob Agents Chemother. 2013;58:237.

23. Sanchez CP, Dave A, Stein WD, Lanzer M. Transporters as mediators of drug
resistance in Plasmodium falciparum. Int J Parasitol. 2010;40:1109–18.

24. Dahlström S, Ferreira PE, Veiga MI, Sedighi N, Wiklund L, Martensson A,
Farnert A, Sisowath C, Osorio L, Darban H, Andersson B, Kaneko A, Conseil
G, Bjorkman A, Gil JP. Plasmodium falciparum multidrug resistance protein 1
and artemisinin-based combination therapy in Africa. J Infect Dis. 2009;200:
1456–64.

25. Gupta B, Xu S, Wang Z, Sun L, Miao J, Cui L, Yang Z. Plasmodium falciparum
multidrug resistance protein 1 (pfmrp1)gene and its association with in
vitro drug susceptibility of parasite isolates from north-east Myanmar.
J Antimicrob Chemother. 2014;69:2110–7.

26. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P,
Zuniga FA, East M, Lee A, Brady L, Haynes RK, Krishna S. A single amino
acid residue can determine the sensitivity of SERCAs to artemisinins.
Nature Struct Mol Biol. 2005;12:628–9.

27. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier
C, Esterre P, Fandeur T, Mercereau-Puijalon O. Resistance of Plasmodium
falciparum field isolates to in-vitro artemether and point mutations of the
SERCA-type PfATPase6. Lancet. 2005;366:1960–3.

28. Dahlström S, Veiga MI, Ferreira P, Mårtensson A, Kaneko A, Andersson B,
Björkman A, Gil JP. Diversity of the sarco/endoplasmic reticulum Ca(2+)
-ATPase orthologue of Plasmodium falciparum (PfATP6). Infect Genet Evol.
2008;8:340–5.

29. Phompradit P, Wisedpanichkij R, Muhamad P, Chaijaroenkul W,
Na-Bangchang K. Molecular analysis of pfatp6 and pfmdr1
polymorphisms and their association with in vitro sensitivity in
Plasmodium falciparum isolates from the Thai-Myanmar border.
Acta Trop. 2011;120:130–5.

30. Veiga MI, Ferreira PE, Jörnhagen L, Malmberg M, Kone A, Schmidt BA,
Petzold M, Björkman A, Nosten F, Gil JP. Novel polymorphisms in
Plasmodium falciparum ABC transporter genes are associated with major
ACT antimalarial drug resistance. PLoS One. 2011;6:e20212.

31. Wang Z, Shrestha S, Li X, Miao J, Yuan L, Cabrera M, Grube C, Yang Z, Cui L.
Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from
China-Myanmar border in 2007–2012. Malar J. 2015;14:168.

32. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Lin K, Kyaw MP,
Plewes K, Faiz MA, Dhorda M, Cheah PY, Pukrittayakamee S, Ashley EA,
Anderson TJC, Nair S, McDew-White M, Flegg JA, Grist EPM, Guerin P,
Maude RJ, Smithuis F, Dondorp AM, Day NPJ, Nosten F, White NJ,
Woodrow CJ. Spread of artemisinin-resistant Plasmodium falciparum in
Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet
Infect Dis. 2015;15:415–21.

33. Wang Z, Parker D, Meng H, Wu L, Li J, Zhao Z, Zhang R, Fan Q, Wang H,
Cui L, Yang Z. In vitro sensitivity of Plasmodium falciparum from China-
Myanmar border area to major ACT drugs and polymorphisms in potential
target genes. PLoS One. 2012;7:e30927.

34. Hao M, Jia D, Li Q, He Y, Yuan L, Xu S, Chen K, Wu J, Shen L, Sun L, Zhao H,
Yang Z, Cui L. In vitro sensitivities of Plasmodium falciparum isolates from the
China-Myanmar border to piperaquine and association with polymorphisms in
candidate genes. Antimicrob Agents Chemother. 2013;57:1723–9.

35. Beshir KB, Hallett RL, Eziefula AC, Bailey R, Watson J, Wright SG, Chiodini PL,
Polley SD, Sutherland CJ. Measuring the efficacy of anti-malarial drugs
in vivo: quantitative PCR measurement of parasite clearance. Malar J.
2010;9:312.

36. Bereczky S, Martensson A, Gil JP. Short report: Rapid DNA extraction from
archive blood spots on filter paper for genotyping of Plasmodium
falciparum. Am J Trop Med Hyg. 2005;72:249–51.

37. Maiga AW, Fofana B, Sagara I, Dembele D, Dara A, Traore OB, Toure S,
Sanogo K, Dama S, Sidibe B, Kone A, Thera MA, Plowe CV, Doumbo OK,
Djimde AA. No evidence of delayed parasite clearance after oral artesunate
treatment of uncomplicated falciparum malaria in Mali. Am J Trop Med
Hyg. 2012;87:23–8.

38. Muhindo MK, Kakuru A, Jagannathan P, Talisuna A, Osilo E, Orukan F,
Arinaitwe E, Tappero JW, Kaharuza F, Kamya MR, Dorsey G. Early parasite
clearance following artemisinin-based combination therapy among
Ugandan children with uncomplicated Plasmodium falciparum malaria.
Malar J. 2014;13:32.

39. Thriemer K, Nguyen VH, Rosanas-Urgell A, Phuc BQ, Ha DM, Pockele E,
Guetens P, Nguyen VV, Duong TT, Amambua-Ngwa A, Alessandro U D’,
Erhart A. Delayed parasite clearance after treatment with dihydroartemisinin-
piperaquine in Plasmodium falciparum malaria patients in central Vietnam.
Antimicrob Agents Chemother. 2014;58:7049–55.

40. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of
artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;359:
2619–20.

41. Vijaykadga S, Alker AP, Satimai W, MacArthur JR, Meshnick SR,
Wongsrichanalai C. Delayed Plasmodium falciparum clearance following
artesunate-mefloquine combination therapy in Thailand, 1997–2007. Malar J.
2012;11:296.

42. Nkhoma SC, Stepniewska K, Nair S, Phyo AP, McGready R, Nosten F,
Anderson TJC. Genetic evaluation of the performance of malaria parasite
clearance rate metrics. J Infect Dis. 2013;208:346–50.

43. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K.
Detection of four Plasmodium species in blood from humans by 18S rRNA
gene subunit-based and species-specific real-time PCR assays. J Clin
Microbiol. 2004;42:5636–43.

44. Anderson TJC, Su XZ, Bockarie M, Lagog M, Day KP. Twelve microsatellite
markers for characterization of Plasmodium falciparum from finger-prick
blood samples. Parasitology. 1999;119:113–25.

45. Su XZ, Gerdig MT, Huang Y, Huynh CQ, Liu A, You J, Wootton JC, Wellems,
TE. A genetic map and recombination parameters of the human malaria
parasite Plasmodium falciparum. Science. 1999;286:1351–3.

46. Zhang GQ, Guan YY, Sheng HH, Zheng B, Wu S, Xiao HS, Tang LH. Multiplex
PCR and oligonucleotide microarray for detection of single-nucleotide

Lo et al. BMC Infectious Diseases  (2016) 16:154 Page 11 of 12



polymorphisms associated with Plasmodium falciparum drug resistance.
J Clin Microbiol. 2008;46:2167–74.

47. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT,
Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe
PD, Wellems TE. Mutations in the Plasmodium falciparum digestive
vacuole transmembrane protein PfCRT and evidence for their role in
chloroquine resistance. Mol Cell. 2000;6:861–71.

48. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC.
The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is
associated with increased sensitivity to the anti-malarials mefloquine and
artemisinin. Mol Biochem Parasitol. 2000;108:13–23.

49. Ferreira ID, Martinelli A, Rodrigues LA, do Carmo EL, do Rosario VE,
Povoa MM, Cravo P. Plasmodium falciparum from para state (Brazil)
shows satisfactory in vitro response to artemisinin derivatives and
absence of the S769N mutation in the SERCA-type PfATPase6. Trop
Med Int Health. 2008;13:199–207.

50. Pirahmadi S, Zakeri S, Afsharpad M, Djadid ND. Mutation analysis in
pfmdr1 and pfmrp1 as potential candidate genes for artemisinin
resistance in Plasmodium falciparum clinical isolates 4 years after
implementation of artemisinin combination therapy in Iran. Infect
Genet Evol. 2013;14:327–34.

51. Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M,
Milhous W, Wirth DF, Oduola AMJ. Selection of Plasmodium falciparum
multidrug resistance gene 1 alleles in asexual stages and gametocytes by
artemether-lumefantrine in Nigerian children with uncomplicated
falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.

52. Ferreira I, do Rosário VE, Cravo P. Real-time quantitative PCR with SYBR
Green I detection for estimating copy numbers of nine drug resistance
candidate genes in Plasmodium falciparum. Malar J. 2006;5:1.

53. Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L,
Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S.
Mefloquineresistance in Plasmodium falciparum and increased pfmdr1
gene copy number. Lancet. 2004;364:438–47.

54. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev.
2002;15:66–78.

55. Anderson TJC, Nair S, Nkhoma S, Williams JT, Imwong M, Yi P, Socheat D,
Das D, Chotivanich K, Day NPJ, White NJ, Dondorp AM. High heritability
of malaria parasite clearance rate indicates a genetic basis for artemisinin
resistance in western Cambodia. J Infect Dis. 2010;201:1326–30.

56. Pukrittayakamee S, Chantra A, Simpson JA, Vanijanonta S, Clemens R,
Looareesuwan S, White NJ. Therapeutic responses to different antimalarial
drugs in vivax malaria. Antimicrob Agents Chemother. 2000;44:1680–1685.

57. Phyo PA, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, Moo C,
Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NPJ, White NJ,
Anderson TJC, Nosten F. Emergence of artemisinin-resistant malaria on the
western border of Thailand: a longitudinal study. Lancet. 2012;379:960–6.

58. Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH, Aye MM, Lindegardh N,
Tarning J, Imwong M, Jacob CG, Rasmussen C, Perin J, Ringwald P, Nyunt
MM. Reduced susceptibility of Plasmodium falciparum to artesunate in
Southern Myanmar. PLoS One. 2013;8:e57689.

59. Busto MD, Wongsrichanalai C, Delacollette C, Burkholder B. Monitoring
antimalarial drug efficacy in the Greater Mekong Subregion: an overview
of in vivo results from 2008 to 2010. Southeast Asian J Trop Med Public
Health. 2013;44:201–30.

60. Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K,
Chaijaroenkul W. Declining in efficacy of a three-day combination
regimen of mefloquine-artesunate in a multi-drug resistance area along
the Thai-Myanmar border. Malar J. 2010;9:273.

61. Wang Y, Yang Z, Yuan L, Zhou G, Parker D, Lee MC, Yan GY, Fan Q, Xiao YP,
Cao Y, Cui L. Clinical efficacy of dihydroartemisinin–piperaquine for
the treatment of uncomplicated Plasmodium falciparum malaria at the
China–Myanmar border. Am J Trop Med Hyg. 2015;93:577–83.

62. Ndour PA, Lopera-Mesa TM, Diakité SAS, Chiang S, Mouri O, Roussel C,
Jauréguiberry S, Biligui S, Kendjo E, Claessens A, Ciceron L, Mazier D,
Thellier M, Diakité M, Fairhurst RM, Buffet PA. Plasmodium falciparum
clearance is rapid and pitting independent in immune Malian children
treated with artesunate for malaria. J Infect Dis. 2014;211:290–297.

63. Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN,
Djimde AA, Kouriba B, Taylor TE, Plowe CV. Reemergence of chloroquine-
sensitive Plasmodium falciparum malaria after cessation of chloroquine use
in Malawi. J Infect Dis. 2003;187:1870–5.

64. Raman J, Mauff K, Muianga P, Mussa A, Maharaj R, Barnes KI. Five years of
antimalarial resistance marker surveillance in Gaza Province, Mozambique,
following artemisinin-based combination therapy roll out. PLoS One. 2011;6:
e25992.

65. Sidhu AB, Valderramos SG, Fidock DA. Pfmdr1 mutations contribute to
quinine resistance and enhance mefloquine and artemisinin sensitivity
yin Plasmodium falciparum. Mol Microbiol. 2005;57:913–26.

66. Anderson TJC, Nair S, Sudimack D, Williams JT, Mayxay M, Newton PN,
Guthmann JP, Smithuis FM, Hien TT, van den Broek IVF, White NJ, Nosten F.
Geographical distribution of selected and putatively neutral SNPs in
Southeast Asian malaria parasites. Mol Biol Evol. 2005;22:2362–74.

67. Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, Muth S, Maguire JD,
Rogers WO, Fandeur T, Barnwell JW, Escalante AA, Wongsrichanalai C, Ariey F,
Meshnick SR, Udhayakumar V. Multiple genetic backgrounds of the amplified
Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective
sweep of 184 F mutation in Cambodia. J Infect Dis. 2010;201:1551–60.

68. Imwong M, Dondorp AM, Nosten F, Yi P, Mungthin M, Hanchana S, Das D,
Phyo AP, Lwin KM, Pukrittayakamee S, Lee SJ, Saisung S, Koecharoen K,
Nguon C, Day NPJ, Socheat D, White NJ. Exploring the contribution of
candidate genes to artemisinin resistance in Plasmodium falciparum.
Antimicrobiol Agents Chemother. 2010;54:2886–92.

69. Price RN, Uhlemann AC, Van-Vugt M, Brockman A, Hutagalung R, Nair S,
Nash D, Singhasivanon P, Anderson TJC, Krishna S, White NJ, Nosten F.
Molecular and pharmacological determinants of the therapeutic response
to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum
malaria. Clin Infect Dis. 2006;42:1570–7.

70. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M,
O'Neill PM, Bray PG, Ward SA, Krishna S. Artemisinins target the SERCA of
Plasmodium falciparum. Nature. 2003;424:957–61.

71. Pillai DR, Lau R, Khairnar K, Lepore R, Via A, Staines HM, Krishna S.
Artemether resistance in vitro is linked to mutations in PfATP6 that also
interact with mutations in PfMDR1 in travellers returning with Plasmodium
falciparum infections. Malar J. 2012;11:131.

72. Cojean S, Hubert V, Le Bras J, Durand R. Resistance to dihydroartemisinin.
Emerg Infect Dis. 2006;12:1798–9.

73. Brasil LW, Areas ALL, Melo GC, Oliveira CMC, Alecrim MGC, Lacerda MVG,
O’Brien C, Oelemann WMR, Zalis MG. Pfatp6 molecular profile of
Plasmodium falciparum isolates in the western Brazilian Amazon. Malar J.
2012;11:111.

74. Miao M, Wang Z, Yang Z, Yuan L, Parker DM, Putaporntip C, Jongwutiwes S,
Xangsayarath P, Pongvongsa T, Moji H, Troug TD, Abe T, Nakazawa S, Cui L.
Genetic diversity and lack of artemisinin selection signature on the Plasmodium
falciparum ATP6 in the Greater Mekong Subregion. PLoS One. 2013;8:e59192.

75. Gómez-Saladin E, Fryaufl DJ, Taylor WR, Laksana BS, Susanti AI, Subianto PB,
Richie TL. Plasmodium falciparum mdr1 mutations and in vivo chloroquine
resistance in Indonesia. Am J Trop Med Hyg. 1999;61:240–244.

76. Ursing J, Zakeri S, Gil J, Bjorkman A. Quinoline resistance associated
polymorphisms in the pfcrt, pfmdr1 and pfmrp genes of Plasmodium
falciparum in Iran. Acta Trop. 2006;97:352–6.

77. Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M, Fay MP, McCutchan TF,
Su X. Disruption of a Plasmodium falciparum multidrug resistance-associated
protein (PfMRP) alters its fitness and transport of antimalarial drugs and
glutathione. J Biol Chem. 2009;284:7687–96.

78. Dahlström S, Veiga MI, Björkman A, Gil JP. Polymorphism in PfMRP1
(Plasmodium falciparum multidrug resistance protein 1) amino acid 1466
associated with resistance to Sulfadoxine-Pyrimethamine treatment.
Antimicrob Agents Ch. 2009;53:2553–6.

Lo et al. BMC Infectious Diseases  (2016) 16:154 Page 12 of 12


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Sample collection
	Quantification of parasitemia by real-time qPCR assays
	Microsatellite genotyping
	Resistance gene sequencing of P. falciparum
	Pfmdr1 gene copy estimation
	Statistical analyses

	Results
	Change in parasitemia after initial drug treatment
	Resistance gene polymorphisms in P. falciparum

	Discussion
	Conclusions
	Ethics statement
	Availability of data and materials

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Author’s information
	Acknowledgments
	Funding
	Author details
	References

