
Theoretical Computer Science 410 (2009) 837–846

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A constrained edit distance algorithm between semi-ordered trees
Aïda Ouangraoua ∗, Pascal Ferraro
LaBRI - Université de Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France

a r t i c l e i n f o

Article history:
Received 19 February 2008
Received in revised form 17 September
2008
Accepted 17 November 2008
Communicated by M. Crochemore

Keywords:
Semi-ordered trees
Theory of computation
Tree editing
Dynamic programming

a b s t r a c t

In this paper, we propose a formal definition of a new class of trees called semi-ordered trees
and a polynomial dynamic programming algorithm to compute a constrained edit distance
between such trees. The core of the method relies on a similar approach to compare
unordered [Kaizhong Zhang, A constrained edit distance between unordered labeled trees,
Algorithmica 15 (1996) 205–222] and ordered trees [Kaizhong Zhang, Algorithms for
the constrained editing distance between ordered labeled trees and related problems,
Pattern Recognition 28 (3) (1995) 463–474]. The method is currently applied to evaluate
the similarity between architectures of apple trees [Vincent Segura, Aida Ouangraoua,
Pascal Ferraro, Evelyne Costes, Comparison of tree architecture using tree edit distances:
Application to two-year-old apple tree, Euphytica 161 (2007) 155–164].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Edit distances, initially introduced for string-to-string comparison [1], were later extended to compare ordered trees [2,
3] and unordered trees [4]. Ordered trees are trees in which the left-to-right order of each node’s children is fixed [2] while
unordered trees are trees in which no order is considered on the set of children of any vertex.
In this context, the tree-to-tree edition problem consists in determining a sequence of edit operations (substitutions,

insertions and deletions of vertices) of minimum cost needed to transform one tree into the other, the cost of a sequence
being the sumof the costs of its edit operations. The edit operations are constrained in order to preserve the topology of trees
after their application. Basically, in an optimal sequence of edit operations nomore than one edit operation can be applied on
any vertex of a tree and the edit operationsmustmaintain the ancestor–descendant relation between vertices. Furthermore,
in ordered tree comparisons, an additional constraint is added to maintain the left-to-right order of each node’s children [2]
while in the case of unordered trees an additional constraint preserves the descendants of the nearest common ancestor of
two vertices [4].
In this paper, we propose unifying these two approaches by introducing a new class of trees called semi-ordered trees.

A semi-ordered tree is a tree with a semi-order relation defined on the set of children of each vertex. Thus, ordered and
unordered trees can be considered as semi-ordered trees using an appropriate definition of the semi-order relations between
children of vertices. Finally, we propose an algorithm to compute a constrained edit distance between two semi-ordered
trees using the dynamic programming principle.
The introduction of semi-ordered trees is motivated by a biological application. Indeed, in most botanical applications,

trees are used to represent the topological structure of plant architectures [5] and then to evaluate the similarity between
these architectures using edit distances [6]. Generally, the topological structure of plant architectures can be modeled by
ordered trees. However, the order between the components of a plant is often partially measured and in some cases, only
semi-order relations instead of order relations are measured between the components. In these cases, plant architectures
can be modeled by semi-ordered trees.

∗ Corresponding author. Tel.: +33 5 40 00 35 10.
E-mail addresses: ouangrao@labri.fr (A. Ouangraoua), ferraro@labri.fr (P. Ferraro).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.11.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81156647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:ouangrao@labri.fr
mailto:ferraro@labri.fr
http://dx.doi.org/10.1016/j.tcs.2008.11.022

838 A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846

Fig. 1. (a) A semi-ordered tree T , (b) the ordered partition of the children of the vertex x induced by the total semi-order relationvx on C(x).

In Section 2, we formally define a semi-ordered tree. In Section 3, we first define the notion ofmapping between two semi-
ordered trees, and then a polynomial algorithm for the computation of a constrained edit distance between semi-ordered
trees is described.

2. Semi-ordered trees

A directed graphG = (V , E) consists of a set V of vertices, a set E of edges, each edge being represented by an ordered pair
of vertices. The order (i.e. number of vertices) of a graph G = (V , E) is denoted by |G| and the number of vertices in a subset
of vertices X ⊆ V is denoted by |X |. If G is a directed graph then for any edge (x, y) in E, x and y are called a parent-child
pair. A rooted tree is then an acyclic, connected, directed graph T = (V , E) in which every vertex except one (the root r)
has exactly one parent vertex: the root has no parent. The parent of a vertex x is denoted by P(x) and the set of children of
x is denoted by C(x). A path between two vertices x and y is a (possibly empty) sequence of edges {(xi, xi+1)i=1,n} such that
x1 = x and xn+1 = y. A vertex y is then a descendant of a vertex x (and reciprocally x is an ancestor of y) if there exists a path
between x and y. The ancestor–descendant relation on the set of vertices of a rooted tree is a partial order relation on the
set of its vertices denoted by≤: by x ≤ ywe mean that x is an ancestor of y. The nearest common ancestor of two vertices x
and y of T , denoted by x∧ y, is the common ancestor of x and y such that for any common ancestor z of x and y, z ≤ (x∧ y).
In the following, T [x] denotes the subtree of T rooted at x which contains all the descendants of x, and the empty tree and
the empty graph are both denoted by ∅ = (∅,∅).
A forest is a set of rooted trees. The set of the roots of the trees composing a forest F is denoted by roots(F). Let T be a

rooted tree. Let x be a vertex of T . Let X = {x1, . . . , xn} be a subset of C(x). F [X] denotes the subforest of T consisting of
subtrees rooted at vertices of X , F [X] = {T [x1], . . . , T [xn]}. Thus, the subforest of a vertex x denoted by F [C(x)] is obtained
from T [x] by removing the root x and all edges incident with x. F [C(x)] is simply denoted by F [x].
An ordered tree is a pair (T , S�)where T is a rooted tree and S� = {�x, x ∈ T } is a set of total order relations such that for

any vertex x of T ,�x is a total order relation on C(x). The set of total order relations S� and the ancestor–descendant relation
≤ on the vertices of T induce two total order relations on the set of vertices of T (namely prefix or postfix order relations). An
unordered tree is a rooted tree T such that the only significant relation between the vertices of T is the ancestor–descendant
relation (all the children of a vertex of T are equivalent). We propose unifying these two classes of trees in a single one called
semi-ordered trees (Fig. 1.a). A semi-order relation [7] v on a set V is a reflexive and transitive binary relation on V . v is a
total semi-order relation if for any pair (x, y) of elements of V , x v y or y v x, otherwisev is called partial semi-order relation.
In Fig. 1, the total semi-order relation on the set of children of a given vertex in a tree is defined by the relation ‘‘less than or
equal to’’ on the numbers associated to the vertices.
Definition 1 (Semi-ordered Tree). A semi-ordered tree is a pair (T , Sv) where T is a rooted tree and Sv = {vx, x ∈ T } is a
set of total semi-order relations such that for any vertex x of T ,vx is a total semi-order relation on C(x).

Note that an unordered tree T is a semi-ordered tree (T , Sv) such that for any vertex x of T ,vx is an equivalence relation
having only one equivalence class, i.e. for any pair (x1, x2) in C(x) × C(x), x1 vx x2 and x2 vx x1 (all the children of x are
equivalent). Similarly, an ordered tree T is a semi-ordered tree (T , Sv) such that for any vertex x of T , vx is a total order
relation on C(x). A semi-order (or pre-order) relation on C(x)means that some elements of C(x) are equivalent (equal) while
some others can be totally ordered. If there are some elements which are not comparable then the semi-order is partial
otherwise it is a total semi-order relation.
Let (T , Sv) be a semi-ordered tree. The set of semi-order relations Sv and the ancestor–descendant relation ≤ on the

vertices of T induce an order relation denoted byv on the set of vertices of T defined as follows. Let us consider two vertices
x and y. x will be smaller than y according to v if and only if x is an ancestor of y or there exists two ancestor s and t of
respectively x and y, having the same parent u such that s is strictly smaller than t according tovu.
Formally, for any vertex u of T and s, t ∈ C(u), the relation s vu t and t 6vu s is denoted by s @u t . The order relationv

is such that for any pair (x, y) of vertices of T , x and y satisfy x v y if and only if x is an ancestor of y or there is a pair (s, t)
of vertices in C(x ∧ y) such that s ≤ x and t ≤ y and s @x∧y t:

∀x, y ∈ V , x v y⇔
{
x ≤ y or,
∃ s, t ∈ C(x ∧ y) | s ≤ x and t ≤ y and s @x∧y t.

A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846 839

Note that if T is an unordered tree then v is simply the ancestor–descendant relation and if T is an ordered
tree then v is a total order relation on V (namely the prefix order relation), in any other case v is a partial order
relation.
Let V be a set and v a total semi-order relation on V . v induces an equivalence relation (i.e. reflexive, transitive and

symmetric) on V denoted by≡ and defined by:

∀x, y ∈ V , x ≡ y⇔ x v y and y v x.

The equivalence class of an element x in V is denoted by [x] = {y ∈ V | x ≡ y} and the set of equivalence classes of the
elements of V (defining a partition of V) is denoted by V≡ = {[x] | x ∈ V }. In the same way, the total semi-order relationv
induces a total order relation� (i.e. reflexive, transitive and antisymmetric) on V≡ defined by:

∀[x], [y] ∈ V≡, [x] � [y] ⇔ x v y.

For any vertex x of T , the partition of C(x) induced by vx is denoted by C(x)≡ (Fig. 1.b). For any set X in C(x)≡, the
left-class of X denoted by X− is the set of all vertices xi in C(x) such that for any vertex xj in X , xi @ xj and the augmented-
left-class of X denoted by X+ is defined as X+ = X ∪ X−. The maximal set X of C(x)≡ for the order relation defined on
C(x)≡ is such that C(x) = X+, then the subforest of x is the subforest of T consisting of subtrees rooted at vertices of X+,
F [x] = F [X+].
For example, in Fig. 1.b, the ordered partition of C(x) is C(x)≡ = {{x1, x2}, {x3, x4}, {x5}}. If the set X is {x1, x2}

(respectively, {x3, x4}; {x5}) then the left-class of X is X− = ∅ (respectively, X− = {x1, x2}; X− = {x1, x2, x3, x4}) and
the augmented-left-class of X is X+ = {x1, x2} (respectively, X+ = {x1, x2, x3, x4}; X+ = C(x)).
A semi-ordered forest is a pair (F ,vF) where F is a set of semi-ordered trees and vF is a total semi-order relation on

roots(F). Note that, for any set X in C(x)≡, (F [X],vx), (F [X−],vx) and (F [X+],vx) are semi-ordered forests since F [X],
F [X−] and F [X+] are sets of semi-ordered trees andvx is a total semi-order relation on roots(F [X]) = X , roots(F [X−]) = X−
and roots(F [X+]) = X+.
In the following, trees are labeled on an alphabetΣ and α is a function that associates a label ofΣ to each vertex of a tree

T = (V , E), α : V → Σ . A distance d is assumed to be defined on the labels of Σ . A distance1 between vertices is defined
using d: γ (x, y) = d(α(x), α(y)). Let λ be a symbol not inΣ . d is extended by defining quantities d(α(x), λ) and d(λ, α(y))
such that d is a distance on Σ ∪ {λ}. The distance d(α(x), λ) between the label of a vertex x and the label λ is denoted by
γ (x, λ) by convention, and similarly for γ (λ, y).
In the following, (T1, Sv1) and (T2, Sv2) are two semi-ordered trees. If there is no confusion, (T1, Sv1) and (T2, Sv2) are

respectively denoted by T1 and T2,v1 andv2 are the partial order relations respectively defined on the set of vertices of T1
and T2. They are simply denoted byv if there is no confusion.

3. Edit distance

The computation of an edit distance between two trees consists in determining a sequence of edit operations ofminimum
cost which transforms an initial tree into a target tree. In order to characterize the effect of a sequence of edit operations
between two trees, edit distance mappings between vertices of trees has been introduced in [4] for unordered and [2,3] for
ordered trees.

3.1. Mapping between semi-ordered trees

An optimal sequence of edit operations (i.e. a sequence having a minimum cost) from T1 to T2 is such that the
corresponding mapping associates a vertex of T1 to at most one vertex of T2 and reciprocally and preserves the relations
defined on the vertices of T1 and T2, namely the ancestor–descendant relation and the semi-order relations. The preservation
of the ancestor–descendant relationship ≤ and the semi-order relations vx is equivalent to the preservation of ≤ and the
order relationv induced on the vertices of T1 and T2.
A valid mapping from T1 = (V1, E1) to T2 = (V2, E2) is a setM of ordered pairs of vertices (s, s′) with s ∈ V1 and s′ ∈ V2

such that for any pairs (s, s′) and (t, t ′) inM:

s = t ⇔ s′ = t ′ (one-to-one)
s ≤ t ⇔ s′ ≤ t ′ (ancestor–descendant preservation)
s v t ⇔ s′ v t ′ (semi-order preservation)

For any pair (s, s′) in M , s and s′ are called images of each other and are denoted by M(s) = s′ and M(s′) = s. If there is
no confusion, (s, s′) ∈ M is denoted by s ∈ M and s′ ∈ M . Let F1 (respectively, F2) be a subforest of T1 (respectively, T2). The

1 A distance d on a set V is a function that associates to each pair of elements of V a non-negative real such that for any x, y, z in V , d(x, y) = 0 if and
only if x = y, d(x, y) = d(y, x) and d(x, y)+ d(y, z) ≥ d(x, z).

840 A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846

Fig. 2. A valid mapping from a semi-ordered tree T1 to a semi-ordered tree T2 and the images M(F1) and M(F2) of subforests F1 and F2 of T1 and T2
respectively. The vertices of T1 and T2 images of each other are linked by dotted lines.

Fig. 3. Examples of mappings between two semi-ordered trees T1 and T2 .M = {(x, y), (w1, w2), (x1, x2), (y1, y2), (z1, z2)} is a not valid mapping from T1
to T2: y1 v z1 whereas y2 6v z2 . M\{(z1, z2)} is a valid but not constrained mapping: (w1 ∧ x1) ≤ y1 whereas (w2 ∧ x2) 6≤ y2 . M\{(y1, y2), (z1, z2)} is a
constrained mapping from T1 to T2 .

image of F1 (respectively, F2) denoted by M(F1) (respectively, M(F2)) is the subforest of T2 (respectively, T1) containing all
the images of vertices of F1 (respectively, F2) and their descendants. The concept of mapping is extended to forests and sets
of vertices not necessarily connected.
Let M be a valid mapping from T1 to T2 (Fig. 2). Let I (respectively, J) be the set of vertices of T1 (respectively, T2) which

do not appear in a pair ofM . The cost ofM is defined by:

γ (M) =
∑

(s,s′)∈M

γ (s, s′)+
∑
s∈I

γ (s, λ)+
∑
s′∈J

γ (λ, s′).

The edit distance between T1 and T2 is the minimum cost of a valid mapping from T1 to T2. Since unordered trees are
particular cases of semi-ordered trees, computing the edit distance between two semi-ordered trees is at least as hard as
the computation of the edit distance between unordered trees which is a MAX-SNP-hard problem [8].

3.2. Constrained edit distance

Since the computation of the edit distance between two semi-ordered trees is a MAX-SNP-hard problem, we consider a
constrained version of the problem: the computation on semi-ordered trees of the constrained edit distance introduced by
Zhang [4] to compare unordered trees.
A constrained mapping from T1 to T2 is a valid mapping (M, T1, T2) such that for any pairs (s, s′), (t, t ′) and (u, u′) inM:

(s ∧ t) ≤ u⇔ (s′ ∧ t ′) ≤ u′(structure preservation)

Examples of mappings between semi-ordered trees are presented in Fig. 3. Let x (respectively, y) be a vertex of T1
(respectively, T2). Let X = {x1, . . . , xn} (respectively, Y = {y1, . . . , ym}) be a subset of C(x) (respectively, C(y)). The set
of constrained mappings from T1[x] to T2[y] (respectively, F1[X] to F2[Y]) is denoted by MC (T1[x], T2[y]) (respectively,
MC (F1[X], F2[Y])).
Definition 2 (Constrained Edit Distance). The constrained edit distance between T1 and T2 is the minimum cost of a
constrained mapping from T1 to T2:

DC (T1, T2) = min{γ (M) |M ∈MC (T1, T2)}.
Zhang [4] has described a dynamic programming algorithm to compute the constrained edit distance between two
unordered trees using reductions of some subproblems tominimum cost maximum flow problems [9]. Similarly, we propose
in the following a reduction of the computation of the constrained edit distance between semi-ordered trees to minimum
cost maximum flow problems. The following recurrence formulas form the basis of the algorithm for the computation of
the constrained edit distance between two semi-ordered trees.

A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846 841

Fig. 4. A restricted mapping from F1[C(x)] to F2[C(y)] such that P (M) = {(x1, y1), (x2, y3)}.

Lemma 3 (Initialization). Let x, y be two vertices of T1 and T2 respectively. X and Y are two sets of vertices respectively in C(x)≡
and C(y)≡:

DC (∅,∅) = 0
DC (T1[x],∅) = γ (x, λ)+ DC (F1[x],∅)
DC (F1[X],∅) =

∑
xk∈X
DC (T1[xk],∅)

DC (F1[X+],∅) = DC (F1[X],∅)+ DC (F1[X−],∅)
DC (∅, T2[y]) = γ (λ, y)+ DC (∅, F2[y])
DC (∅, F2[Y]) =

∑
yk∈Y
DC (∅, T2[yk])

DC (∅, F2[Y+]) = DC (∅, F2[Y])+ DC (∅, F2[Y−]).

Proof. The two first formulas are obvious. Since the forest F1[X] is composed of subtrees rooted at vertices of X ,DC (F1[X],∅)
is equal to the sum of the values DC (T1[xk],∅) such that xk is a vertex in X . Since X+ = X ∪ X−, DC (F1[X+],∅) is equal to
DC (F1[X],∅) plus DC (F1[X−],∅). The proofs of the last three formulas are symmetric to the previous proofs. �

Lemma 4 (Constrained Edit Distance Between Subtrees). Let x and y be two vertices of T1 and T2 respectively. The constrained
edit distance between T1[x] and T2[y] is:

DC (T1[x], T2[y]) = min

{DC (F1[x], F2[y])+ γ (x, y)
minyk∈C(y){DC (T1[x], T2[yk])− DC (∅, T2[yk])} + DC (∅, T2[y])
minxk∈C(x){DC (T1[xk], T2[y])− DC (T1[xk],∅)} + DC (T1[x],∅).

The proof of Lemma 4 (in Appendix) is similar to the proof of Lemma 6 in [4]. Indeed, only the preservation of ancestor–
descendant relations is needed to compute DC (T1[x], T2[y]).
However, to compute DC (T1[x], T2[y]), we first need to compute DC (F1[x], F2[y]). The computation of DC (F1[x], F2[y])

uses the notion of restrictedmapping introduced by Zhang [4] using a different formalism. Let X = {x1, . . . , xn} (respectively,
Y = {y1, . . . , ym}) be a subset of C(x) (respectively, C(y)). A restricted mapping from F1[X] to F2[Y] is a constrained mapping
M from F1[X] to F2[Y]) such that for any pairs (s, s′) and (t, t ′) inM (Fig. 4):

(s ∧ t) ∈ F1[X] ⇔ (s′ ∧ t ′) ∈ F2[Y]

This means that each tree of F1[X] is mapped on at most one tree of F2[Y] and reciprocally. Thus, M induces a valid
mapping from X to Y denoted by P (M) (Fig. 4) and defined as follows:

P (M) = {(xi, yj) ∈ X × Y |M(T1[xi]) ⊆ M(T2[yj]) and M(T2[yj]) ⊆ M(T1[xi])}.

The set of restricted mappings from F1[X] to F2[Y] is denoted byR(F1[X], F2[Y]).

Lemma 5 (Constrained Edit Distance Between Subforests). Let x and y be two vertices of T1 and T2 respectively. The constrained
edit distance between F1[x] and F2[y] is:

DC (F1[x], F2[y]) = min

{min{γ (M),M ∈ R(F1[x], F2[y])}
minyk∈C(y){DC (F1[x], F2[yk])− DC (∅, F2[yk])} + DC (∅, F2[y])
minxk∈C(x){DC (F1[xk], F2[y])− DC (F1[xk],∅)} + DC (F1[x],∅).

The proof of Lemma 5 (in Appendix) is only based on the preservation of the ancestor–descendant relation and the
structure. It is then similar to the proof of Lemma 7 in [4].
Finally, the computation of DC (F1[x], F2[y]) leads us to the computation of an optimal restricted mapping between F1[x]

and F2[y]. Let P be a valid mapping from C(x) to C(y). Let I (respectively, J) be the set of vertices of C(x) (respectively, C(y))
which do not appear in a pair of P . We denote by γ ∗(P) the value:

γ ∗(P) =
∑

(xi,yj)∈P

DC (T1[xi], T2[yj])+
∑
xi∈I

DC (T1[xi],∅)+
∑
yj∈J

DC (∅, T2[yj]).

842 A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846

Let M be an optimal restricted mapping from F1[x] to F2[y]. Since M has a minimum cost, its cost is γ ∗(P (M)). Thus, a
way of computing the minimum cost of a restricted mapping in R(F1[x], F2[y]) is finding a valid mapping P from the set
of children of x (i.e. C(x)) to the set of children of y (i.e. C(y)) such that γ ∗(P) is minimum. In the case of unordered trees,
the sets C(x) and C(y) are unordered therefore if |C(x)| = |C(y)|, finding a valid mapping P from C(x) to C(y) such that
γ ∗(P) is minimum is equivalent to the computation of a bipartite matching of minimum weight in the weighted bipartite
graph (C(x) ∪ C(y), C(x)× C(y)) such that the weight of an edge (xi, yj) ∈ C(x)× C(y) is DC (T1[xi], T2[yj]). More generally,
Zhang [4] reduces the computation of P to a minimum cost maximum flow problem [9]. In the current case, P is a mapping
that conserves the semi-order relation defined on C(x) and C(y) and the problem cannot be immediately reduced to a
minimum cost maximum flow problem. Nevertheless, P can be partitioned into mappings between forests whose sets of
roots are unordered and thus, the computations of the costs of thesemappings are reduced tominimum costmaximum flow
problems. The minimum cost of a restricted mapping from a semi-ordered forest F1 to a semi-ordered forest F2 is denoted
by DR(F1, F2):

DR(F1, F2) = min{γ (M),M ∈ R(F1, F2)}.

For any vertices x and y of T1 and T2 respectively, since the set X (respectively, Y) of C(x)≡ (respectively, C(y)≡)
which is maximal for the order relation defined on C(x)≡ (respectively, C(y)≡) is such that F1[x] = F1[X+] (respectively,
F2[y] = F2[Y+]), DR(F1[x], F2[y]) = DR(F1[X+], F2[Y+]).

Theorem 6 (Minimum Cost of a Restricted Mapping). Let x, y be two vertices of T1 and T2 respectively. X and Y are two sets of
vertices respectively in C(x)≡ and C(y)≡. The minimum cost of a restricted mapping from F1[X+] to F2[Y+] is:

DR(F1[X+], F2[Y+]) = min

{DR(F1[X], F2[Y])+ DR(F1[X−], F2[Y−])
DR(∅, F2[Y])+ DR(F1[X+], F2[Y−])
DR(F1[X],∅)+ DR(F1[X−], F2[Y+]).

Proof. Let M be a restricted mapping from F1[X+] to F2[Y+]. We consider 4 cases according to whether M(F1[X]) = ∅ or
not andM(F2[Y]) = ∅ or not:

• IfM(F1[X] 6= ∅) andM(F2[Y] 6= ∅), sinceM is a valid mapping (conservation of the partial order relation), for any vertex
u1 in F1[X] (respectively, u2 in F2[Y]) which appears inM ,M(u1) ∈ F2[Y] (respectively,M(u2) ∈ F1[X]). ThenM is such
that:

· M(F1[X]) ⊆ F2[Y] andM(F2[Y]) ⊆ F1[X] and,
· M(F1[X−]) ⊆ F2[Y−] andM(F2[Y−]) ⊆ F1[X−].

The cost ofM is equal to the cost of a restricted mapping from F1[X] to F2[Y] plus the cost of a restricted mapping from
F1[X−] to F2[Y−] and sinceM has a minimum cost, its cost is:

γ (M) = DR(F1[X], F2[Y])+ DR(F1[X−], F2[Y−]).

• IfM(F1[X] 6= ∅) andM(F2[Y]) = ∅ then sinceM is of minimum cost, its cost is:

γ (M) = DR(∅, F2[Y])+ DR(F1[X+], F2[Y−]).

• IfM(F1[X]) = ∅ andM(F2[Y] 6= ∅) then this case is symmetric to the previous one and the cost ofM is:

γ (M) = DR(F1[X],∅)+ DR(F1[X−], F2[Y+]).

• IfM(F1[X]) = ∅ andM(F2[Y]) = ∅ thenM2 = M ∪M1 whereM1 is a non-empty restricted mapping from F1[X] to F2[Y]
is such thatM2 ∈ R(F1[X+], F2[Y+]) and γ (M2) ≤ γ (M) (since γ satisfies the triangle inequality), the cost ofM is then
greater than or equal to the minimum cost computed in the first case.

The minimum cost of a mapping inR(F1[X+], F2[Y+]) is then the minimum of the minimum costs of mappings in the first
three cases. �

In the formula for the computation of DR(F1[X+], F2[Y+]) (Lemma 6),
DR(F1[X], F2[Y]) is the only part of the equation that is not of the formDR(F1[Z+], F2[T+]) for some (Z, T) smaller than (X, Y).
Then, to compute DR(F1[X+], F2[Y+]), we first need to compute DR(F1[X], F2[Y]) which can be reduced to a minimum cost
maximum flow problem as for the minimum cost of a restricted mapping between unordered forests [4] using the notions
of network and flow.
A network is a quintuple G = (V , E, c, s, t) such that:

• (V , E) is a directed graph,
• c is a function that associates to each ordered pair (u, v) in V × V its capacity, a non-negative real c(u, v) and such that
(u, v) 6∈ E ⇒ c(u, v) = 0,
• s is a single vertex in V which has no parent and is called the source,
• t is a single vertex in V which has no child and is called the sink.

A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846 843

Fig. 5. (a) A tree T1[x], (b) a tree T2[y] and (c) the flow network R(C(x), C(y)): all the edges are directed from the left to the right and for any edge (u, v),
c(u, v) = 1 except c(e, t) = 2.

A flow in a network G = (V , E, c, s, t) is a function f that associates to each ordered pair (u, v) in V × V a real such that:

• f (u, v) ≤ c(u, v),
• f (u, v) = −f (v, u),
•
∑

w∈V f (u, w) = 0 ∀u 6= s, t .

The value of a flow f in G denoted by |f | is |f | =
∑

v∈V f (s, v). If d is a function that associates to each (u, v) in E a real cost
d(u, v), the cost of the flow f denoted by d(f) is d(f) =

∑
(u,v)∈E d(u, v) · f (u, v). Let G = (V , E, c, s, t) be a flow network, d

a cost function defined on E. The minimum cost maximum flow problem in G consists in computing a flow f in G such that
|f | is maximum and d(f) is minimum.
For any x ∈ T1, X ⊆ C(x), y ∈ T2, Y ⊆ C(y), R(X, Y) denotes the flow network G = (V , E, c, s, t) such that (Fig. 5):

• If |X | = |Y |
· V = {s, t} ∪ X ∪ Y with s and t the source and the sink of G respectively.
· E = ({s} × X) ∪ (X × Y) ∪ (Y × {t}).
· for any (u, v) in E, c(u, v) = 1.

• If |X | > |Y |
· V = {s, t, e} ∪ X ∪ Y with s and t the source and the sink of G respectively.
· E = ({s} × X) ∪ (X × (Y ∪ {e})) ∪ ((Y ∪ {e})× {t}).
· for any (u, v) in E\{(e, t)}, c(u, v) = 1 and c(e, t) = |X | − |Y |.

• If |X | < |Y |
· V = {s, t, e} ∪ X ∪ Y with s and t the source and the sink of G respectively.
· E = ({s} × (X ∪ {e})) ∪ ((X ∪ {e})× Y) ∪ (Y × {t}).
· for any (u, v) in E\{(s, e)}, c(u, v) = 1 and c(s, e) = |Y | − |X |.

Lemma 7 (Computation of DR). Let x, y be two vertices of T1 and T2 respectively. X and Y are two sets of vertices respectively in
C(x)≡ and C(y)≡. The minimum cost of a restricted mapping from F1[X] to F2[Y], DR(F1[X], F2[Y]) is computed as the minimum
cost of a maximum flow in the flow network R(X, Y) with the costs:

• If |X | = |Y | then ∀(xi, yj) ∈ X × Y , d(xi, yj) = DC (T1[xi], T2[yj]) and for any other edge (u, v), d(u, v) = 0,
• If |X | > |Y | then ∀(xi, yj) ∈ X × Y , d(xi, yj) = DC (T1[xi], T2[yj]), ∀xi ∈ X, d(xi, e) = DC (T1[xi],∅) and for any other edge
(u, v), d(u, v) = 0,
• If |X | < |Y | then ∀(xi, yj) ∈ X × Y , d(xi, yj) = DC (T1[xi], T2[yj]), ∀yj ∈ Y , d(e, yj) = DC (∅, T2[yj]) and for any other edge
(u, v), d(u, v) = 0.

Proof. The computation of DR(F1[X], F2[Y]) is equivalent to find a valid mapping P from X to Y such that γ ∗(P) is minimum
with:

γ ∗(P) =
∑

(xi,yj)∈P

DC (T1[xi], T2[yj])+
∑
xi∈I

DC (T1[xi],∅)+
∑
yj∈J

DC (∅, T2[yj])

where I (respectively, J) is the set of vertices of X (respectively, Y) which do not appear in a pair of P . If I 6= ∅ and J 6= ∅
then for any (xi, yj) in I × J , P2 = P ∪ {(xi, yj)} is such that γ ∗(P2) ≤ γ ∗(P). Then the minimum cost of a restricted mapping
from F1[X] to F2[Y] is the minimum value γ ∗(P) for a valid mapping P from X to Y such that |I| = 0 or |J| = 0. Thus if
|X | = |Y | (respectively, |X | > |Y |; |X | < |Y |) then |I| = 0 and |J| = 0 (respectively, |I| = |X | − |Y | and |J| = 0; |I| = 0 and
|J| = |Y | − |X |). Since X and Y are unordered sets and the maximum value of a flow in R(X, Y) is f ∗ = max{|X |, |Y |} , γ ∗(P)
is exactly the minimum cost of a maximum flow in R(X, Y)with the defined cost. �
Using Lemmas 3, 4, 5, 7 and Theorem 6, Algorithm 3.2 describes the computation of DC (T1, T2). In the algorithm, the

vertices of T1 (respectively, T2) are numbered from 1 to |T1| (respectively, |T2|) according to a postfix order (i.e. induced by
a post-order traversal of each of the trees) and for any vertex x ∈ T1 (respectively, y ∈ T2), the sets of C(x)≡ (respectively,
C(y)≡) are numbered from 1 to |C(x)≡| (respectively, |C(y)≡|) according the order relation defined on C(x)≡ (respectively,

844 A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846

C(y)≡). The validity of the algorithm 3.2 follows from six points:
(1) Lemmas 3, 4, 5, 7 and Theorem 6 are valid,
(2) The dynamic programming tables are first initialized,
(3) For any (x, y) ∈ T1 × T2, DC (T1[x], T2[y]) is computed after DC (F1[x], F2[y]), all DC (F1[xk], F2[y]) such that xk ∈ C(x) and
all DC (F1[x], F2[yk]) such that yk ∈ C(y),

(4) For any (x, y) ∈ T1 × T2, DC (F1[x], F2[y]) is computed after DR(F1[x], F2[y]), all DC (F1[xk], F2[y]) such that xk ∈ C(x) and
all DC (F1[x], F2[yk]) such that yk ∈ C(y),

(5) For any (X, Y) ∈ C(x)≡ × C(y)≡, DR(F1[X+], F2[Y+]) is computed after distances DR(F1[X], F2[Y]), DR(F1[X−], F2[Y−]),
DR(F1[X+], F2[Y−]) and DR(F1[X−], F2[Y+]),

(6) For any (X, Y) ∈ C(x)≡ × C(y)≡, DR(F1[X], F2[Y]) is computed after all distances DC (T1[xi], T2[yj]) such that (xi, yj) ∈
C(x)× C(y).

Algorithm 3.2.
Begin
initialize dynamic programming tables using Lemma 3
For x = 1→ | T1 | Do

For y = 1→ | T2 | Do
For X = 1→ | C(x)≡ | Do

For Y = 1→ | C(y)≡ | Do
compute DR(F1[X], F2[Y]) using Lemma 7
compute DR(F1[X+], F2[Y+]) using Theorem 6

compute DC (F1[x], F2[y]) using Lemma 5
compute DC (T1[x], T2[y]) using Lemma 4

Output: DC (T1[| T1 |], T2[| T2 |])
End

The complexity of the computation of DC (T1, T2) is due to the computations of DR(F1[X], F2[Y]) for all x ∈ T1, X ∈ C(x)≡,
y ∈ T2, Y ∈ C(y)≡, which are computed by solving minimum cost maximum flow problems [9]. For any vertices x and y of
T1 and T2 respectively, X in C(x)≡ and Y in C(y)≡, an algorithm presented by Tarjan [9] allows computing the minimum
cost of a maximum flow in R(X, Y) in time O(|X | × |Y | × (|X | + |Y |) × log2(|X | + |Y |)). For any i in {1, 2}, we set
deg(Ti) = maxx∈Ti{deg(x)} with deg(x) = |C(x)|. The complexity in time of the computation of DC (T1, T2) using Algorithm
3.2 is then in:

O

(∑
x∈T1

∑
y∈T2

∑
X∈C(x)≡

∑
Y∈C(y)≡

|X | × |Y | × (|X | + |Y |)× log2(|X | + |Y |)

)
.

≤ O

(∑
x∈T1

∑
y∈T2

∑
X∈C(x)≡

|X | ×
∑
Y∈C(y)≡

|Y | × (deg(T1)+ deg(T2)) log2(deg(T1)+ deg(T2))

)
.

≤ O

(∑
x∈T1

|C(x)| ×
∑
y∈T2

|C(y)| × (deg(T1)+ deg(T2))× log2(deg(T1)+ deg(T2))

)
.

≤ O(|T1| × |T2| × (deg(T1)+ deg(T2))× log2(deg(T1)+ deg(T2))).

Finally, the computation of DC (T1, T2) has then a complexity in time bounded by O(|T1| × |T2| × (deg(T1) + deg(T2)) ×
log2(deg(T1)+ deg(T2))).
Concerning the space complexity of Algorithm 3.2, for any vertices x and y of T1 and T2 respectively and any sets of vertices

X and Y respectively in C(x)≡ and C(y)≡, the minimum costs of restricted mappings between subforests (DR(F1[X], F2[Y])
and DR(F1[X+], F2[Y+])) can be temporarily stored until the computation of DC (F1[x], F2[y]). The temporary array used to
store these values requires space O(deg(T1)× deg(T2)). Then, the algorithm for the computation of DC (T1, T2) only requires
a permanent array to memorize the intermediate computed distances between subforests (DC (F1[x], F2[y])) and between
subtrees (DC (T1[x], T2[y])). This permanent array requires spaceO(|T1|×|T2|). The space complexity of the algorithm is then
bounded by O(|T1| × |T2|).
If T1 and T2 are ordered trees (respectively, unordered trees), then Algorithm 3.2 has exactly the same steps (i.e. series

of instructions) and results as the algorithm proposed by [3] (respectively, [4]) to compute the constrained edit distance
between two ordered trees (respectively, unordered trees).

4. Conclusion

In this paper, we have formally defined semi-ordered trees and proposed an edit distance between such trees. The
algorithm to compute the constrained edit distance between two semi-ordered trees uses the dynamic programming
principle and works in polynomial time.

A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846 845

This work is part of a project to develop computer tools for comparing plant architectures [10] and the algorithm has
been implemented in VPlants, a software dedicated to plant architecture analysis [11]. From an algorithmical point of view,
the consideration of the constrained edit distance (using constrained and restricted mapping) for the comparison of plant
architectures has allowed us to study a tractable problem (the computation of the constrained edit distance) but it is also
relevant from a biological viewpoint. Indeed, in the plant a branching system is generated by a same meristem.2 Then, it is
normal for this branching system to be mapped on a ramified system generated by a single meristem.
This tool opens new perspectives for the comparison of plant architectures. Extensions of the algorithm to multiscale

trees and local edition [12] are currently studied. The definition of distances between plant architectures highlights some
general aspects concerning plantmodeling. Thesemethods are for instance useful and essential to improve plant simulation
techniques.

Acknowledgement

This work was supported by the research project grant ANR-06-BLANC-0045 (BRASERO) from the national agency for
research.

Appendix. Proofs of Lemmas 4 and 5

Proof of Lemma 4. We consider a partition ofMC (T1[x], T2[y]) in 4 subsets according to whetherM(T1[x]) ⊆ F2[y] or not
andM(T2[y]) ⊆ F1[x] or not. LetM be a minimum cost mapping inMC (T1[x], T2[y]).

• IfM(T1[x]) ⊆ F2[y] andM(T2[y]) 6⊆ F1[x] then x ∈ M and y 6∈ M , then there is a vertex yk ∈ C(y) such thatM(x) ∈ T2[yk]
and sinceM is a valid mapping (preservation of the ancestor–descendant relation) thenM(T1[x]) ⊆ T2[yk]. SinceM is a
minimum cost mapping, its cost is:

γ (M) = min
yk∈C(y)

{DC (T1[x], T2[yk])− DC (∅, T2[yk])} + DC (∅, T2[y]).

• IfM(T1[x]) 6⊆ F2[y] andM(T2[y]) ⊆ F1[x], then this case is symmetric to the previous one:

γ (M) = min
xk∈C(x)

{DC (T1[xk], T2[y])− DC (T1[xk],∅)} + DC (T1[x],∅).

• IfM(T1[x]) 6⊆ F2[y] andM(T2[y]) 6⊆ F1[x] then x ∈ M and y ∈ M , then (x, y) ∈ M sinceM is a validmapping (preservation
of the ancestor–descendant relation). SinceM is a minimum cost mapping, its cost is:

γ (M) = DC (F1[x], F2[y])+ γ (x, y).

• IfM(T1[x]) ⊆ F2[y] andM(T2[y]) ⊆ F1[x] then x 6∈ M and y 6∈ M . SinceM is a minimum cost mapping, its cost is:

γ (M) = DC (F1[x], F2[y])+ γ (x, λ)+ γ (λ, y).

Since γ verifies the triangle inequality, the minimum cost in this case is greater than or equal to the minimum cost in
the previous case.

The minimum cost of a mapping inMC (T1[x], T2[y]) is then the minimum of the minimum costs of mappings in the first
three cases. �
Proof of Lemma 5. We consider a partition ofMC (F1[x], F2[y]) in 4 subsets according to whether there is a vertex yk ∈ C(y)
such thatM(F1[x]) ⊆ F2[yk] or not and there is a vertex xk ∈ C(x) such thatM(F2[y]) ⊆ F1[xk] or not. LetM be a minimum
cost mapping inMC (F1[x], F2[y]).

• If ∃ yk ∈ C(y) |M(F1[x]) ⊆ F2[yk] and @ xk ∈ C(x) |M(F2[y]) ⊆ F1[xk] then sinceM is a minimum cost mapping, its cost
is:

γ (M) = min
yk∈C(y)

{DC (F1[x], F2[yk])− DC (∅, F2[yk])} + DC (∅, F2[y]).

• If @ yk ∈ C(y) |M(F1[x]) ⊆ F2[yk] and ∃ xk ∈ C(x) |M(F2[y]) ⊆ F1[xk], then this case is symmetric to the previous one:

γ (M) = min
xk∈C(x)

{DC (F1[xk], F2[y])− DC (F1[xk],∅)} + DC (F1[x],∅).

• If @ yk ∈ C(y) |M(F1[x]) ⊆ F2[yk] and @ xk ∈ C(x) |M(F2[y]) ⊆ F1[xk], sinceM is a constrained mapping, it is a restricted
mapping from F1[x] to F2[y]. SinceM is a minimum cost mapping , its cost is the minimum cost of a restricted mapping
from F1[x] to F2[y]:

γ (M) = min{γ (M),M ∈ R(F1[x], F2[y])}.

2 A meristem is an undifferentiated plant tissue from which new cells are formed, as that at the tip of a stem or root.

846 A. Ouangraoua, P. Ferraro / Theoretical Computer Science 410 (2009) 837–846

• If ∃ yk ∈ C(y) | M(F1[x]) ⊆ F2[yk] and ∃ xk ∈ C(x) | M(F2[y]) ⊆ F1[xk] then M is a particular case of restricted mapping
such that P (M) = {(xk, yk)}, its cost is then greater than or equal to the minimum cost in the previous case.

The minimum cost of a mapping inMC (F1[x], F2[y]) is then the minimum of the minimum costs of mappings in the first
three cases. �

References

[1] Robert A. Wagner, Michael J. Fisher, The string-to-string correction problem, Journal of the association for computing machinery 21 (1974) 168–173.
[2] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related problems, SIAM Journal on Computing 18 (6) (1989)
1245–1262.

[3] Kaizhong Zhang, Algorithms for the constrained editing distance between ordered labeled trees and related problems, Pattern Recognition 28 (3)
(1995) 463–474.

[4] Kaizhong Zhang, A constrained edit distance between unordered labeled trees, Algorithmica 15 (1996) 205–222.
[5] Christophe Godin, Yves Caraglio, A multiscale model of plant topological structures, Journal of Theoretical Biology 191 (1998) 1–46.
[6] Pascal Ferraro, Christophe Godin, A distance measure between plant architectures, Annals of Forest Science 57 (2000) 445–461.
[7] Franco P. Preparata, Raymond Tzuu-Yau Yeh, Introduction to Discrete Structures for Computer Science and Engineering, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1973.

[8] Kaizhong Zhang, Tao Jiang, Some max SNP-hard results concerning unordered labeled trees, Information Processing Letters 49 (1994) 249–254.
[9] Robert Endre Tarjan, Data Structures and Network Algorithms, in: CBMS-NFS — Regional Conference Series In Applied Mathematics, 1983.
[10] Vincent Segura, Aida Ouangraoua, Pascal Ferraro, Evelyne Costes, Comparison of tree architecture using tree edit distances: Application to two-year-

old apple tree, Euphytica 161 (2007) 155–164.
[11] ChristopheGodin, Evelyne Costes, Yves Caraglio, Exploring plant topological structurewith the amapmod software: An outline, Silva Fennica 31 (1997)

355–366.
[12] Aida Ouangraoua, Pascal Ferraro, Laurent Tichit, Serge Dulucq, Local similarity between quotiented ordered trees, Journal of Discrete Algorithms 5 (1)

(2007) 23–35.

	A constrained edit distance algorithm between semi-ordered trees
	Introduction
	Semi-ordered trees
	Edit distance
	Mapping between semi-ordered trees
	Constrained edit distance

	Conclusion
	Acknowledgement
	Proofs of Lemmas 4 and 5
	References

