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Abstract A belt that transports toner is one of the vital components of a printer. Since toner is fused to the paper
at a high temperature, wax releases from the paper and penetrates into the rubber top layer of the belt. When the
rubber becomes saturated with wax, the wax remains on top of the belt. The formed layer of wax has negative
impact on the image forming unit leading to bad printing quality. Thus, a wax cleaner is installed. To determine
optimal functioning of the cleaner, time consuming and inefficient experiments have to be carried out. Thus, an
efficient simulation tool to predict wax build-up and cleaning may replace the experiments. Simulation is based on
a mathematical model that describes the influx of wax as a convection/diffusion process. The standard numerical
discretization methods to calculate the evolution in time of the wax concentration are not applicable. Saturation is
reached after ten thousands of rounds. In this article, we propose a combination of an analytical and a numerical
method to tackle the problem, where we discretize the second-order differential operator that generates the evolution
of the wax concentration. The simulations show an adequate fit with results from measurement. The wax build-up
in the belt up to saturation is described realistically. Our study reveals that the contact resistance between belt and
cleaner is the most important parameter that influences the effectiveness of the cleaner.

Keywords (Wax) Diffusion · Eigenvalue · Multi-layered medium · Printing belt · Printing system

1 Introduction

In the design of a printer, the life-span of the belt that transports the toner is a main aspect. The main use of this belt
is to transfer the toner image from the image forming unit to the fuse nip, where the toner is fixed to the paper. At the
fuse nip the paper is heated up and wax contained in the paper flows out of the paper and penetrates the rubber top
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Fig. 1 The schematic of the system. Here, we indicate the point of reference for the modeling

layer of the belt. Until saturation is reached, wax is absorbed by the belt. At saturation, the belt is no longer capable
of absorbing wax and a thin layer of wax forms at the top of the belt. This wax layer pollutes components attached
to the belt and thus reduces the printing quality significantly. Consequently, the belt has to be replaced, which is a
costly procedure. In order to prolong the belt’s life-span, a wax cleaner is installed. The wax cleaner decomposes
part of the wax and slows down the wax pollution. For every 20,000 copies that the printer makes, the wax in the
cleaner is removed by lifting up the cleaner, increasing its temperature to 140◦C for approximately 100 min. If the
wax is removed, the cleaner is positioned again in the system automatically. During the removal of the wax from
the cleaner the printing process may keep on running (Fig. 1).

In this article, we describe a mathematical model for wax diffusion and cleaning including saturation effects.
The wax diffuses into a multi-layered belt due to wax influx at a position corresponding to the fuse nip location
and is partly removed at the position corresponding to the location of the cleaner due to contact between belt and
cleaner. In the model, we incorporate the cyclic motion of the belt, diffusion in transversal direction, and diffusion
into the cleaner that decomposes the wax. We are interested in the influence of certain physical parameters on the
process, such as the inverse contact resistance between belt and cleaner, the inverse contact resistances between
sublayers of the belt, the decomposition rate of the cleaner, and various diffusion constants.

The large number of belt rotations and the small amounts of wax diffusing into the belt make time discretization
inappropriate. Thus, a dedicated implementation of the model is required. We propose a combination of analytical
and numerical techniques, where the time evolution is described by a finite number of eigenfunctions and eigen-
values of a second-order differential operator. Although the real life problem in this paper is typical, there are
generic aspects covered that can also be found in literature. In this, we refer to the papers of Wang and Liu [1],
de Monte [2], Pontrelli and de Monte [3], Tamene et al. [4], and Hickson et al. [5] that address heat conduction
in composite media. We also refer to the previous works of Schuurmans [10], Kopinga [11], Zavinska [12], and
Zapata [13] that address a similar problem.

We validated our model with respect to data obtained from measurement.1 Computation time is acceptable
(12,500 belt rotations need approximately 5 min), but can be improved if the Matlab implementation is replaced by
a professional platform independent implementation.

This article is composed of six sections. In Sect. 2, we present the mathematical model, describing both diffusion
of wax in moving belt and cleaner. The solution procedure is outlined in Sects. 3 and 4 contains the details of
numerical implementation. In Sect. 5, numerical results are presented, validated with experimental data obtained
from the measurement in the company. Section 6 concludes.

1 The authors acknowledge cooperation with Océ Technologies B.V. and the use of measurement.
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Fig. 2 The time frame for the first cycle of the process in the belt. Time is indicated along the horizontal axis to describe the processes
in certain time intervals

2 Mathematical model

A round belt with length L moves with a constant speed V . The wax concentration is determined by a wax influx
at the fuse nip and a wax outflux at the cleaner. The reference frame is chosen such that ex is the direction of the
motion of the belt; thus the belt velocity is given by v = V ex , ey is in the transversal direction and ez is in the
normal to the plane of motion.

The assumption is that in z-direction we have uniform influx and outflux so that the wax concentration in the belt
is independent of z. Moreover, the wax transport by diffusion is on a much lower time scale than the wax transport
by convection due to the motion of the belt, i.e., L2/κ � L/V , where κ denotes the diffusivity. Thus, the problem
can be described as a one-dimensional diffusion problem. The wax concentration of the belt is given by

Cb(x, y, z, t) = Cb

(
y, t − x

V

)
(1)

The wax influx at the fuse nip position is uniform and time independent; the wax outflux from the belt to cleaner is
linearly related to the difference of wax concentrations of belt and cleaner at contact area.

For one rotation of the belt, which has a duration of Tp = L/V , the time scheme of the reference position at
the belt is depicted in Fig. 2. The length of the fuse nip, L if , is described by the time parameter Tif according to
Tif = L if/V , so in a time interval of length Tif wax flows into the belt. As starting time of any revolution we take
the moment the belt reference position enters the fuse nip. Then, the reference position enters the cleaning zone
at time Tof and stays in the cleaning zone for a duration of time �Tof so that it leaves the cleaning zone at time
Tof + �Tof .

The process starts at t = 0. There is first wax influx from paper to belt in the interval 0 < t < Tif . Wax outflux
to the cleaner takes place in the time interval Tof < t < Tof +�Tof . At the start of the nth round, the nth wax influx
from paper to belt takes place in the time interval (n − 1)Tp < t < (n − 1)Tp + Tif and wax outflux in the time
interval (n − 1)Tp + Tof < t < (n − 1)Tp + Tof + �Tof .

The belt consists of two physical layers, a top layer and a bottom layer; see Fig. 3. The top thin layer is described
by y0 < y < y1, where the contact with the paper and the cleaner takes place at y = y0. The bottom layer is
described by the interval y1 < y < y2; at y = y2 we assume no outflux of wax. The two layers are composed
of different material with diffusivities κ1 and κ2. At the contact y = y1, the wax flux is continuous; it is assumed
proportional to the difference of wax concentrations at the contact with a proportionality factor called inverse
resistance. Thus, for the wax concentration in the belt, we have the following model:

∂Cb

∂t
= κi

∂2Cb

∂y2 , yi−1 < y < yi , t > 0, i = 1, 2. (2)

The boundary and interface conditions are given by

κ1

[
∂Cb

∂y

]

y=y0

= �(t) (3)

κ1

[
∂Cb

∂y

]

y=y−
1

= κ2

[
∂Cb

∂y

]

y=y+
1

(4)

κ1

[
∂Cb

∂y

]

y=y−
1

= h12
(
Cb(y+

1 , t) − Cb(y−
1 , t)

)
(5)
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Fig. 3 One-dimensional configuration of the printing belt Fig. 4 Two-dimensional configuration of the cleaner

κ2

[
∂Cb

∂y

]

y=y2

= 0, (6)

In the mathematical description, �(t) represents both the wax influx in the fuse nip at time intervals (n−1)Tp < t <

(n − 1)Tp + Tif and the wax outflux in the cleaner at time intervals (n − 1)Tp + Tof < t < (n − 1)Tp + Tof +�Tof .
The parameter h12 is the inverse contact resistance; we refer to the works of Bourouga and Bardon [6] and Yeh
and Wen [7] regarding this parameter. The higher h12 the better the contact between layer one and layer two; the +
and − symbols denote the limits

f
(
y±) = lim

δ→0
f (y ± δ) (7)

Since the cleaner does not move, we describe it by a fixed Cartesian reference system, with ex being the direction
of contact and ey the direction normal to the belt; see Fig. 4. We assume that the wax concentration Cc is independent
of z, so that the evolution of Cc is described by the model

∂Cc

∂t
= κc

(
∂2Cc

∂x2 + ∂2Cc

∂y2

)
− αCc, 0 < x < a, 0 < y < b, t > 0, (8)

where the boundary conditions for the wax concentration Cc of the cleaner are given by

κc

[
∂Cc

∂x

]

x=0
= κc

[
∂Cc

∂x

]

x=a
= 0 (9)

κc

[
∂Cc

∂y

]

y=0
= �c (t) (10)

κc

[
∂Cc

∂y

]

y=b
= 0 (11)

Here, the dimensions of the cleaner are given by a and b, and κc and α represent the cleaner diffusiveness and the
wax decomposition rate, respectively. The wax influx is represented by �c (t).

In (3), we introduce the wax flux �(t). It is decomposed as

�(t) = −	(t) + �b(t), t > 0 (12)
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where 	(t) describes the wax influx, a step function,

	(t) =
{

	, (n − 1)Tp) < t < (n − 1)Tp + Tif , n = 1, 2, . . .

0, else
(13)

The function �b(t) is modeled as

�b (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hR
(
C̄b

(
(n − 1)Tp

) − C̄c
(
(n − 1)Tp

))
,

(n − 1)Tp + Tof < t < (n − 1)Tp + Tof + �Tof ,

n = 1, 2, . . .

0, else.

(14)

Here, C̄b
(
(n − 1)Tp

)
and C̄c

(
(n − 1)Tp

)
denote the averaged wax concentration of the belt and of the cleaner,

respectively, at the nth revolution cycle.
We write �n = hR

(
C̄b

(
(n − 1)Tp

) − C̄c
(
(n − 1)Tp

))
. We note that after every revolution of the belt, we should

update the wax outflux �n . The wax influx of the cleaner is given by the step function

�c(t) = �n, (n − 1)Tp < t ≤ nTp, n = 1, 2, . . . (15)

3 Solution procedure

Since it is necessary to calculate the wax concentration for a great number of belt revolutions, we do not discretize
time. With respect to the spatial variable y, we describe the functional relation of the solution in terms of well
chosen cubic splines, where node point refer to space discretization. We make full use of the “cyclic” nature of the
problem. We consider two basic problems:

1. The belt
∂ Ab

∂t
= κi

∂2 Ab

∂y2 , yi−1 < y < yi , t > 0, i = 1, 2 (16)

κ1

[
∂ Ab

∂y

]

y=y0

= −1, t > 0 (17)

κ2

[
∂ Ab

∂y

]

y=y2

= 0, t > 0 (18)

κ1

[
∂ Ab

∂y

]

y=y−
1

= κ2

[
∂ Ab

∂y

]

y=y+
1

, t > 0 (19)

κ1

[
∂ Ab

∂y

]

y=y−
1

= h12
(

Ab(y+
1 , t) − Ab(y−

1 , t)
)

(20)

Ab(y, t) = 0, t ≤ 0, y0 < y < y2 (21)

2. The cleaner
∂ Ac

∂t
= κc

(
∂2 Ac

∂x2 + ∂2 Ac

∂y2

)
− αAc, 0 < x < a, y0 − b < y < y0, t > 0 (22)

κc

[
∂ Ac

∂x

]

x=0
= κc

[
∂ Ac

∂x

]

x=a
= 0, t > 0 (23)

κc

[
∂ Ac

∂y

]

y=y0

= 1, t > 0 (24)

κc

[
∂ Ac

∂y

]

y=y0−b
= 0, t > 0 (25)

Ac(x, y, t) = 0, t ≤ 0 (26)
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194 S. J. L. van Eijndhoven et al.

In term of Ab and Ac we can represent Cc and Cb as

Cb(y, t) = 	

∞∑
n=1

[
An(y, t − (n − 1)Tp) − Ab(y, t − (n − 1)Tp − Tof)

]

−
∞∑

n=1

�n
[
Ab(y, t − (n − 1)Tp − Tof) − Ab(y, t − (n − 1)Tp − Tof − �Tof)

]
(27)

Cc(y, t) =
∞∑

n=1

�n
[
Ac(x, y, t − (n − 1)Tp) − Ac(x, y, t − nTp)

]

=
∞∑

n=1

(�n − �n−1) Ac(x, y, t − (n − 1)Tp) (28)

Clearly Ac is independent of the variable x and can be written as

Ac,st (y) =
√

κc

α

1

sinh
(

b
√

α
κc

) cosh

(√
α

κc
(y − y0 + b)

)
(29)

Ac(x, y, t) = Ac,st(y) + Ac,tr(y, t) (30)

where with a straightforward separation of variables technique

Ac,tr (y, t) =
∞∑

l=0

γl exp

(
−

((
πl

b

)2

+ α

)
t

)
cos

(
πl

(
y − y0 + b

b

))
(31)

Thus,

γ0 = 1

b

b∫

0

[
Ac (y, 0) − Ac,st (y)

]
dy (32)

γl = 2

b

b∫

0

[
Ac (y, 0) − Ac,st (y)

]
cos

(
πl

(
y − y0 + b

b

))
dy (33)

The basic solution Ab(y, t) is split into three parts

Ab(y, t) = Ab,1(y, t) + Ab,2(y, t) + Ab,3(y, t), (34)

where Ab,1(y, t) and Ab,2(y, t) are determined analytically and chosen such that they create homogenous bound-
ary conditions. Then, Ab,3 satisfies a inhomogeneous diffusion equation with homogeneous boundary conditions.
We discretize the elliptic operator that describes the multi-layer diffusion problem, by choosing appropriate basis
functions in its domain. For that we introduce an artificial layer (y0, y01) with y01 ≤ y1/2 such that the diffusion
problem

∂ A

∂t
= κ1

∂2 A

∂y2 , y0 < y < y01, t > 0 (35)

A (y, 0) = 0 (36)

κ1

[
∂ A

∂y

]

y=y01

= 0 (37)

κ1

[
∂ A

∂y

]

y=y0

= −1 (38)

is well approximated by the solution
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Ab,1 (y, t) = t

y01 − y0
+ 1

κ1
(y01 − y0)F(y, t), t ≥ 0. (39)

where F(y, t) is a function with order of magnitude one and average zero. Due to the fact that the physical layer is
very thin such that (y01 − y0) � 1, the solution can be written as the average solution as follows:

Ab,1 (y, t) =
{ t

y01−y0
, t ≥ 0

0, t < 0.
(40)

Then, we choose a next artificial layer (y01, y02) with y02 − y01 ≈ y01 − y1, so that the function Ab,2(y, t) satisfies

κ1

[
∂ Ab,2

∂y

]

y=y−
01

= κ1

[
∂ Ab,2

∂y

]

y=y+
01

(41)

Ab,2
(
y+

01, t
) − Ab,2

(
y−

01, t
) = Ab,1

(
y−

01, t
)

(42)

We take

Ab,2 (y, t) =
{− t

(y02−y0)(y01−y0)2 (y − y0)
2, y0 ≤ y < y01

t
(y02−y01)(y02−y0)(y01−y0)

(y02 − y)2, y01 < y ≤ y02
(43)

By the choice of Ab,1 and Ab,2, the third component Ab,3 satisfies an inhomogeneous diffusion equation and
homogenous boundary and interface conditions

∂ Ab,3

∂t
= κ1

∂2 Ab,3

∂y2 + Q (y, t) , y0 < y < y1, t > 0 (44)

∂ Ab,3

∂t
= κ2

∂2 Ab,3

∂y2 , y1 < y < y2, t > 0 (45)

κ1

[
∂ Ab,3

∂y

]

y=y0

= 0, κ2

[
∂ Ab,3

∂y

]

y=y2

= 0, t > 0 (46)

κ1

[
∂ Ab,3

∂y

]

y=y−
1

= κ2

[
∂ Ab,3

∂y

]

y=y+
1

, t > 0 (47)

κ1

[
∂ Ab,3

∂y

]

y=y−
1

= h12
(

Ab,3
(
y+

1 , t
) − Ab,3

(
y−

1 , t
))

, t > 0 (48)

Ab,3(y, t) = 0, y0 < y < y1, t ≤ 0 (49)

Here,

Q (y, t) =

⎧
⎪⎪⎨
⎪⎪⎩

− ∂ Ab,1
∂t − ∂ Ab,2

∂t + κ1
∂2 Ab,2

∂y2 , y0 < y < y01, t > 0

− ∂ Ab,2
∂t + κ1

∂2 Ab,2

∂y2 , y01 < y < y02, t > 0

0 else

(50)

The solution Ab,3 can be written in the form of an expansion

Ab,3 (y, t) =
∞∑
j=1

c j (t) v j (y) (51)

Here, v j (y) are the eigenfunctions of an associated coercive operator, a second-order differential operator with
associated interface and boundary conditions. With the corresponding eigenvalues denoted by λ j , we have

c j (t) =
t∫

0

e−λ j (t−τ)q j (τ )dτ (52)

and
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196 S. J. L. van Eijndhoven et al.

q j (t) =
y02∫

y0

Q(y, t) v j (y) dy (53)

under the normalization
y2∫

y0

v j (y)2 dy = 1 (54)

4 Numerical implementation

For the third component Ab,3, we develop a numerical approach which is partly analytic [8,9]. We only discretize
with respect to the position variable y and leave time t a continuous variable. In the description of our approach, we
take slightly more general point of departure. For that we define a positive Hermitian operator in a suitable Hilbert
space with an essentially compact inverse. The operator is related to a generalized Sturm-Liouville problem and so
has a complete set of orthogonal eigenfunctions with positive eigenvalue. The numerical approach is dedicated to
the computation of these eigenfunctions and corresponding eigenvalues.

We consider an interval (η0, ηM ) that is disjointly divided in M subintervals

(η0, ηM ) �
M⋃

i=1

(ηi−1, ηi ) (55)

On the Hilbert space L2 (y0, yM ) the second-order differential operator F is defined by

[F u](yi ,yi+1) = −κi

[
∂2u

∂y2

]

(yi ,yi+1)

, i = 1, . . . , M, (56)

where the operator F has definition domain dom (F), the dense subspace of all u ∈ L2 (y0, yM ) that have the
property as the following:

[ u](ηi−1,ηi ) ∈ H2,2 (ηi−1, ηi ) (57)

and that satisfy the boundary and interface conditions

κi

[
∂u

∂y

]

y=η−
i

= κi+1

[
∂u

∂y

]

y=η+
i

(58)

κi

[
∂u

∂y

]

y=η−
i

= hi
(
u

(
y+

i

) − u
(
y−

i

))
, (59)

κ0

[
∂u

∂y

]

y=η0

= 0, κM

[
∂u

∂y

]

y=ηM

= 0 (60)

We note that hi = ∞ means u(y+
i ) = u(y−

i ). By writing

〈u, v〉 =
M∑

i=1

ηi∫

ηi−1

u v∗dy (61)

we see that F is a positive Hermitian operator, i.e.,

〈Fu, v〉 = 〈u,Fv〉, 〈u,Fv〉 ≥ 0 (62)

For each α > 0, α I + F is a strictly positive operator with a compact inverse. Thus, F represents a generalized
Sturm-Liouville operator. There is a complete orthonormal set of eigenfunctions

(
v j

)∞
j=1contained in dom (F) and

corresponding eigenvalues
(
λ j

)
with λ j ≥ 0 and

lim
j→∞

1

λ j
= 0 (63)
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such that

F u =
∞∑
j=1

λ j
(
u, v j

)
L2

v j . (64)

The evolution equation

du

dt
+ Fu = Q (t) (65)

where

u : (0,∞) → dom(F)

and

Q : (0,∞) → L(η0, ηM )

satisfies

u (t) =
∞∑
j=1

c j (t) v j (66)

with

c j (t) =
⎛
⎝γ j +

t∫

0

qn, j (τ ) eλ j τ dτ

⎞
⎠ e−λ j t (67)

q j (t) = (
Q (t) , v j

)
L2

(68)

Our effort is put into the calculation of the eigenfunctions and eigenvalues. For that we construct a set of basic
functions Bk, k = 1, . . . , K in dom (F) and approximate the first K eigenfunctions by

v j =
K∑

k=1

β jk Bk, j = 1, . . . , K . (69)

The eigenvalue equation

F v j = λ jv j (70)

is replaced by the generalized matrix eigenvalue equation

F β j = λ j G β j (71)

where

F = (
(F Bk,Bl)L2

)K
k,l=1 (72)

G = (
(Bk,Bl)L2

)K
k,l=1 (73)

β j = (
β jk

)K
k=1 , j = 1, . . . , K (74)

In order to construct the basis function Bk we use four elementary third degree polynomials

ϕ1
(
ŷ
) = (

2 ŷ + 1
) (

ŷ − 1
)2 (75)

ϕ2
(
ŷ
) = ŷ

(
ŷ − 1

)2 (76)

ϕ3
(
ŷ
) = (

3 − 2 ŷ
)

ŷ2 (77)

ϕ4
(
ŷ
) = − (

1 − ŷ
)

ŷ2 (78)

We note that

ϕ1(1) = ϕ′
1(1) = ϕ2(1) = ϕ′

2(1) = 0
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198 S. J. L. van Eijndhoven et al.

and

ϕ1(0) = 1, ϕ′
1(0) = 0, ϕ2(0) = 0, ϕ′

2(0) = 1.

The basis functions are now defined as

B1 (y) =
{

ϕ1

(
y−η0
η1−η0

)
, η0 ≤ y < η1

0, η1 ≤ y ≤ ηM

(79)

B2M (y) =
{

ϕ3

(
y−ηM−1

ηM −ηM−1

)
, ηM−1 < y ≤ ηM

0, η0 ≤ y ≤ ηM−1.
(80)

For node point ηi , we introduce two basis functions B2i+1 and B2i of the form

Bl (y) =

⎧⎪⎪⎨
⎪⎪⎩

δi−1
3 ϕ3

(
y−ηi−1
ηi −ηi−1

)
+ δi−1

4 ϕ4

(
y−ηi−1
ηi −ηi−1

)
, ηi−1 ≤ y < ηi

δi
1ϕ1

(
y−ηi−1
ηi −ηi−1

)
+ δi

2ϕ2

(
y−ηi−1
ηi −ηi−1

)
, ηi ≤ y < ηi+1

0, else

(81)

The function Bl(y) satisfies the interface conditions at y = ηi−1 and at y = ηi+1. In order to satisfy the interface
conditions at y = ηi the coefficients δi

1, δi
2, δi−1

3 , and δi−1
4 should satisfy

δi−1
4 = −κi+1

κi

ηi − ηi−1

ηi+1 − ηi
δi

2 (82)

δi−1
4 = hi (ηi − ηi−1)

κi

(
δi

1 − δi−1
3

)
(83)

The two equations have two independent solutions; we take

δi−1
3 = ξi , δi−1

4 = 1 (84)

δi
1 = ξi+1, δi

2 = − κi

κi+1

ηi+1 − ηi

ηi − ηi−1
(85)

where

ξi+1 = ξi + κi

hi (ηi − ηi−1)
, ξ1 = 1 (86)

and

δi−1
3 = 1, δi−1

4 = 0 (87)

δi
1 = 1, δi

2 = 0 (88)

In order to increase the spatial resolution and therewith the accuracy of the numerical approximation, we can
introduce artificial layers and artificial interface condition with inverse contact resistance infinity. The number of
layers determines the number of eigenvalues and eigenfunctions numerically calculated. As a rule of thumb, given
2M basis functions, the first M eigenvalues, λ1 < · · · < λM , are well-determined. Of course, the more we want to
zoom into the transient behavior of the system, the more eigenvalues, in increasing order, need to be calculated.

The belt system that we analyzed for this article, has two physical layers (y0, y1) and (y1, y2). The first layer is
divided into M1 parts with M1 ≥ 2. The second layer is divided into M2 parts. At best all sublayers should have
the same time scale related, i.e.,
(

y1 − y0

M1

)2 1

κ1
�

(
y2 − y1

M2

)2 1

κ2
(89)

In our numerical implementation, we took M1 = 2 and M2 = 5.
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Table 1 Lab model printer:
numerical values for the
properties of the belt

Parameter Units Value

Length m 0.437

Thickness m 1.35 × 10−3

Length of the area for the wax influx m 7 × 10−3

Distance between the influx point and the cleaner m 0.128

Velocity of the belt in high mode (high speed) m · s−1 0.485

Velocity of the belt in low mode (low speed) m · s−1 0.05

Diffusivity constant for layer 1 (κ1) m2s−1 10−10

Diffusivity constant for layer 2 (κ1) m2s−1 4 × 10−10

Wax influx (	) kg · m−2 s−1 1.7 ×10−5

Inverse contact resistance (hi) m · s−1 105

Table 2 Lab model printer:
numerical values for the
properties of the cleaner

Parameter Units Value

Length m 4.5 × 10−3

Thickness m 2 × 10−3

Diffusivity constant (κc) m2s−1 8 × 10−9

Decomposition rate at 100◦C (α) s−1 2.422 × 10−5

Inverse contact resistance (hR) m · s−1 10−7

Table 3 Lab model printer:
numerical values for the
time parameters

Time parameter Value (s)

Tif 0.0144

Tof 0.2639

�Tof 0.0093

Tp 0.894

5 Numerical results

The capacity of the printer in a high-speed mode for printing A4 size paper is 6,000 copies per hour, or approximately
1.6 copies per round.

In the generation of numerical results, we consider a two layer belt with a top layer of 0.15 mm and a bottom
layer of 1.20 mm. We divide the top layer into two sublayers one of 0.07 mm and the other one of 0.08 mm. The
bottom layer is divided into five sublayers, one with a thickness of 0.20 mm and the other ones with a thickness
of 0.25 mm. The contact between the belt sublayers is almost perfect, hi = 105 m/s, while the contact between
cleaner and belt is not ideal, h R = 10−7 m/s. In Tables 1 and 2, the values of all process and material parameters as
delivered by Oce are presented. The time parameters values are shown in Table 3. In this section, first we validate
our model by comparison with data obtained from measurement and present results that simulate two procedures
of cleaning. Second, we study the sensitivity on the decomposition rate α and the inverse contact resistance hR of
the wax build up in the belt.
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Fig. 5 The simulation result for 140,000 copies and comparison with the measurement data. The solid line and dashed line show the
wax concentrations at the top and bottom, respectively. The average concentration, the dash-dotted line, matches the measurement data

5.1 Simulation

In Fig. 5, we compare the results obtained from measurement and the results obtained from the model. The plot
shows that the numerically computed average wax concentration in the belt matches the one obtained from experi-
ments very accurately. The difference between concentration at the top and bottom tends to become constant and
equals 2%. In the simulation, we took 140,000 copies of printing or 87,500 belt revolutions corresponding with a
CPU-time of approximately 20 min.

In Figs. 6 and 7, we consider 572,000 copies (357,500 rounds), where the cleaner is lifted up from the belt and
cleaned after every 20,000 copies (12,500 rounds). During the lift up of the cleaner the printing process is stopped.
The time evolution of the average wax concentration is not smooth. The wax concentration in the cleaner increases
rapidly every round of 12,500 revolutions. We conclude that with the simulation an optimal cleaning strategy can
be developed.

5.2 Effect of inverse contact resistance and decomposition rate

In this subsection, we investigate what is the most effective increase of decomposition rate or decrease of inverse
contact resistance. We simulated 24 h of continuous process printing for each setting of the two parameters. We
selected these parameters, because they can be adjusted in the real-world cleaning process.

In the first simulation, we have perfect contact and very bad contact between belt and cleaner (hR = 10−4 m/s
and hR = 10−8 m/s, respectively) and vary the decomposition rate with α = 10−7, . . . , 10−1 s−1; see Fig. 8. For
the lowest decomposition rate, the cleaning process is still effective with a belt wax concentration of 80%. However,
for a very bad contact, the cleaning process is totally ineffective.
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Fig. 6 The wax concentration profile in the belt for 572,000 copies prints. The solid line and dashed line show the wax concentrations
at the top and bottom, respectively. The average concentration is depicted by the dashed-dotted line
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Fig. 7 The wax concentration profile in the cleaner for 572,000 copies prints or 95 h printing process
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Fig. 8 Decomposition rate (α) versus normalized wax concentration in the belt after 24 h. The dashed line depicts the case for inverse
contact resistance hR = 10−8 m/s and solid line for hR = 10−4 m/s
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Fig. 9 Inverse contact resistance (hR) versus normalized wax concentration in the belt after 24 h. The dashed line depicts the case for
decomposition rate α = 10−7 s−1 and solid line for α = 10−1 s−1

In the second simulation, we have a high-decomposition rate and a low-decomposition rate (α = 10−1 s−1 and
α = 10−8 s−1 respectively) and vary the inverse contact resistance hR = 10−8, . . . , 10−4 m/s; see Fig. 9. We see
that a high-inverse contact resistance (hR < 10−7 s−1) leads to an ineffective cleaning process.
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Fig. 10 The comparison of the cleaner effectiveness with respect to the speed configuration. The dashed line depicts the wax concen-
tration in high-speed condition (48.5 cm/s) and solid line is for the low- speed condition (5 cm/s)

5.3 Effect of the belt speed

We compare the wax build up for two belt speeds, a low speed of 5 cm/s and a high speed of 48.5 cm/s; see
Fig. 10. The results from simulation show that for the high-speed mode the wax concentration is higher than for
the low-speed mode. However, the difference is not more than 2% and is therefore not significant.

5.4 Computation speed

Another aspect that is very important for any numerical simulation is the computation time. The present simulation
tools at Océ are based on the finite element and finite volume method. With these tools, one round of process
takes approximately 2 h to be processed. For comparison with our numerical tool, it takes approximately 20 min to
simulate 90,000 rounds of wax diffusion process. This shows that the numerical method presented in this article is
highly more effective and faster.

6 Conclusions

In this article, a numerical routine is described by which the wax build-up in a toner carrying belt can be simulated.
The routine is based on a mathematical model that allows for a combination of an analytical and a numerical
approach. The influx of wax is that slow a process that at least 20,000 copies of printing are required to see some
effect. Thus, a standard approach based on time discretization and finite elements is inappropriate. Validation with
respect to experimental data show perfect agreement. The conclusions from the model are that the contact resistance
between belt and cleaner unit has more impact on the cleaning process than the decomposition rate. Also, the speed
of the belt has negligible impact. Although the model is dedicated to wax diffusion in a belt with a cleaning unit
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at the top, similar models can be developed if the cleaning unit is positioned at the bottom of the belt, if the belt
consists of more than two physical layers, or if more than one cleaning unit and more than one fuse nip are attached
to the belt.

Of course the model can be made generic. Then, we describe a diffusion/convection process of a physical quan-
tity in a closed loop transporting device, which moves with a constant speed and at which units are in contact that
control influx or outflux. The assumption is that the speed of the transportation is that fast that diffusion along the
direction of motion can be ignored and only diffusion in the transversal direction should be taken into account. In
particular, the model can be used to describe the heat distribution in the belt due to heating (influx) at the fuse nip
and cooling (outflux) at the image forming unit.

Appendix

In order to include wax saturation, the contact resistance can be modeled as a function of the concentration at the
interface such that hi depends on [Ci ]y=y−

i
if [Ci ]y=y−

i
>

[
Ci+1

]
y=y+

i
and

[
Ci+1

]
y=y+

i
else. We propose a model to

describe saturation in one of the layers. It comes down to letting the contact resistance depend on the concentrations
at the interfaces. For sake of convenience, in the main part of the article, we let the parameters hi be constant.

The saturation problem appears if the inverse contact resistances on the interface hi leads to zero for a finite value
of the wax concentration in the belt. When the wax concentration increases, the capability of the wax to penetrate the
boundary layer decreases. In the case of a multi-layered belt, this condition influences the inverse contact resistance
between layers. Thus, when the concentration in a certain layer reaches saturation, the wax cannot penetrate the
belt layer anymore.

In order to include saturation into the model, we derive the relation between concentration and inverse contact
resistance at the interface between layers. One possibility is to assume that

hi = h0

(
e−β

Cb(t)
Cs − e−β

)
, (90)

where h0 is a normalization, Cb is belt concentration, Cs is the saturation level of the belt, and β is a constant.
Another choice is

hi =
{

h0

(
1 − Cb(t)

Cs

)
for Cb < Cs

0 for Cb > Cs
(91)
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