Note
 Covering symmetric semi-monotone functions

Roland Grappe, Zoltán Szigeti
G-SCOP, INPGrenoble, UJF, CNRS, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France

Received 2 April 2007; received in revised form 3 September 2007; accepted 10 September 2007
Available online 17 October 2007

Abstract

We define a new set of functions called semi-monotone, a subclass of skew-supermodular functions. We show that the problem of augmenting a given graph to cover a symmetric semi-monotone function is NP-complete if all the values of the function are in $\{0,1\}$ and we provide a minimax theorem if all the values of the function are different from 1 . Our problem is equivalent to the node to area augmentation problem. Our contribution is to provide a significantly simpler and shorter proof.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Edge-connectivity augmentation; Skew-supermodular functions

1. Introduction

In this paper we only consider loopless graphs. The global edge-connectivity augmentation problem of graphs consists of adding a minimum number of new edges to a given graph to obtain a k-edge-connected graph. The problem has been generalized in many directions, for example for directed graphs, for local edge-connectivity, for bipartite graphs, for hypergraphs, for adding stars. For a survey, we refer to [5].
Another way of generalization is to cover a function by a graph. Here we are looking for a graph so that each cut contains at least as many edges as the value of the function. We may start with the empty graph or more generally with a given graph. For symmetric supermodular functions, the problem was solved in [1]. For a larger class of functions, namely for symmetric skew-supermodular functions, the problem is already NP-complete, see in [5].

Here we propose to consider symmetric semi-monotone functions. We call a function R on V semi-monotone if $R(\emptyset)=R(V)=0$ and for each set $\emptyset \neq X \neq V, 0 \leqslant R(X) \leqslant R\left(X^{\prime}\right)$ either for all $\emptyset \neq X^{\prime} \subseteq X$ (in this case, X is in-monotone) or for all $\emptyset \neq X^{\prime} \subseteq V-X$ (then X is out-monotone). We remark that if R is symmetric, then X is out-monotone if and only if $R\left(X^{\prime}\right) \geqslant R(X)$ holds for all $V \neq X^{\prime} \supseteq X$.

The subject of the present paper is to solve the following problem. Given a graph $G=(V, E)$ and a symmetric semi-monotone function R on V, add a minimum number $\operatorname{Opt}(R, G)$ of new edges M to G to get a covering of R, that is

$$
\begin{equation*}
d_{G+M}(X) \geqslant R(X) \quad \text { for all } X \subseteq V, \tag{1}
\end{equation*}
$$

where $d_{L}(X)$ denotes the number of edges in L having exactly one end-vertex in X.

[^0]It is easy to see that symmetric semi-monotone functions are skew-supermodular, see Lemma 4. The proof of Z. Király in [5], for the NP-completeness of the skew-supermodular function covering problem, provides the NP-completeness of our problem. It shows that

Theorem 1. Covering a symmetric semi-monotone function valued in $\{0,1\}$ is NP-complete.
By consequence, we suppose from now on that

$$
\begin{equation*}
R(X) \neq 1 \quad \text { for all } X \subseteq V \tag{2}
\end{equation*}
$$

In this case we provide a minimax theorem for the symmetric semi-monotone function covering problem, see Theorem 13.

The starting point of our research was the paper of Ishii and Hagiwara [4] on node to area augmentation. This problem can be defined as follows: Given a graph $G=(V, E)$, a family \mathscr{W} of sets $W \subseteq V$ (called areas), and a requirement function $r: \mathscr{W} \rightarrow \mathbb{Z}_{+}$, add a minimum number of new edges to G so that the resulting graph contains $r(W)$ edge-disjoint paths from any area W to any vertex $v \notin W$. As Ishii showed in [3], our problem is equivalent to this, see also Claim 3.

In order to explain how we deal with our problem, we need a few definitions. Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a graph. The deficiency of $X \subseteq V$ is defined as follows: $q_{E^{\prime}}(X)=R(X)-d_{E^{\prime}}(X)$. For $Y \subseteq V$, let us define $Q_{E^{\prime}}(Y):=$ $\max \left\{\sum_{X \in \mathscr{X}} q_{E^{\prime}}(X): \mathscr{X}\right.$ subpartition of $\left.Y\right\}$. A subpartition \mathscr{X} is called optimal, if it provides the maximum. Let $Q\left(G^{\prime}\right):=Q_{E^{\prime}}(V)$. We mention that, by Lemma $14,\left\lceil Q\left(G^{\prime}\right) / 2\right\rceil$ is a lower bound for $\operatorname{Opt}\left(R, G^{\prime}\right)$.

Let $K=\left(V+s, E^{\prime} \cup F^{\prime}\right)$ be a graph where F^{\prime} denotes the set of edges incident to s. We call a connected component K_{i} of $K-s$ such that $d_{K}\left(s, V\left(K_{i}\right)\right)=1$ (resp. odd, $\geqslant 3$.) a small (resp. odd, big) component of K. A small component C contains a unique neighbour v_{C} of s. We will see that most of the difficulties come from the existence of a unique small component, hence we will try to get rid of them as soon as possible. We say that K covers R if

$$
\begin{equation*}
d_{K}(X) \geqslant R(X) \quad \text { for all } X \subseteq V \text { (equivalently } d_{F^{\prime}}(X) \geqslant q_{E^{\prime}}(X) \text { for all } X \subseteq V \text {). } \tag{3}
\end{equation*}
$$

Suppose that K covers R. By splitting off a pair $s u, s v$ of edges incident to s, we mean the operation that deletes these edges and add a new edge $u v$. We say that the pair or equivalently the splitting off is admissible if the graph after the splitting still covers R. A complete splitting off is a sequence of splitting off which decreases the degree of s to 0 . We will use the technique of splitting off to get the minimax result.

First we extend the graph $G=(V, E)$ by adding a new vertex s and a minimum set $F_{\text {min }}$ of new edges incident to s so that the new graph covers the function R. By Lemma $4, R$ is symmetric skew-supermodular, so we may apply the following general theorem of Frank [2].

Theorem 2. $\left|F_{\text {min }}\right|=Q(G)$.
Then, if this number is odd, we add another edge incident to s as follows. If $\left(V+s, E+F_{\min }\right)$ has a unique small component C : add a copy of $s v_{C}$, if it has only small components: add an edge anywhere, otherwise: add an edge not incident to a small component. The graph obtained after these operations is denoted by $H=(V+s, E+F)$ and called an optimal extension of $G=(V, E)$. Note that $d_{H}(s)$ is even, and if $Q(G)$ is odd, H has none or several small components. The reader should keep in mind that in this paper G denotes the starting graph, and H an optimal extension of G.

Finally, we will split off the edges incident to s to get the cover. The complete admissible splitting off will exist in H (in other words, the lower bound given by the deficient subpartitions can be achieved) only if H does not have a special obstacle, or equivalently, G contains no configuration, see Theorems 11 and 12. If G does contain a configuration, then an extra edge is needed, see Theorem 13.

We would like to emphasize that our approach provides a significantly simpler and shorter proof than that in [4]. This is due to the efficient tools we developed here (like Lemma 5) and to the use of allowed pairs (defined in Section 5).

2. Semi-monotone functions

We present some important properties on semi-monotone functions in this section.
Claim 3. Covering a symmetric semi-monotone function is equivalent to solving a problem of node to area connectivity augmentation.

Proof. Sufficiency: Given \mathscr{W}, r, the function $R_{\mathscr{W}}$ defined by $R_{\mathscr{W}}(X)=\max \{r(W): W \in \mathscr{W}, W \cap X=\emptyset$ or $W \subseteq X\}$ if $V \neq X \neq \emptyset$ and $R_{\mathscr{W}}(V)=R_{\mathscr{W}}(\emptyset)=0$ is symmetric semi-monotone.

Necessity: Given R symmetric semi-monotone, for all $\emptyset \neq X \subset V$, let W_{X} be the out-monotone set of $\{X, V-X\}$, $r\left(W_{X}\right)=R(X)$ and $\mathscr{W}=\left\{W_{X}, \emptyset \neq X \subset V\right\}$. We show that $R_{\mathscr{W}}(X)=R(X)$ for all $\emptyset \neq X \subset V$. Since $W_{X} \cap X=\emptyset$ or $W_{X} \subseteq X$, we have $R_{\mathscr{W}}(X) \geqslant r\left(W_{X}\right)=R(X)$. Let $W \in\{Z \subset V: Z \cap X=\emptyset$ or $Z \subseteq X\}$ such that $R_{\mathscr{W}}(X)=r(W)$. Then since X or $V-X$ is out-monotone, and R is symmetric, $R(X) \geqslant R(W)=r(W)=R_{\mathscr{W}}(X)$.

A function R is called skew-supermodular if for all $X, Y \subset V, R(X)+R(Y) \leqslant \max \{R(X \cap Y)+R(X \cup Y)$, $R(X-Y)+R(Y-X)\}$.

Lemma 4. A symmetric semi-monotone function is skew-supermodular.
Proof. For $X, Y \subset V$, apply that if X is out-monotone, then $R(X) \leqslant \min \{R(X \cup Y), R(Y-X)\}$, and if X is in-monotone, then $R(X) \leqslant \min \{R(X \cap Y), R(X-Y)\}$.

For $Y_{1}, Y_{2}, Y_{3} \subset V$, let $Y_{i}^{\star}:=Y_{i}-\bigcup_{j \neq i} Y_{j}(1 \leqslant i \leqslant 3)$, and $Y_{4}^{\star}:=\bigcap_{1}^{3} Y_{i}$.
Lemma 5. Let R be a semi-monotone function and $Y_{1}, Y_{2}, Y_{3} \subset V$ with $Y_{i}^{\star} \neq \emptyset(1 \leqslant i \leqslant 4)$. Then there exists an index $1 \leqslant j \leqslant 4$ such that $\sum_{1, i \neq j}^{4} R\left(Y_{i}^{\star}\right) \geqslant \sum_{1}^{3} R\left(Y_{i}\right)$.

Proof. Apply that, $R\left(Y_{j}^{\star}\right) \geqslant R\left(Y_{i}\right)$ for $j=i, 4$ if Y_{i} is in-monotone and for $j \neq i, 4$ if Y_{i} is out-monotone.

3. Preliminaries

Given a graph $L=(U, J)$ and $X, Y \subset U, d_{L}(X, Y)$ denotes the number of edges in J between $X-Y$ and $Y-X$, while $\bar{d}_{L}(X, Y)=d_{L}(U-X, Y)$. We will apply the following equalities.

$$
\begin{align*}
& d_{L}(X)+d_{L}(Y)=d_{L}(X \cup Y)+d_{L}(X \cap Y)+2 d_{L}(X, Y), \tag{4}\\
& d_{L}(X)+d_{L}(Y)=d_{L}(X-Y)+d_{L}(Y-X)+2 \bar{d}_{L}(X, Y) . \tag{5}
\end{align*}
$$

In Sections 3 and 4, we will deal with a graph $K=\left(V+s, E^{\prime}+F^{\prime}\right)$ satisfying (3) and $d_{K}(s)$ is even and positive, where $E \subseteq E^{\prime}$ and F^{\prime} denotes the set of edges incident to s. Such a graph K may be obtained from H by splitting off some admissible pairs. $E^{\prime}-E$ will be the set of split edges.
A set $X \subset V$ is called tight (resp. dangerous) if $2 \leqslant R(X)$ and $d_{K}(X)=R(X)$ or equivalently $d_{F^{\prime}}(X)=q_{E^{\prime}}(X)$ holds (resp. $2 \leqslant R(X)$ and $d_{K}(X) \leqslant R(X)+1$ or equivalently $d_{F^{\prime}}(X) \leqslant q_{E^{\prime}}(X)+1$). We say that a subpartition \mathscr{X} is tight (resp. in-monotone) if each member is tight (resp. in-monotone). To clear up the notations, we may use Y for the subgraph induced by the vertex set Y. $\Gamma_{K}(s)$ is the set of neighbours of s in K. From now on, let $s u \in F^{\prime}$.

Claim 6. Let $\emptyset \neq X, Y \subset V$.
(6.1) If Y is dangerous out-monotone and X is a connected component of $K-s$ with $X-Y \neq \emptyset$, then $d_{K}(s, X-Y)+$ $1 \geqslant d_{K}(s, Y)$. Moreover, if Y is tight, then the inequality is strict.
(6.2) Every in-monotone dangerous set Y is connected.
(6.3) If X and Y are both in- or out-monotone, both tight (resp. dangerous and $u \in X \cap Y$) and $X-Y \neq \emptyset \neq Y-X$, then $X-Y, Y-X$ are tight in-monotone, $\bar{d}_{K}(X, Y)=0($ resp. $=1)$.
(6.4) If X and Y are dangerous in-monotone, for $A \in\{X \cap Y, X-Y, Y-X\}, A \cap \Gamma_{K}(s) \neq \emptyset$, then $X \cup Y$ is connected and for all $\emptyset \neq Z \subset X \cup Y, d_{K}(Z) \geqslant 2$.

Proof. (6.1) $R(Y)+1 \geqslant d_{K}(Y) \geqslant d_{K}(s, Y)+d_{K}(Y, X-Y)=d_{K}(s, Y)+d_{K}(X-Y)-d_{K}(s, X-Y) \geqslant d_{K}(s, Y)+R(Y)-$ $d_{K}(s, X-Y)$. (6.2) If $\emptyset \subset X \subset Y$, then $R(Y)+R(Y) \leqslant R(X)+R(Y-X) \leqslant d_{K}(X)+d_{K}(Y-X)=d_{K}(Y)+2 d_{K}(X, Y-$ $X) \leqslant R(Y)+1+2 d_{K}(X, Y-X)$, so $R(Y) \geqslant 2$ implies $d_{K}(X, Y-X) \geqslant 1$. (6.3) Suppose both are out-monotone, the other case is similar. By (5) and (1), $X-Y, Y-X$ are tight and $R(X-Y)=R(Y), R(Y-X)=R(X), \bar{d}_{K}(X, Y)=0$ (resp. $=1$, for dangerous sets). Combined with X, Y are out-monotone, it concludes. (6.4) Since $X \cap Y \neq \emptyset$, and, by (6.2), X and Y are connected, so is $X \cup Y$. Let $\emptyset \neq Z \subseteq X \cup Y$. If $Z \subseteq X$, then since X is in-monotone and dangerous, $d_{K}(Z) \geqslant R(Z) \geqslant R(X) \geqslant 2$. Similarly, if $Z \subseteq Y$, then $d_{K}(Z) \geqslant 2$. Otherwise, Z intersects X and Y. By (6.3), $X-Y$ and $Y-X$ are in-monotone and tight hence connected by (6.2). So $d_{K}(Z) \geqslant 2$.

Claim 7. Suppose that $Q(G)$ is even. Let $H=(V+s, E+F)$ be an optimal extension of $G=(V, E)$.
(7.1) A subpartition \mathscr{X} of V is optimal if and only if \mathscr{X} is tight and each neighbour of s is contained in some $X \in \mathscr{X}$.
(7.2) Let \mathscr{X} be an optimal subpartition of V. If $Y \subset V$ contains some members of \mathscr{X} and is disjoint from the others, then $d_{F}(Y)=Q_{E}(Y)$.

Proof. (7.1) In both directions we use that, by $Q(G)$ is even, Theorem 2 implies $Q(G)=|F|=d_{F}(s)$.
Sufficiency: $Q(G)=\sum_{X \in \mathscr{X}} q_{E}(X) \leqslant \sum_{X \in \mathscr{X}} d_{F}(X) \leqslant d_{F}(s)=Q(G)$, so we have equality everywhere.
Necessity: $Q(G)=|F|=\sum_{X \in \mathscr{X}} d_{F}(X)=\sum_{X \in \mathscr{X}} q_{E}(X)$, so \mathscr{X} is optimal.
(7.2) Let \mathscr{X}_{Y} be an optimal subpartition of Y. Then, by (7.1), $Q_{E}(Y) \geqslant \sum_{Y \supset X \in \mathscr{X}} q_{E}(X)=\sum_{Y \supset X \in \mathscr{X}} d_{F}(X)=$ $d_{F}(Y) \geqslant \sum_{X \in \mathscr{X}_{Y}} d_{F}(X) \geqslant \sum_{X \in \mathscr{X}_{Y}} q_{E}(X)=Q_{E}(Y)$.

4. Dangerous families

In this section we present a few results about dangerous families to describe the structure of the graph K for which no complete admissible splitting off exists. For a neighbour u of s and $S \subseteq \Gamma_{K}(s)$, we say that \mathscr{Y} is a dangerous family covering u and S if each set in \mathscr{Y} is dangerous, contains u and a vertex of S not contained in the other sets of \mathscr{Y}, and $S \subseteq \cup \mathscr{Y}$. A neighbour of s contained in a big component of K is called big-neighbour. A connected component B of $K-s$ with $d_{K}(B)=R(B)=2$ is called a boring component of K. Let \mathscr{B}_{K} be the family of boring components of K.

Lemma 8. In the graph K, the edge su belongs to no admissible pair if and only if there is a dangerous family \mathscr{Y}^{2} covering u and $\Gamma_{K}(s)$. In this case, K has a unique small component C. If $u \notin C$, then C and a unique big component D of K cover $\Gamma_{K}(s)$ and D is the union of two dangerous in-monotone sets containing u.

Proof. The first part is obvious. We show first that $|\mathscr{Y}| \geqslant 3$. For $Y \in \mathscr{Y}$, we have $d_{F^{\prime}}(V-Y) \geqslant q_{E^{\prime}}(V-Y)=$ $q_{E^{\prime}}(Y) \geqslant d_{F^{\prime}}(Y)-1=d_{F^{\prime}}(s)-d_{F^{\prime}}(V-Y)-1$. Then, $d_{F^{\prime}}(V-Y) \geqslant\left\lceil\left(d_{F^{\prime}}(s)-1\right) / 2\right\rceil=d_{F^{\prime}}(s) / 2>0$. Thus $|\mathscr{Y}| \geqslant 2$. Suppose $\mathscr{Y}=\left\{Y_{1}, Y_{2}\right\}$. By the above inequality, $u \in Y_{1} \cap Y_{2}$ and $\Gamma(s) \subseteq Y_{1} \cup Y_{2}$, we have $d_{F^{\prime}}(s)=d_{F^{\prime}}\left(V-Y_{1}\right)+$ $d_{F^{\prime}}\left(V-Y_{2}\right)+d_{F^{\prime}}\left(Y_{1} \cap Y_{2}\right) \geqslant d_{F^{\prime}}(s) / 2+d_{F^{\prime}}(s) / 2+1$, a contradiction.
Let $Y_{1}, Y_{2}, Y_{3} \in \mathscr{Y}$. By Y_{i} dangerous, a well-known inequality on d_{K}, (1), Lemma 5 and $u \in \cap \mathscr{Y}, \sum_{1}^{3}\left(R\left(Y_{i}\right)+\right.$ $1) \geqslant \sum_{1}^{3} d_{K}\left(Y_{i}\right) \geqslant \sum_{1}^{4} d_{K}\left(Y_{i}^{\star}\right)+2 d_{K}\left(Y_{4}^{\star}, s\right) \geqslant \sum_{1, i \neq j}^{4} R\left(Y_{i}^{\star}\right)+d_{K}\left(Y_{j}^{\star}\right)+2 \geqslant \sum_{1}^{3} R\left(Y_{i}\right)+3$. Then $d_{K}\left(Y_{j}^{\star}\right)=1$, and, by (1) and (2), $R\left(Y_{j}^{\star}\right)=0$. It follows that if $j=4$, then Y_{1}, Y_{2}, Y_{3} are out-monotone and $d_{K}\left(Y_{4}^{\star}\right)=d_{K}\left(s, Y_{4}^{\star}\right)=1$, and if say $j=3$, then Y_{3} is out-monotone with $d_{K}\left(Y_{3}^{\star}\right)=d_{K}\left(s, Y_{3}^{\star}\right)=1$ and Y_{1} and Y_{2} are in-monotone. Note that if $j \neq 4$, each triplet of \mathscr{Y} consists of an in-monotone and two out-monotone sets, therefore $|\mathscr{Y}|=3$.

It follows that K contains a small component C. We show that the small component is unique. In the first case $(j=4)$, by contradiction, let C^{\prime} be another one. By $d_{K}\left(Y_{4}^{\star}\right)=1, C^{\prime} \cap Y_{4}^{\star}=\emptyset$. We suppose that $v_{C^{\prime}} \notin Y_{1}$. By (6.3) and (6.2), $Y_{1}-Y_{i}$ is connected $(2 \leqslant i \leqslant 3)$, thus so is $Y_{1}-Y_{4}^{\star}$. Since C^{\prime} is small, $\left(Y_{1}-Y_{4}^{\star}\right) \cap C^{\prime}=\emptyset$. Thus $C^{\prime} \cap$ $Y_{1}=\emptyset$. By Y_{1} is out-monotone, $0=R\left(C^{\prime}\right) \geqslant R\left(Y_{1}\right) \geqslant 2$, contradiction. In the second case $(j \neq 4$, e.g. $j=3)$ that is when $u \notin C$, by (6.4) and $|\mathscr{Y}|=3, Y_{1} \cup Y_{2}$ is contained in a big component D covering $\Gamma(s)-v_{C}$ implying that C is unique.

To prove the last statement, suppose that $u \notin C$ and $Z:=D-\left(Y_{1} \cup Y_{2}\right) \neq \emptyset$. By $d_{K}\left(Y_{3}^{\star}\right)=1, Z \cap Y_{3}=\emptyset$. By (1) and Y_{3} out-monotone, $d_{K}\left(\bigcup_{1}^{3} Y_{i}\right) \geqslant d_{K}(Z)+d_{K}\left(s, \bigcup_{1}^{3} Y_{i}\right) \geqslant R(Z)+4 \geqslant R\left(Y_{3}\right)+4$. Then, by Y_{i} dangerous, (4), Y_{1} and Y_{2} in-monotone, we have $\sum_{1}^{3}\left(R\left(Y_{i}\right)+1\right) \geqslant \sum_{1}^{3} d_{K}\left(Y_{i}\right) \geqslant d_{K}\left(Y_{1}\right)+d_{K}\left(Y_{2} \cup Y_{3}\right)+d_{K}\left(Y_{2} \cap Y_{3}\right) \geqslant d_{K}\left(Y_{1} \cap\left(Y_{2} \cup\right.\right.$ $\left.\left.Y_{3}\right)\right)+d_{K}\left(\bigcup_{1}^{3} Y_{i}\right)+R\left(Y_{2}\right) \geqslant R\left(Y_{1}\right)+R\left(Y_{3}\right)+4+R\left(Y_{2}\right)$, contradiction.

Lemma 9. Suppose K has a big component. Let \mathscr{Y} be a dangerous family covering u and the set of big-neighbours of s. If u belongs to a small component C, then $C \subseteq \cap Y$ and each $v \in \Gamma_{K}(s)-u$ belongs to either a boring component disjoint from $\cup \mathscr{Y}$ or a big component.

Proof. Since u belongs to a small component, each set in \mathscr{Y} is disconnected, so by (6.2), out-monotone. Suppose $\mathscr{Y}=\left\{Y_{1}\right\} . Y_{1} \neq V$ so there exists a connected component X of $K-s$ not contained in Y_{1}. Then, since Y_{1} contains all the big-neighbours of s, we have, by $(6.1), 2+1 \geqslant d_{K}\left(s, X-Y_{1}\right)+1 \geqslant d_{K}\left(s, Y_{1}\right) \geqslant 4$, contradiction. So $|\mathscr{Y}| \geqslant 2$, let $Y_{1}, Y_{2} \in \mathscr{Y}$. By (6.1) applied to C and Y_{i}, and $u \in Y_{i}$, we have $C \subseteq Y_{i}$ for all $Y_{i} \in \mathscr{Y}$. Hence $C \subseteq \cap \mathscr{Y}$.

To prove the second statement, let X be a not big component of K with $X \cap\left(\Gamma_{K}(s)-u\right) \neq \emptyset$. Then $1 \leqslant d_{K}(s, X) \leqslant 2$. By (6.3), $Y_{1}-Y_{2}$ is tight in-monotone, hence connected by (6.2), thus, since by definition $Y_{1}-Y_{2}$ contains a bigneighbour, $\left(Y_{1}-Y_{2}\right) \cap X=\emptyset$. By (6.3), $\bar{d}_{H}\left(Y_{1}, Y_{2}\right)=1$, thus $Y_{1} \cap Y_{2} \cap X=\emptyset$. It follows that $Y_{1} \cap X=\emptyset$. So $X \cap \cup \mathscr{Y}=\emptyset$. Then, since Y_{1} is out-monotone, $2 \leqslant R\left(Y_{1}\right) \leqslant R(X) \leqslant d_{K}(X)=d_{K}(s, X) \leqslant 2$, so X is a boring component of K.

We provide here a first result on complete admissible splitting off, an easy consequence of Lemma 8, which will be useful later in the general case.

Lemma 10. If K has no odd or big component, then there is a complete admissible splitting off in K.
Proof. After an admissible splitting, both properties are preserved, so we only have to show that there is an admissible pair. Otherwise, by Lemma $8, K-s$ has a unique small component. This is a contradiction because in both cases the number of small components is even $\left(d_{K}(s)\right.$ being even $)$.

5. Configuration and obstacle

We denote by \mathbb{B} the set of in-monotone connected components B of G satisfying $R(B)=Q_{E}(B)=2$. When $Q(G)$ is even, these sets will be boring components in an optimal extension.

We say that G contains a configuration if $Q(G)$ is even, there exist a unique connected component C of G with $Q_{E}(C)=1$, and families \mathscr{X} and \mathscr{Y} of subsets of $V-\cup \mathbb{B} ; \mathscr{X} \cup \mathbb{B}$ is an optimal in-monotone subpartition of G; \mathscr{Y} consists of out-monotone sets Y_{i}, containing C, containing or disjoint from each member of \mathscr{X}, satisfying $Q_{E}\left(Y_{i}\right) \leqslant q_{E}\left(Y_{i}\right)+1$, whose union covers all members of \mathscr{X}.

We say that an optimal extension H of G contains an obstacle if $Q(G)$ is even, there exists a unique small component C, it satisfies $Q_{E}(C)=1$, and there exists a dangerous family \mathscr{Y} covering v_{C} and the set of big-neighbours of s. Note that, by (6.2) and (6.1), \mathscr{Y} consists of out-monotone sets containing C.

Theorem 11. Let $H=(V+s, E+F)$ be an optimal extension of $G=(V, E)$. Then G contains a configuration if and only if H contains an obstacle.

Proof. In both cases, by definition, $Q(G)$ is even.
Suppose G contains a configuration, then choose one with \mathscr{X} and \mathscr{Y} minimal. Then $q_{E}(X) \geqslant 1$ for all $X \in \mathscr{X}$ and each $Y_{i} \in \mathscr{Y}$ contains a set $X_{i} \in \mathscr{X}$ not contained in C. Since $\mathscr{X} \cup \mathbb{B}$ is an optimal subpartition, each $X \in \mathscr{X}$ is tight by (7.1) and in-monotone therefore connected by (6.2). Thus if $C \cap X \neq \emptyset, X \in \mathscr{X}$, then $X \subseteq C$. By (7.2), $d_{F}(C)=Q_{E}(C)=1$, so C is a small component. Then, by $(7.2), 2 \leqslant d_{F}(C)+d_{F}\left(X_{i}\right) \leqslant d_{F}\left(Y_{i}\right)=Q_{E}\left(Y_{i}\right) \leqslant q_{E}\left(Y_{i}\right)+1$, so each Y_{i} is dangerous. From the definition of the configuration, their union covers all big-neighbours of s.

Suppose that H contains an obstacle. By parity, there exists a big component. Lemma 9 applies to v_{C} and $\mathscr{Y}=$ $\left\{Y_{1}, \ldots, Y_{k}\right\}$, so $Y_{i} \subseteq V-\cup \mathscr{B}_{H}$. By $Q_{E}(C)=1, v_{C}$ belongs to a tight in-monotone set $X_{v_{c}} \subset C$. For a big-neighbour v in some Y_{i}, let X_{v} be the minimal tight in-monotone set containing v. By (6.3), for $j \neq i, Y_{i}-Y_{j}$ is tight in-monotone. Hence $X_{v} \subseteq Y_{i}-Y_{j}, \forall i \neq j$. Therefore $X_{v} \subseteq \bigcap_{j \neq i}\left(Y_{i}-Y_{j}\right)=Y_{i}-\bigcup_{j \neq i} Y_{j}$. Let $\mathscr{X}=\left\{X_{v_{C}}\right\} \cup\left\{X_{v}: v\right.$ big-neighbour $\}$.

Clearly each Y_{i} contains or is disjoint from each member of $\mathscr{X} \cup \mathscr{B}_{H}$. By (6.3), the members of \mathscr{X} are disjoint (they are also disjoint from the members of \mathscr{B}_{H}). By Lemma 9, $\mathscr{X} \cup \mathscr{B}_{H}$ covers $\Gamma(s)$, every $X \in \mathscr{X} \cup \mathscr{B}_{H}$ is tight so, by (7.1), $\mathscr{X} \cup \mathscr{B}_{H}$ is an optimal subpartition of V in G. By Y_{i} dangerous and by (7.2), $q_{E}\left(Y_{i}\right)+1 \geqslant d_{F}\left(Y_{i}\right)=Q_{E}\left(Y_{i}\right)$. For every $B \in \mathscr{B}_{H}, C \cap B=\emptyset$ thus $\mathscr{X} \cup \mathscr{B}_{H}$ is in-monotone. Moreover we have $2=R(B)=q_{E}(B) \leqslant Q_{E}(B)=d_{H}(B)=2$. Therefore $\mathscr{B}_{H}=\mathbb{B}$.

6. Complete admissible splitting off

Let H be an optimal extension of G. This section provides a complete admissible splitting off when H contains no obstacle. The case when H contains an obstacle is handled in Theorem 13. In Section 4, we have seen that when a big-neighbour belongs to no admissible pair, the graph can easily be described. This led us to use allowed pairs, that is admissible pairs $s u, s v$ with at least one of u and v being a big-neighbour.

Theorem 12. If H contains no obstacle, then there is a complete admissible splitting off in H.
Proof. We may assume that H has a big component, otherwise we are done by Lemma 10 .
Step 1: If there exists a unique small component C of H, we prove that we can destroy C (by moving $s v_{C}$, or by splitting off an allowed pair containing $s v_{C}$). Since there is no obstacle in H, one of the following cases happens.

1. $Q(G)$ is odd. In fact this case is impossible by construction of the optimal extension.
2. $Q_{E}(C) \neq 1$. Then $Q_{E}(C)=0$ and v_{C} belongs to no tight in-monotone set, so there exists a minimal tight outmonotone set X containing v_{C}. By (6.3), an out-monotone tight set containing v_{C} contains X. Since X is out-monotone and $d_{H}(X)=R(X) \geqslant 2$, we have $X \nsubseteq C$ hence there exists a connected component Z in $H-s$ with $X \cap Z \neq \emptyset$. Then, by (6.1), $Z \cap \Gamma_{H}(s) \neq \emptyset$. Let $x \in X \cap Z$. Replace $s v_{C}$ by $s x$, the new graph still satisfies (1) and has no small component.
3. There is an allowed pair containing $s v_{C}$. Split it off.

Let H^{\prime} be the graph obtained after Step 1 (eventually, $H^{\prime}=H$).
Step 2: H^{\prime} has none or several small components. Split off allowed pairs as long as possible. If there is no big component anymore, then, by Lemma 10, find a complete admissible splitting off. Otherwise, Lemma 8 applied for a big-neighbour u implies that the new graph $H^{\prime \prime}$ has a unique small component C and a unique big component D (which is in fact odd as well). If H^{\prime} contains no small component then C contains a split edge $a b$ which is not a bridge. We show that this is also true if H^{\prime} contains several small components. Let $X \neq C$ be a small component of H^{\prime}. Since C is unique in $H^{\prime \prime}, s v_{X}$ has been split off previously, (let's say with $s y$). Note that the new edge $y v_{X}$ is a bridge in $H^{\prime \prime}$. Hence, by Lemma 8 and (6.4), $y v_{X}$ is not in D. So it is in $H^{\prime \prime}-D$. Since the splittings were allowed, it follows that C contains a split edge and the last one $a b$ is not a bridge.

Let us unsplit $a b$ that is replace the edge $a b$ by sa and $s b$. Then there is no small component anymore. Therefore by Lemma 8 there exists an admissible pair $\{s u, s v\}$. Since D is the union of two dangerous sets containing u in $H^{\prime \prime}$ and also in the graph after the unsplitting, su belongs to no admissible pair $s u$, $s x$ with $x \in D$, so necessarily $v \in C$. After splitting this pair, the new graph has no odd component, so Lemma 10 provides a complete admissible splitting off.

7. Augmentation

By applying the above splitting result we can solve the augmentation problem.
Theorem 13. Let $G=(V, E)$ be a graph and R a symmetric semi-monotone function on V. If G contains no configuration, then $\operatorname{Opt}(R, G)=\lceil Q(G) / 2\rceil$, otherwise $\operatorname{Opt}(R, G)=\lceil Q(G) / 2\rceil+1$.

Proof. The following lemmas prove the theorem.
Lemma 14. $\operatorname{Opt}(R, G) \geqslant\lceil Q(G) / 2\rceil$. If G contains a configuration, then the inequality is strict.

Proof. For a minimum set M of edges such that $G+M$ satisfies (1), since for any edge $f, Q_{E+f}(V) \geqslant Q(G)-2$, we have $0 \geqslant Q_{E+M}(V) \geqslant Q(G)-2|M|$. Now suppose G contains a configuration and equality holds. Let H be the extension of G from which we can obtain $G+M$ by a complete admissible splitting off. By the minimality of M, H is an optimal extension of G. Since G contains a configuration, by Theorem $11, H$ contains an obstacle. Then $s v_{C}$ belongs to one of the admissible pairs, say $\left\{s u, s v_{C}\right\}$. Since $s v_{C}$ belongs to no allowed pair, by Lemma $9, u$ belongs to a boring set B. Split off $\left\{s u, s v_{C}\right\}$, denote by H^{\prime} the new graph. Note that H^{\prime} is an optimal extension of $G+u v_{C}$. Note that $Y_{i}^{\prime}=Y_{i} \cup B$ is dangerous in H^{\prime} because $R\left(Y_{i} \cup B\right)+1 \geqslant R\left(Y_{i}\right)+1 \geqslant d_{H}\left(Y_{i}\right)+d_{H}(B)-2 \geqslant d_{H}\left(Y_{i} \cup\right.$ $B)-2=d_{H^{\prime}}\left(Y_{i} \cup B\right)$ and, by (6.2), it is also out-monotone. $C^{\prime}=C \cup B$ has a unique neighbour $v_{C^{\prime}}$ of s and $1=d_{H^{\prime}}\left(C^{\prime}\right) \geqslant Q_{E+u v_{C}}\left(C^{\prime}\right) \geqslant Q_{E+u v_{C}}(B) \geqslant R(B)-d_{H^{\prime}-s}(B)=1$. Then $v_{C^{\prime}}, C^{\prime}, Y_{1}^{\prime}, \ldots Y_{k}^{\prime}$ form an obstacle in H^{\prime}, and $\left|\mathscr{B}_{H^{\prime}}\right|=\left|\mathscr{B}_{H}\right|-1$. Repeating this operation, we may assume $\mathscr{B}_{H}=\emptyset$. Then $s v_{C}$ belongs to no admissible pair, contradiction.

Lemma 15. $\operatorname{Opt}(R, G) \leqslant\lceil Q(G) / 2\rceil+1$. If G contains no configuration, then the inequality is strict.
Proof. Let H be an optimal extension of G. By Theorem $2,|F|=2\lceil Q(G) / 2\rceil$. If G contains no configuration, then, by Theorem 11, H contains no obstacle and hence, by Theorem 12, there exists a complete admissible splitting off, and the strict inequality follows. Otherwise, we split off admissible pairs as long as possible. In the new graph, by Lemma 8 , there exist a unique small and a unique big component, C and D. We add an edge between C and D. Since there is no odd component anymore, by Lemma 10 , we have a complete admissible splitting off and the inequality follows.

Acknowledgements

We thank Balázs Fleiner for a very careful reading of the paper and for calling our attention to a missing case, and Tibor Jordán for helpful discussions on the topic.

References

[1] A. Benczúr, A. Frank, Covering symmetric supermodular functions by graphs, Math. Programming 84 (3) (1999) $483-503$.
[2] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math. 5 (1) (1992) 22-53.
[3] T. Ishii, Minimum augmentation of edge-connectivity with monotone requirements in undirected graphs, in: Proceedings of the 13th Australian Symposium on Theory of Computing, 2007, pp. 91-100.
[4] T. Ishii, M. Hagiwara, Minimum augmentation of local edge-connectivity between vertices and vertex subsets in undirected graphs, Discrete Appl. Math. 154 (2006) 2307-2329.
[5] Z. Szigeti, Edge-connectivity augmentations of graphs and hypergraphs, Technical Report no. 04941, Research Institute for Discrete Mathematics, Bonn, 2004.

[^0]: E-mail address: Zoltan.Szigeti@g-scop.inpg.fr (Z. Szigeti).

