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Abstract

We define a new set of functions called semi-monotone, a subclass of skew-supermodular functions. We show that the problem
of augmenting a given graph to cover a symmetric semi-monotone function is NP-complete if all the values of the function are in
{0, 1} and we provide a minimax theorem if all the values of the function are different from 1. Our problem is equivalent to the node
to area augmentation problem. Our contribution is to provide a significantly simpler and shorter proof.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Edge-connectivity augmentation; Skew-supermodular functions

1. Introduction

In this paper we only consider loopless graphs. The global edge-connectivity augmentation problem of graphs
consists of adding a minimum number of new edges to a given graph to obtain a k-edge-connected graph. The problem
has been generalized in many directions, for example for directed graphs, for local edge-connectivity, for bipartite
graphs, for hypergraphs, for adding stars. For a survey, we refer to [5].

Another way of generalization is to cover a function by a graph. Here we are looking for a graph so that each cut
contains at least as many edges as the value of the function. We may start with the empty graph or more generally with
a given graph. For symmetric supermodular functions, the problem was solved in [1]. For a larger class of functions,
namely for symmetric skew-supermodular functions, the problem is already NP-complete, see in [5].

Here we propose to consider symmetric semi-monotone functions. We call a function R on V semi-monotone if
R(∅) = R(V ) = 0 and for each set ∅ �= X �= V , 0�R(X)�R(X′) either for all ∅ �= X′ ⊆ X (in this case, X is
in-monotone) or for all ∅ �= X′ ⊆ V − X (then X is out-monotone). We remark that if R is symmetric, then X is
out-monotone if and only if R(X′)�R(X) holds for all V �= X′ ⊇ X.

The subject of the present paper is to solve the following problem. Given a graph G = (V , E) and a symmetric
semi-monotone function R on V , add a minimum number Opt(R, G) of new edges M to G to get a covering of R,
that is

dG+M(X)�R(X) for all X ⊆ V , (1)

where dL(X) denotes the number of edges in L having exactly one end-vertex in X.
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It is easy to see that symmetric semi-monotone functions are skew-supermodular, see Lemma 4. The proof of Z. Király
in [5], for the NP-completeness of the skew-supermodular function covering problem, provides the NP-completeness
of our problem. It shows that

Theorem 1. Covering a symmetric semi-monotone function valued in {0, 1} is NP-complete.

By consequence, we suppose from now on that

R(X) �= 1 for all X ⊆ V . (2)

In this case we provide a minimax theorem for the symmetric semi-monotone function covering problem, see
Theorem 13.

The starting point of our research was the paper of Ishii and Hagiwara [4] on node to area augmentation. This
problem can be defined as follows: Given a graph G = (V , E), a family W of sets W ⊆ V (called areas), and a
requirement function r : W → Z+, add a minimum number of new edges to G so that the resulting graph contains
r(W) edge-disjoint paths from any area W to any vertex v /∈ W . As Ishii showed in [3], our problem is equivalent to
this, see also Claim 3.

In order to explain how we deal with our problem, we need a few definitions. Let G′ = (V , E′) be a graph.
The deficiency of X ⊆ V is defined as follows: qE′(X) = R(X) − dE′(X). For Y ⊆ V , let us define QE′(Y ) :=
max{∑X∈X qE′(X) : X subpartition of Y }. A subpartition X is called optimal, if it provides the maximum. Let
Q(G′) := QE′(V ). We mention that, by Lemma 14, 	Q(G′)/2
 is a lower bound for Opt(R, G′).

Let K = (V + s, E′ ∪F ′) be a graph where F ′ denotes the set of edges incident to s. We call a connected component
Ki of K − s such that dK(s, V (Ki)) = 1 (resp. odd, �3.) a small (resp. odd, big) component of K. A small component
C contains a unique neighbour vC of s. We will see that most of the difficulties come from the existence of a unique
small component, hence we will try to get rid of them as soon as possible. We say that K covers R if

dK(X)�R(X) for all X ⊆ V (equivalently dF ′(X)�qE′(X) for all X ⊆ V ). (3)

Suppose that K covers R. By splitting off a pair su, sv of edges incident to s, we mean the operation that deletes
these edges and add a new edge uv. We say that the pair or equivalently the splitting off is admissible if the graph after
the splitting still covers R. A complete splitting off is a sequence of splitting off which decreases the degree of s to 0.
We will use the technique of splitting off to get the minimax result.

First we extend the graph G = (V , E) by adding a new vertex s and a minimum set Fmin of new edges incident to
s so that the new graph covers the function R. By Lemma 4, R is symmetric skew-supermodular, so we may apply the
following general theorem of Frank [2].

Theorem 2. |Fmin| = Q(G).

Then, if this number is odd, we add another edge incident to s as follows. If (V + s, E + Fmin) has a unique small
component C: add a copy of svC , if it has only small components: add an edge anywhere, otherwise: add an edge
not incident to a small component. The graph obtained after these operations is denoted by H = (V + s, E + F) and
called an optimal extension of G = (V , E). Note that dH (s) is even, and if Q(G) is odd, H has none or several small
components. The reader should keep in mind that in this paper G denotes the starting graph, and H an optimal extension
of G.

Finally, we will split off the edges incident to s to get the cover. The complete admissible splitting off will exist in H
(in other words, the lower bound given by the deficient subpartitions can be achieved) only if H does not have a special
obstacle, or equivalently, G contains no configuration, see Theorems 11 and 12. If G does contain a configuration, then
an extra edge is needed, see Theorem 13.

We would like to emphasize that our approach provides a significantly simpler and shorter proof than that in [4].
This is due to the efficient tools we developed here (like Lemma 5) and to the use of allowed pairs (defined in
Section 5).
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2. Semi-monotone functions

We present some important properties on semi-monotone functions in this section.

Claim 3. Covering a symmetric semi-monotone function is equivalent to solving a problem of node to area connectivity
augmentation.

Proof. Sufficiency: Given W, r, the function RW defined by RW(X) = max{r(W) : W ∈ W, W ∩ X = ∅ or W ⊆ X}
if V �= X �= ∅ and RW(V ) = RW(∅) = 0 is symmetric semi-monotone.

Necessity: Given R symmetric semi-monotone, for all ∅ �= X ⊂ V , let WX be the out-monotone set of {X, V − X},
r(WX) = R(X) and W = {WX, ∅ �= X ⊂ V }. We show that RW(X) = R(X) for all ∅ �= X ⊂ V . Since WX ∩ X = ∅
or WX ⊆ X, we have RW(X)�r(WX) = R(X). Let W ∈ {Z ⊂ V : Z ∩ X = ∅ or Z ⊆ X} such that RW(X) = r(W).
Then since X or V − X is out-monotone, and R is symmetric, R(X)�R(W) = r(W) = RW(X). �

A function R is called skew-supermodular if for all X, Y ⊂ V , R(X) + R(Y )� max{R(X ∩ Y ) + R(X ∪ Y ),

R(X − Y ) + R(Y − X)}.

Lemma 4. A symmetric semi-monotone function is skew-supermodular.

Proof. For X, Y ⊂ V , apply that if X is out-monotone, then R(X)� min{R(X∪Y ), R(Y −X)}, and if X is in-monotone,
then R(X)� min{R(X ∩ Y ), R(X − Y )}. �

For Y1, Y2, Y3 ⊂ V , let Y �
i := Yi − ⋃

j �=i Yj (1� i�3), and Y �
4 := ⋂3

1 Yi .

Lemma 5. Let R be a semi-monotone function and Y1, Y2, Y3 ⊂ V with Y �
i �= ∅ (1� i�4). Then there exists an index

1�j �4 such that
∑4

1,i �=j R(Y �
i )�

∑3
1 R(Yi).

Proof. Apply that, R(Y �
j )�R(Yi) for j = i, 4 if Yi is in-monotone and for j �= i, 4 if Yi is out-monotone. �

3. Preliminaries

Given a graph L = (U, J ) and X, Y ⊂ U , dL(X, Y ) denotes the number of edges in J between X − Y and Y − X,
while dL(X, Y ) = dL(U − X, Y ). We will apply the following equalities.

dL(X) + dL(Y ) = dL(X ∪ Y ) + dL(X ∩ Y ) + 2dL(X, Y ), (4)

dL(X) + dL(Y ) = dL(X − Y ) + dL(Y − X) + 2dL(X, Y ). (5)

In Sections 3 and 4, we will deal with a graph K = (V + s, E′ + F ′) satisfying (3) and dK(s) is even and positive,
where E ⊆ E′ and F ′ denotes the set of edges incident to s. Such a graph K may be obtained from H by splitting off
some admissible pairs. E′ − E will be the set of split edges.

A set X ⊂ V is called tight (resp. dangerous) if 2�R(X) and dK(X) = R(X) or equivalently dF ′(X) = qE′(X)

holds (resp. 2�R(X) and dK(X)�R(X) + 1 or equivalently dF ′(X)�qE′(X) + 1). We say that a subpartition X is
tight (resp. in-monotone) if each member is tight (resp. in-monotone). To clear up the notations, we may use Y for the
subgraph induced by the vertex set Y. �K(s) is the set of neighbours of s in K. From now on, let su ∈ F ′.

Claim 6. Let ∅ �= X, Y ⊂ V .

(6.1) If Y is dangerous out-monotone and X is a connected component of K − s with X − Y �= ∅, then dK(s, X − Y ) +
1�dK(s, Y ). Moreover, if Y is tight, then the inequality is strict.

(6.2) Every in-monotone dangerous set Y is connected.
(6.3) If X and Y are both in- or out-monotone, both tight (resp. dangerous and u ∈ X ∩ Y ) and X − Y �= ∅ �= Y − X,

then X − Y, Y − X are tight in-monotone, dK(X, Y ) = 0 (resp. =1).
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(6.4) If X and Y are dangerous in-monotone, for A ∈ {X ∩Y, X −Y, Y −X}, A∩�K(s) �= ∅, then X ∪Y is connected
and for all ∅ �= Z ⊂ X ∪ Y , dK(Z)�2.

Proof. (6.1) R(Y )+1�dK(Y )�dK(s, Y )+dK(Y, X−Y )=dK(s, Y )+dK(X−Y )−dK(s, X−Y )�dK(s, Y )+R(Y )−
dK(s, X−Y ). (6.2) If ∅ ⊂ X ⊂ Y , then R(Y )+R(Y )�R(X)+R(Y −X)�dK(X)+dK(Y −X)=dK(Y )+2dK(X, Y −
X)�R(Y ) + 1 + 2dK(X, Y − X), so R(Y )�2 implies dK(X, Y − X)�1. (6.3) Suppose both are out-monotone, the
other case is similar. By (5) and (1), X − Y, Y − X are tight and R(X − Y ) = R(Y ), R(Y − X) = R(X), dK(X, Y ) = 0
(resp. =1, for dangerous sets). Combined with X, Y are out-monotone, it concludes. (6.4) Since X ∩ Y �= ∅, and, by
(6.2), X and Y are connected, so is X ∪ Y . Let ∅ �= Z ⊆ X ∪ Y . If Z ⊆ X, then since X is in-monotone and dangerous,
dK(Z)�R(Z)�R(X)�2. Similarly, if Z ⊆ Y , then dK(Z)�2. Otherwise, Z intersects X and Y . By (6.3), X −Y and
Y − X are in-monotone and tight hence connected by (6.2). So dK(Z)�2. �

Claim 7. Suppose that Q(G) is even. Let H = (V + s, E + F) be an optimal extension of G = (V , E).

(7.1) A subpartition X of V is optimal if and only if X is tight and each neighbour of s is contained in some X ∈ X.
(7.2) Let X be an optimal subpartition of V. If Y ⊂ V contains some members of X and is disjoint from the others,

then dF (Y ) = QE(Y ).

Proof. (7.1) In both directions we use that, by Q(G) is even, Theorem 2 implies Q(G) = |F | = dF (s).
Sufficiency: Q(G) = ∑

X∈X qE(X)�
∑

X∈X dF (X)�dF (s) = Q(G), so we have equality everywhere.
Necessity: Q(G) = |F | = ∑

X∈X dF (X) = ∑
X∈X qE(X), so X is optimal.

(7.2) Let XY be an optimal subpartition of Y. Then, by (7.1), QE(Y )�
∑

Y⊃X∈X qE(X) = ∑
Y⊃X∈X dF (X) =

dF (Y )�
∑

X∈XY
dF (X)�

∑
X∈XY

qE(X) = QE(Y ). �

4. Dangerous families

In this section we present a few results about dangerous families to describe the structure of the graph K for which
no complete admissible splitting off exists. For a neighbour u of s and S ⊆ �K(s), we say that Y is a dangerous
family covering u and S if each set in Y is dangerous, contains u and a vertex of S not contained in the other sets
of Y, and S ⊆ ∪Y. A neighbour of s contained in a big component of K is called big-neighbour. A connected
component B of K − s with dK(B) = R(B) = 2 is called a boring component of K . Let BK be the family of boring
components of K .

Lemma 8. In the graph K, the edge su belongs to no admissible pair if and only if there is a dangerous family Y
covering u and �K(s). In this case, K has a unique small component C. If u /∈ C, then C and a unique big component
D of K cover �K(s) and D is the union of two dangerous in-monotone sets containing u.

Proof. The first part is obvious. We show first that |Y|�3. For Y ∈ Y, we have dF ′(V − Y )�qE′(V − Y ) =
qE′(Y )�dF ′(Y ) − 1 = dF ′(s) − dF ′(V − Y ) − 1. Then, dF ′(V − Y )�	(dF ′(s) − 1)/2
 = dF ′(s)/2 > 0. Thus |Y|�2.
Suppose Y = {Y1, Y2}. By the above inequality, u ∈ Y1 ∩ Y2 and �(s) ⊆ Y1 ∪ Y2, we have dF ′(s) = dF ′(V − Y1) +
dF ′(V − Y2) + dF ′(Y1 ∩ Y2)�dF ′(s)/2 + dF ′(s)/2 + 1, a contradiction.

Let Y1, Y2, Y3 ∈ Y. By Yi dangerous, a well-known inequality on dK , (1), Lemma 5 and u ∈ ∩Y,
∑3

1 (R(Yi) +
1)�

∑3
1 dK(Yi)�

∑4
1 dK(Y �

i ) + 2dK(Y �
4 , s)�

∑4
1,i �=j R(Y �

i ) + dK(Y �
j ) + 2�

∑3
1 R(Yi) + 3. Then dK(Y �

j ) = 1, and,
by (1) and (2), R(Y �

j ) = 0. It follows that if j = 4, then Y1, Y2, Y3 are out-monotone and dK(Y �
4 ) = dK(s, Y �

4 ) = 1, and
if say j = 3, then Y3 is out-monotone with dK(Y �

3 )= dK(s, Y �
3 )= 1 and Y1 and Y2 are in-monotone. Note that if j �= 4,

each triplet of Y consists of an in-monotone and two out-monotone sets, therefore |Y| = 3.
It follows that K contains a small component C. We show that the small component is unique. In the first case

(j = 4), by contradiction, let C′ be another one. By dK(Y �
4 ) = 1, C′ ∩ Y �

4 = ∅. We suppose that vC′ /∈ Y1. By (6.3)
and (6.2), Y1 − Yi is connected (2� i�3), thus so is Y1 − Y �

4 . Since C′ is small, (Y1 − Y �
4 ) ∩ C′ = ∅. Thus C′ ∩

Y1 = ∅. By Y1 is out-monotone, 0 = R(C′)�R(Y1)�2, contradiction. In the second case (j �= 4, e.g. j = 3) that is
when u /∈ C, by (6.4) and |Y| = 3, Y1 ∪ Y2 is contained in a big component D covering �(s) − vC implying that C
is unique.
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To prove the last statement, suppose that u /∈ C and Z := D − (Y1 ∪ Y2) �= ∅. By dK(Y �
3 ) = 1, Z ∩ Y3 = ∅. By (1)

and Y3 out-monotone, dK(
⋃3

1 Yi)�dK(Z) + dK(s,
⋃3

1 Yi)�R(Z) + 4�R(Y3) + 4. Then, by Yi dangerous, (4), Y1

and Y2 in-monotone, we have
∑3

1 (R(Yi) + 1)�
∑3

1 dK(Yi)�dK(Y1) + dK(Y2 ∪ Y3) + dK(Y2 ∩ Y3)�dK(Y1 ∩ (Y2 ∪
Y3)) + dK(

⋃3
1 Yi) + R(Y2)�R(Y1) + R(Y3) + 4 + R(Y2), contradiction. �

Lemma 9. Suppose K has a big component. Let Y be a dangerous family covering u and the set of big-neighbours of
s. If u belongs to a small component C, then C ⊆ ∩Y and each v ∈ �K(s) − u belongs to either a boring component
disjoint from ∪Y or a big component.

Proof. Since u belongs to a small component, each set in Y is disconnected, so by (6.2), out-monotone. Suppose
Y = {Y1}. Y1 �= V so there exists a connected component X of K − s not contained in Y1. Then, since Y1 contains all
the big-neighbours of s, we have, by (6.1), 2 + 1�dK(s, X − Y1) + 1�dK(s, Y1)�4, contradiction. So |Y|�2, let
Y1, Y2 ∈ Y. By (6.1) applied to C and Yi , and u ∈ Yi , we have C ⊆ Yi for all Yi ∈ Y. Hence C ⊆ ∩Y.

To prove the second statement, let X be a not big component of K with X ∩ (�K(s)−u) �= ∅. Then 1�dK(s, X)�2.
By (6.3), Y1 − Y2 is tight in-monotone, hence connected by (6.2), thus, since by definition Y1 − Y2 contains a big-
neighbour, (Y1 −Y2)∩X=∅. By (6.3), dH (Y1, Y2)=1, thus Y1 ∩Y2 ∩X=∅. It follows that Y1 ∩X=∅. So X∩∪Y=∅.
Then, since Y1 is out-monotone, 2�R(Y1)�R(X)�dK(X) = dK(s, X)�2, so X is a boring component of K. �

We provide here a first result on complete admissible splitting off, an easy consequence of Lemma 8, which will be
useful later in the general case.

Lemma 10. If K has no odd or big component, then there is a complete admissible splitting off in K.

Proof. After an admissible splitting, both properties are preserved, so we only have to show that there is an admissible
pair. Otherwise, by Lemma 8, K − s has a unique small component. This is a contradiction because in both cases the
number of small components is even (dK(s) being even). �

5. Configuration and obstacle

We denote by B the set of in-monotone connected components B of G satisfying R(B) = QE(B) = 2. When Q(G)

is even, these sets will be boring components in an optimal extension.
We say that G contains a configuration if Q(G) is even, there exist a unique connected component C of G with

QE(C)=1, and families X and Y of subsets of V −∪B; X∪B is an optimal in-monotone subpartition of G; Y consists
of out-monotone sets Yi , containing C, containing or disjoint from each member of X, satisfying QE(Yi)�qE(Yi)+1,
whose union covers all members of X.

We say that an optimal extension H of G contains an obstacle if Q(G) is even, there exists a unique small component
C, it satisfies QE(C) = 1, and there exists a dangerous family Y covering vC and the set of big-neighbours of s. Note
that, by (6.2) and (6.1), Y consists of out-monotone sets containing C.

Theorem 11. Let H = (V + s, E +F) be an optimal extension of G= (V , E). Then G contains a configuration if and
only if H contains an obstacle.

Proof. In both cases, by definition, Q(G) is even.
Suppose G contains a configuration, then choose one with X and Y minimal. Then qE(X)�1 for all X ∈ X and

each Yi ∈ Y contains a set Xi ∈ X not contained in C. Since X ∪ B is an optimal subpartition, each X ∈ X is
tight by (7.1) and in-monotone therefore connected by (6.2). Thus if C ∩ X �= ∅, X ∈ X, then X ⊆ C. By (7.2),
dF (C)=QE(C)=1, so C is a small component. Then, by (7.2), 2�dF (C)+dF (Xi)�dF (Yi)=QE(Yi)�qE(Yi)+1,
so each Yi is dangerous. From the definition of the configuration, their union covers all big-neighbours of s.

Suppose that H contains an obstacle. By parity, there exists a big component. Lemma 9 applies to vC and Y =
{Y1, . . . , Yk}, so Yi ⊆ V −∪BH . By QE(C)= 1, vC belongs to a tight in-monotone set Xvc ⊂ C. For a big-neighbour
v in some Yi , let Xv be the minimal tight in-monotone set containing v. By (6.3), for j �= i, Yi −Yj is tight in-monotone.
Hence Xv ⊆ Yi −Yj , ∀i �= j . Therefore Xv ⊆ ⋂

j �=i (Yi −Yj )=Yi −⋃
j �=i Yj . LetX={XvC

}∪{Xv : v big-neighbour}.
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Clearly each Yi contains or is disjoint from each member of X∪BH . By (6.3), the members of X are disjoint (they are
also disjoint from the members of BH ). By Lemma 9, X ∪ BH covers �(s), every X ∈ X ∪ BH is tight so, by (7.1),
X∪BH is an optimal subpartition of V in G. By Yi dangerous and by (7.2), qE(Yi) + 1�dF (Yi) = QE(Yi). For every
B ∈ BH , C ∩ B = ∅ thus X ∪ BH is in-monotone. Moreover we have 2 = R(B) = qE(B)�QE(B) = dH (B) = 2.
Therefore BH = B. �

6. Complete admissible splitting off

Let H be an optimal extension of G. This section provides a complete admissible splitting off when H contains no
obstacle. The case when H contains an obstacle is handled in Theorem 13. In Section 4, we have seen that when a
big-neighbour belongs to no admissible pair, the graph can easily be described. This led us to use allowed pairs, that
is admissible pairs su, sv with at least one of u and v being a big-neighbour.

Theorem 12. If H contains no obstacle, then there is a complete admissible splitting off in H.

Proof. We may assume that H has a big component, otherwise we are done by Lemma 10.
Step 1: If there exists a unique small component C of H, we prove that we can destroy C (by moving svC , or by

splitting off an allowed pair containing svC). Since there is no obstacle in H, one of the following cases happens.

1. Q(G) is odd. In fact this case is impossible by construction of the optimal extension.
2. QE(C) �= 1. Then QE(C) = 0 and vC belongs to no tight in-monotone set, so there exists a minimal tight out-

monotone set X containing vC . By (6.3), an out-monotone tight set containing vC contains X. Since X is out-monotone
and dH (X) = R(X)�2, we have X�C hence there exists a connected component Z in H − s with X ∩ Z �= ∅.
Then, by (6.1), Z ∩ �H (s) �= ∅. Let x ∈ X ∩ Z. Replace svC by sx, the new graph still satisfies (1) and has no
small component.

3. There is an allowed pair containing svC . Split it off.

Let H ′ be the graph obtained after Step 1 (eventually, H ′ = H ).
Step 2: H ′ has none or several small components. Split off allowed pairs as long as possible. If there is no big

component anymore, then, by Lemma 10, find a complete admissible splitting off. Otherwise, Lemma 8 applied for a
big-neighbour u implies that the new graph H ′′ has a unique small component C and a unique big component D (which
is in fact odd as well). If H ′ contains no small component then C contains a split edge ab which is not a bridge. We
show that this is also true if H ′ contains several small components. Let X �= C be a small component of H ′. Since C
is unique in H ′′, svX has been split off previously, (let’s say with sy). Note that the new edge yvX is a bridge in H ′′.
Hence, by Lemma 8 and (6.4), yvX is not in D. So it is in H ′′ − D. Since the splittings were allowed, it follows that C
contains a split edge and the last one ab is not a bridge.

Let us unsplit ab that is replace the edge ab by sa and sb. Then there is no small component anymore. Therefore
by Lemma 8 there exists an admissible pair {su, sv}. Since D is the union of two dangerous sets containing u in H ′′
and also in the graph after the unsplitting, su belongs to no admissible pair su, sx with x ∈ D, so necessarily v ∈ C.
After splitting this pair, the new graph has no odd component, so Lemma 10 provides a complete admissible splitting
off. �

7. Augmentation

By applying the above splitting result we can solve the augmentation problem.

Theorem 13. Let G = (V , E) be a graph and R a symmetric semi-monotone function on V. If G contains no configu-
ration, then Opt(R, G) = 	Q(G)/2
, otherwise Opt(R, G) = 	Q(G)/2
 + 1.

Proof. The following lemmas prove the theorem. �

Lemma 14. Opt(R, G)�	Q(G)/2
. If G contains a configuration, then the inequality is strict.
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Proof. For a minimum set M of edges such that G + M satisfies (1), since for any edge f , QE+f (V )�Q(G) − 2,
we have 0�QE+M(V )�Q(G) − 2|M|. Now suppose G contains a configuration and equality holds. Let H be the
extension of G from which we can obtain G + M by a complete admissible splitting off. By the minimality of M ,
H is an optimal extension of G. Since G contains a configuration, by Theorem 11, H contains an obstacle. Then svC

belongs to one of the admissible pairs, say {su, svC}. Since svC belongs to no allowed pair, by Lemma 9, u belongs
to a boring set B. Split off {su, svC}, denote by H ′ the new graph. Note that H ′ is an optimal extension of G + uvC .
Note that Y ′

i = Yi ∪ B is dangerous in H ′ because R(Yi ∪ B) + 1�R(Yi) + 1�dH (Yi) + dH (B) − 2�dH (Yi ∪
B) − 2 = dH ′(Yi ∪ B) and, by (6.2), it is also out-monotone. C′ = C ∪ B has a unique neighbour vC′ of s and
1 = dH ′(C′)�QE+uvC

(C′)�QE+uvC
(B)�R(B) − dH ′−s(B) = 1. Then vC′ , C′, Y ′

1, ...Y
′
k form an obstacle in H ′,

and |BH ′ | = |BH | − 1. Repeating this operation, we may assume BH = ∅. Then svC belongs to no admissible pair,
contradiction. �

Lemma 15. Opt(R, G)�	Q(G)/2
 + 1. If G contains no configuration, then the inequality is strict.

Proof. Let H be an optimal extension of G. By Theorem 2, |F | = 2	Q(G)/2
. If G contains no configuration, then, by
Theorem 11, H contains no obstacle and hence, by Theorem 12, there exists a complete admissible splitting off, and
the strict inequality follows. Otherwise, we split off admissible pairs as long as possible. In the new graph, by Lemma
8, there exist a unique small and a unique big component, C and D. We add an edge between C and D. Since there is no
odd component anymore, by Lemma 10, we have a complete admissible splitting off and the inequality follows. �
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