
Chapter 5
Analysis and Design of Bend-Twist Coupled
Wind Turbine Blades

Alexander R. Stäblein

Abstract Bend-twist coupling allows wind turbine blades to self-alleviate sudden
inflow changes, as in gusty or turbulent conditions, resulting in reduced ultimate
and fatigue loads. If the coupling is introduced by changing the fibre direction of
the anisotropic blade material, the assumptions of classical beam theory are not
necessarily valid. This chapter reviews the effects of anisotropic material on the
structural response of beams and identifies those relevant for wind turbine blade
analysis. A framework suitable for the structural analysis of wind turbine blades is
proposed and guidance for the design of bend-twist coupled blades is given.

5.1 Introduction

Bend-twist coupling (BTC) is used to improve the aeroelastic response of wind
turbine blades. As the name suggests, BTC creates a coupling between bending and
twist of the blade. The coupling links the aerodynamic forces, which induce bending
in the blade, with the twist of the blade. The twist of the blade in turn changes
the angle of attack and thereby the aerodynamic forces. This feedback loop, when
twisting towards a lower angle of attack, enables the blade to self-alleviate sudden
inflow changes, as in gusty or turbulent conditions, leading to a reduction in ultimate
and fatigue loads. The aeroelastic response of a bend-twist coupled blade section
is illustrated in Fig. 5.1. When subjected to a sudden increase in inflow velocity
�W the lift force increases and the blade deflects until the elastic forces �F are
in equilibrium with the increased lift �L at deflection �u, shown in the middle of
the figure. For a blade section twisting to feather as shown on the left, the angle
of attack reduces by �˛. A lower angle of attack results in a reduced lift increase
�L � �W2c��˛ and smaller blade deflections �uf < �u are required to obtain
force equilibrium. For a blade section twisting to stall as shown on the right, the
angle of attack increases and with it the lift force �L C �W2c��˛ resulting in
larger deflections �us > �u to obtain equilibrium. As BTC intends to reduce the

A.R. Stäblein (�)
Department of Wind Energy, Technical University of Denmark (DTU), DTU Risø Campus,
Frederiksborgvej 399, 4000 Roskilde, Denmark
e-mail: alsta@dtu.dk

© The Author(s) 2016
W. Ostachowicz et al. (eds.), MARE-WINT, DOI 10.1007/978-3-319-39095-6_5

67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81156492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alsta@dtu.dk


68 A.R. Stäblein

Fig. 5.1 Aeroelastic response to a sudden change in inflow velocity �W of a bend-twist to feather
coupled (left), uncoupled (middle) and bend-twist to stall coupled (right) blade section

aerodynamic loads on the blade, the coupling is designed to twists towards a lower
angle of attack (twist to feather) for modern, pitch regulated wind turbines.

BTC can be achieved by either sweeping the planform of the blade (geometric
coupling) which induces additional torsion when the blade is loaded, or by changing
the fibre direction of the blade material (material coupling) in the spar caps and/or
skin of the blade. The change in fibre direction results in coupling of the normal and
shear stresses on lamina level which can be used to induce bend-twist coupling in
the cross-section of the beam. The effects resulting from this anisotropic material
behaviour are not representable with conventional Euler-Bernoulli or Timoshenko
beam theory. This chapter reviews the effects of anisotropic material on the
structural response of beams and identifies those relevant for wind turbine blade
analysis. A framework suitable for the structural analysis of wind turbine blades
is subsequently proposed. The cross-sectional properties of anisotropic beams are
discussed and related to classical beam properties. And a Timoshenko beam element
for fully coupled cross-sectional stiffness matrices is presented. The next section
provides guidance on the design of bend-twist coupled blades and presents a pre-
twisting procedure to reduce the power loss associated with coupled blades. To
maintain stiffness (e.g. for tower clearance), the blade regions where coupling is
most efficiently applied are also identified.

5.2 Analysis of Anisotropic Beams

The analysis of fibre-reinforced polymer (FRP) beams is complex due to the
anisotropic properties of the composite material. FRP usually consists of glass or
carbon fibres that are embedded in a polymer matrix. Due to the different material
properties of fibres and matrix, the longitudinal and transverse stiffness of a FRP
ply can differ by several orders of magnitude. A considerable amount of papers
have been published on the analysis of anisotropic composite beams. Reviews of
those literature is provided by e.g. Hodges (1990b) and Jung et al. (1999). This
section provides an overview of the behaviour of composite beams and identifies the
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effects that are relevant for wind turbine blade analysis. A framework suitable for
the analysis of wind turbine blades is proposed, consisting of cross-section analysis,
beam element and co-rotational formulation. The cross-sectional properties of an
anisotropic beam are discussed and related to classical beam properties, elastic and
shear centre and principle axes. Finally, a Timoshenko beam element for anisotropic
beams is presented.

5.2.1 Structural Properties of Anisotropic Beams

Euler-Bernoulli is considered the most fundamental beam formulation. It allows for
bending about the two principle axes of the cross-section and extension along the
beam axis. It assumes that the cross-section plane remains plane after deformation
(i.e. no warping) and perpendicular to the elastic axis of the beam (no shear
deformation). The Euler-Bernoulli theory is deemed valid for the static analysis of
long, slender beams and the dynamic analysis of lower modes.

5.2.1.1 Shear Deformations

The beam formulation by Timoshenko (1921) allows for transverse shear defor-
mations by dropping the assumption of a cross-section plane that is perpendicular
to the beam axis. The ‘plane sections remain plane’ assumption is maintained.
The Timoshenko formulation gives better results for short, stocky beams and the
dynamic analysis of higher modes where the wavelength approaches the thickness
of the beam. For composite beams, Chandra and Chopra (1992) separate the shear
effect into two categories: a direct effect due to the shear stiffness of the section (i.e.
Timoshenko) and an effect via shear-related coupling. Smith and Chopra (1991) and
Jung et al. (1999) suggest that transverse shear deformations cannot be neglected in
composite beams, particularly when coupling is present. Smith and Chopra report
that bending-shear coupling reduces the effective bending stiffness of a strongly
coupled box-beam by more than 30 %. Volovoi et al. (2001) on the other hand claim
that correct deformations can also be obtained with an Euler-Bernoulli formulation
if shear deformations are considered correctly when calculating the cross-sectional
stiffness. However, in an earlier publication (Rehfield et al. 1990) one of the
authors concludes that the direct shear flexibility term may not be negligible and
that bending-shear coupling must be present in any general-purpose analysis of
composite beams. Cortínez and Piovan (2002) suggest that the shear effect is more
important for composite than for isotropic beams due to the high ratio between
the longitudinal and transverse modulus of elasticity. Their results show that the
shear deformations have a significant effect even on the first frequency of a slender
uncoupled composite beam.
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5.2.1.2 Torsional Warping

The Euler-Bernoulli and Timoshenko beam theories can be extended by St. Venant’s
torsion. St. Venant’s torsion theory assumes that out-of-plane warping is unre-
strained and therefore does not cause axial stress in the section. The free warping
assumption is deemed valid for closed sections where torsional warping contributes
little to the normal stresses or when warping is unrestrained by e.g. supports.
Vlasov’s torsion theory allows to restrain the torsional warping by introducing an
additional degree of freedom along the beam. The restrained warping can cause
significant stresses in the beam direction, in particular for open cross-sections (i.e.
I-beams). Chandra and Chopra (1992) show that constrained warping has a stronger
influence on the torsional stiffness of composite I-beams than isotropic I-beams.
For the closed cross-section beams in their study the constrained warping effect
is not important. Rehfield et al. (1990) relate the effect of restrained warping to
the decay length which can be split into a material and a geometric part. The
geometric part is mainly influenced by the slenderness of the beam. The material
part depends on the axial and transverse stiffness and on how much they are coupled.
Rehfield et al. (1990) conclude that an additional variable for warping would be
important for certain laminated structures. The work of Smith and Chopra (1991)
suggests that restrained warping along the beam can have a significant influence on
coupled composite beams with closed sections. However, they assume that locally
restrained warping is negligible for ‘very slender’ beams. The results of Cortínez
and Piovan (2002) show that torsional warping has a great influence on the vibration
and stability behaviour of open sections but it is negligible for closed sections.

5.2.1.3 General Warping

So far, the effects of out-of-plane warping due to transverse shear and in-plane
warping have not been considered. Attempts to include those in an analytical
solution are made by Smith and Chopra (1991) who introduce the concept of zero
net in-plane forces and moments into the constitutive relations of the cross-section.
Their results show that load deflection for an anti-symmetric box beam is altered by
30–100 % if in-plane warping is not accounted for. A general approach to calculate
the properties of arbitrary cross-sections of anisotropic material is proposed by
Giavotto et al. (1983). The formulation invokes the virtual work per unit beam
length to obtain a linear system of second-order differential equations with constant
coefficients that have a homogeneous and particular solution. The particular (or
central) solution is used to determine a 6 � 6 cross-section stiffness matrix while
the homogeneous (or extremity) solution, which is related to warping, is generally
ignored. Hodges (1990b) suggests to use the homogeneous solutions to introduce
additional degrees of freedom to account for restrained warping at the end of the
blade. Another general approach for calculating the cross-section stiffness matrix is
proposed by Cesnik and Hodges (1997). The formulation is based on the variational-
asymptotic method by Berdichevskii (1979).
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5.2.1.4 Superelements

An approach that avoids some of the conjectures of beam analysis is the use of
superelements by static condensation. The concept originated from aerospace engi-
neering in the early 1960s (Guyan 1965). Superelements are created by reducing the
structural degrees of freedom (static condensation) of a higher fidelity model, often
comprised of shell and/or solid elements. While the process of static condensation is
reasonably straightforward, due attention must be given to the interpolation function
if the many degrees of freedom of a beam cross-section are to be reduced to a single
node to obtain beam like elements.

5.2.1.5 Large Displacements

Using non-linear finite element methods, various approaches exist to model a beam
undergoing large displacements. Bathe and Bolourchi (1979) present an updated and
a total Lagrangian degenerate beam formulation. Variational formulations, where
the beam strains are derived from internal virtual work, are proposed by e.g. Simo
and Vu-Quoc (1986) and Cardona and Geradin (1988). A further approach is the co-
rotational formulation (Crisfield 1990; Battini and Pacoste 2002) that separates rigid
body motions from local deformations. The separation is achieved by introducing a
local coordinate frame that follows the rigid body motions of the element. Within
the local frame (at element level) small displacements and strains are assumed. The
method therefore allows to use existing elements (or superelements), which are not
able to represent large displacements, in a geometrical non-linear analysis. The co-
rotational approach is not restricted to beam elements but also applicable to shell
and continuous elements.

The above beam formulations generally assume isotropic material properties.
For the large displacement analysis of anisotropic beams, the theory of Giavotto
et al. (1983) is extended by Borri and Merlini (1986) to allow for finite strains.
Hodges (1990a) presents a mixed variational formulation for the large displacement
analysis of anisotropic beams. Kim et al. (2013) present a beam element assuming
polynomial shape functions of arbitrary order where the shape function coefficients
are eliminated by minimizing the elastic energy of the beam. The element by
Stäblein and Hansen (2016) is an extension of a Timoshenko beam element by
Bazoune et al. (2003) to allow for the analysis of anisotropic cross-sectional
properties. The formulations by Kim et al. (2013) and Stäblein and Hansen (2016)
assume small displacements and are intended for the application in a co-rotational
or multibody formulation.

5.2.1.6 Wind Turbine Blade Analysis

Wind turbine blades are made of anisotropic material and have a closed cross-
section. Previous research indicates that the analysis of blades should there-
fore consider shear deformations and general warping as those effects have a
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considerable influence on the response of anisotropic beams. Restrained warping
is less important for closed cross-sections, which also applies for anisotropic
beams, and can therefore be neglected. Wind turbine blades are subjected to large
displacements (w=l D 0:14 for the DTU 10 MW Reference Wind Turbine (DTU
10 MW RWT) (Bak et al. 2013)) and rotations, geometrical non-linear effects should
therefore be considered in the analysis. A suitable framework for the analysis of
wind turbine blades could be comprised of a cross-section analysis that considers
general warping and the coupling effects from the anisotropic material (Giavotto
et al. 1983; Borri and Merlini 1986), and a beam element formulation which allows
for anisotropic cross-sectional properties and large displacements, either through its
formulation (Borri and Merlini 1986; Hodges 1990a) or by embedding it in a co-
rotational or multibody formulation (Kim et al. 2013; Stäblein and Hansen 2016).

5.2.2 Anisotropic Cross-Sectional Properties

The analysis framework for wind turbine blades proposed above comprises the
calculation of anisotropic cross-sectional properties. Those properties are usually
expressed in a 6 � 6 cross-sectional stiffness matrix, the entries of which are briefly
discussed below.

A Cartesian coordinate system as shown in Fig. 5.2 is assumed for the cross-
section. The beam axis x is normal to the cross-sectional plane which is defined
by axes y and z. Displacements and rotations are denoted ui and �i, and forces and
moments are Fi and Mi. The indices i 2 fx; y; zg are used to indicate the direction or
rotation axis. By introducing the cross-sectional stiffness matrix

Kcs D

2
66666664

K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26

K33 K34 K35 K36

K44 K45 K46

sym: K55 K56

K66

3
77777775

; (5.1)

the beam strain vector

" D fu0
x; u0

y � �z; u0
z C �y; � 0

x; � 0
y; � 0

zgT ; (5.2)

Fig. 5.2 Coordinate system of blade cross-section
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where ui and �i are the displacements and rotations of the beam axis and . /0
are derivatives with respect to x, and the vector of the cross-sectional forces and
moments

F D fFx; Fy; Fz; Mx; My; MzgT ; (5.3)

the cross-sectional constitutive relation can be written as

Kcs" D F: (5.4)

For an isotropic and symmetric beam the diagonal entries Kjj for j 2 f1; : : : ; 6g of
the cross-sectional stiffness matrix represent the classical beam properties

K11 D EA K44 D GJ
K22 D kyGA K55 D EIy

K33 D kzGA K66 D EIz

(5.5)

where E and G are elastic and shear modulus of the material, A is the area, Iy and Iz

are the second moments of area, and J is the torsion constant of the cross-section.
The Timoshenko shear coefficients are ky and kz. Entries K15 and K16 of the cross-
sectional stiffness matrix are related to the elastic centre (ye; ze) which is defined as
the point through which the normal force does not induce bending:

ye D �K16

K11

; ze D K15

K11

(5.6)

Entries K24 and K34 of the cross-sectional stiffness matrix are related to the shear
centre (ys; zs) which is defined as the point through which the shear force resultant
does not induce twist:

ys D K34

K33

; zs D �K24

K22

(5.7)

Entry K56 of the stiffness matrix is related to the angle ˇ between the current axes
and the principle axes which are defined as the axes where the moments of area
are maximum and minimum and the product moment of area is zero. To obtain the
angle ˇ between the current axes and the principle axes, one of the eigenvectors

v D fv1; v2gT of the sub-matrix

�
K55 K56

K56 K66

�
has to be determined. The angle ˇ is

then obtained from:

ˇ D arctan

�
v2

v1

�
(5.8)
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Entries K45 and K46 are associated with bend-twist coupling. Lobitz and Veers
(1998) propose a coupling coefficient � as a measure of bend-twist coupling:

K45=46 D �
p

K44K55=66; �1 < � < 1 (5.9)

The theoretical limit of j� j < 1 results from the requirement of a positive definite
stiffness matrix. In a realistic setting values up to 0.2–0.4 are deemed achievable for
wind turbine blades (Capellaro and Kühn, 2010; Fedorov and Berggreen, 2014).

The remaining entries are K23 which is related to coupling between the shear
forces and is usually non-zero for anisotropic beams. Entries K12 and K13, which
should be expected non-zero if bend-twist coupling is present. And K14 which is
related to extension-twist coupling. Extension-twist coupling will most probably
also cause K25; K26; K35 and K36 to be non-zero.

5.2.3 Timoshenko Beam Element with Anisotropic
Cross-Sectional Properties

The anisotropic cross-sectional properties discussed in the previous section require
a beam element formulation that accounts for all possible couplings between the
cross-sectional forces. One such formulation is the two-noded, three-dimensional
Timoshenko beam element proposed by Stäblein and Hansen (2016). The element
is an extension of the formulation by Bazoune et al. (2003) to account for fully
coupled cross-sectional properties.

The origin of the element coordinate frame is assumed at the first node of the
element. The x axis points towards the second node and axes y and z define the
cross-sectional plane of the beam as shown in Fig. 5.2. The lateral displacements
along the beam axis ux, and in the cross-sectional plane uy and uz are expressed as
functions of the coordinate x along the beam length L. A first order polynomial is
assumed for ux and third order polynomials are assumed for uy and uz:

ux.x/ D c1x C c2 (5.10)

uy.x/ D c3x3 C c4x2 C c5x C c6 (5.11)

uz.x/ D c7x3 C c8x2 C c9x C c10 (5.12)

The torsional displacements are expressed by a first order polynomial:

�x.x/ D c11x C c12 (5.13)

Timoshenko’s assumption that the curvature of the beam equals the slope plus a
contribution from shear deformation is used to define the rotational displacements
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�y and �z around the beams cross-sectional axes:

�y.x/ D �u0
z C c13 (5.14)

�z.x/ D u0
y � c14 (5.15)

In the equations above ck for k 2 f1; : : : ; 14g are shape function coefficients. The
14 coefficients are eliminated by introducing two equilibrium equations of the shear
force and bending moment relationship:

M0
y � Fz D 0; M0

z C Fy D 0 (5.16)

and 12 compatibility conditions (6 nodal displacements C 6 nodal rotations) at
the element boundaries x D 0; L. With the displacements and rotations along the
element determined, the elastic energy of the beam is calculated from:

V D 1

2

Z L

0

"TKcs" dx (5.17)

The element stiffness Kel is finally obtained by creating the Hessian of the elastic
energy V with respect to the nodal degrees of freedom. The matrix notation of
the beam element for implementation in a finite element code is presented in the
original publication (Stäblein and Hansen 2016). A Python implementation of the
beam element in a three-dimensional co-rotational formulation is available on Git
Hub. https://github.com/alxrs/eccomas_2016.git

5.3 Design of Bend-Twist Coupled Blades

Bend-twist coupling intends to reduce the fatigue load of wind turbine blades.
Fatigue load alleviation between 10 and 20 % have been observed in previous studies
(Lobitz and Veers 2003; Verelst and Larsen 2010). While the load reduction is
desired, bend-twist coupling is also associated with a reduction in energy production
(Lobitz and Laino 1999; Verelst and Larsen 2010; Bottasso et al. 2013). The reduced
energy yield is associated with a no longer optimal twist distribution along the blade.
The twist distribution is typically designed to maximize power at a specific tip-speed
ratio. For bend-twist coupled blades, however, the twist distribution depends on the
bending in the blade which increases with the thrust between cut-in and rated wind
speed. Figure 5.3 shows the power and thrust of the DTU 10 MW RWT (Bak et al.
2013) over its operational range. The thrust increases nearly linearly between cut-in
at 4 m/s and rated at 12 m/s. With the twist distribution dependant on wind speed it

https://github.com/alxrs/eccomas_2016.git
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Fig. 5.3 Power and thrust curve of the DTU 10 MW RWT over the operational range

is no longer possible to design the blade for a specific tip-speed ratio. There are two
approaches to deal with the non-optimal twist:

(1) Determine the optimal blade twist distribution for a tip-speed ratio (as for
uncoupled blades). Choose a reference wind speed at which the twist dis-
tribution of the coupled blade should be optimal. Determine the pre-twist
of the undeformed blade to match the optimal twist distribution under the
aerodynamic load at reference speed.

The procedure ensures that the twist is optimal for the reference speed. Away
from the reference speed the twist distribution will deteriorate. However, the
blade can be pitched to improve the energy yield in those regions. The reference
speed for pre-twisting is chosen to maximize annual energy production which
depends on the wind speed distribution of the site. A pre-twisting procedure for
linear blade deflections is proposed by Lobitz and Veers (2003) and extended
to non-linear blade deflections by Stäblein et al. (2016). The latter show that
pre-twisting significantly reduces the power loss in annual energy production
of the DTU 10 MW RWT.

(2) Optimize the twist, and probably also the chord, distribution of the coupled
blade for a given wind speed distribution. The tip-speed ratio might also be
considered an optimization variable. To the authors knowledge there has not
been a study that pursued this approach.

In the following, the pre-twist procedure presented by Stäblein et al. (2016) is
revisited. As a constant coupling coefficient is applied along the length of the blade,
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Fig. 5.4 Flowchart of the pre-twisting procedure presented by Stäblein et al. (2016)

the resulting pre-twist distribution provides a good indication of the blade regions
where coupling is most efficient.

5.3.1 Pre-Twisting Procedure

Pre-twisting adjusts the structural twist of a coupled blade in an iterative procedure
to provide the same angle of attack along the blade as the uncoupled blade for a
given reference wind speed. The first step is to calculate the steady state angle
of attack along the uncoupled ˛ref and coupled blade ˛btc at the reference wind
speed vref . The angle of attack is chosen as a reference as it results in the same
aerodynamic state, irrespective of the blade twist which is not uniquely defined for
large displacements and rotations. The difference between the angles of attack �˛

is then imposed on the coupled blade as a pre-twist. Both steps are repeated until the
angle of attack along the uncoupled and coupled blade are identical at the reference
speed. A flowchart of the procedure is shown in Fig. 5.4. The power curve is further
improved by recalculating the optimal pitch angle over the operational range of
the turbine. Pre-twisting results in an identical angle of attack along the blade at the
reference wind speed vref . Below the reference speed, the thrust on the blade is lower
which results in reduced bending and consequently less coupling induced twist. The
blade therefore has a higher angle of attack slope along the blade as the blade twists
towards stall. In this region, it is important to consider the angle of attack limit
when determining the optimal pitch angle in order to avoid flow separation. Above
the reference speed, where thrust is larger, the coupling will result in a lower angle
of attack slope along the blade as the blade twists towards feather.
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Fig. 5.5 Blade flapwise curvature and coupling induced twist at 8 m/s wind speed (Stäblein et al.
2016)

5.3.2 Coupling Distribution

If bend-twist coupling is introduced by utilising the anisotropic properties of the
blade material, the change in fibre direction in the spar caps and/or skin of the blade
results in a reduced bending stiffness. Previous studies (Fedorov and Berggreen
2014) have shown that coupling reduces the bending stiffness of the blade by 30–
35 % when no material is added. As the tower clearance of the blade tip is often
a governing design criteria a loss in stiffness is undesirable and it is advisable to
introduce the coupling only in blade regions where it is most efficient. Figure 5.5
shows the coupling induced twist and the flapwise curvature at 8 m/s reference
speed for the DTU 10 MW RWT with a constant flap-twist to feather coupling
coefficient of 0.2 along the blade. It can be seen that the curvature correlates with
the slope of the induced twist. The relationship can also be shown by reducing the
cross-sectional constitutive relation (5.4) to flapwise moment and torsion. Assuming
torsion to be zero, a linear relationship between curvature and twist rate can be
established:

�
K44 K45

K45 K55

� �
� 0

x

�u00
z

�
D

�
0

My

�
) � 0

x D K45

K44

u00
z (5.18)

Returning to Fig. 5.5, the curvature-twist relationship shows that, for the DTU
10 MW RWT, coupling is most efficient in the outer half of the blade. A similar
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observation is also made by Bottasso et al. (2013) who show that partially coupled
blades exhibit a similar load alleviation performance as fully coupled blades.

5.4 Summary

Bend-twist coupling is a proven technique to reduce the fatigue loads of wind
turbine blades. If the coupling is introduced by changing the fibre direction
of the anisotropic blade material, it is important to account for the effects the
material has on the structural response of the blade. Previous research indicates
that shear deformations, general warping and the geometric non-linearity from
large displacements need to be considered. An analysis framework that includes all
those effects, consisting of cross-section analysis, beam element and co-rotational
formulation, has been presented in this chapter. When designing bend-twist coupled
blades, pre-twisting can be used to reduce the power loss associated with the
coupling. To maintain blade stiffness for tower clearance while utilizing the load
alleviation potential of coupled blades, the coupling should only be introduced in
regions with high curvature as this is where it is most efficient.
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