Communication

A characterization of intersection graphs of the maximal rectangles of a polyomino

Frédéric Maire
Université Paris 6, UFR 921, Equipe Combinatoire, 4 Place Jussieu, 75005 Paris, France
Communicated by C. Berge
Received 2 February 1993

Abstract

The interior of an orthogonal polygon drawn on a regular grid of the plane defines a set of cells (or squares) called a polyomino. We prove that the intersection graph of the maximal rectangles contained in a polyomino is slightly triangulated or has a star cutset.

1. Introduction

Shearer proved in [1] that the intersection graph of the maximal rectangles of a polyomino is perfect. This problem was posed in [3]. It seems difficult to deduce a characterization for this class of graphs with Shearer's proof. We would like to find simple reasons why these graphs are perfect. Here we present a new proof of Shearer's theorem, which uses a recent result on minimal imperfect graphs [2].
As usual in Perfect Graph Theory, the subgraphs we are interested in are those which are induced by a subset of vertices. For an introduction to perfect graph Theory see [4] or [5]. We write $H \subseteq G$ to represent the fact that H is an induced subgraph of G. Let P_{k} denote the chordless path with k vertices and C_{k} the chordless cycle with k vertices. Let G denote the complement of the graph G. We say that a vertex x is loose if its neighbourhood is P_{4}-free. In [2] we proved the following.

[^0]Lemma 1. A minimal imperfect graph G without chordless cycle of length 5 or more has no loose vertex.

A graph is called slightly triangulated if it contains no chordless cycle with 5 or more vertices, and if every induced subgraph has a loose vertex. The lemma above implies that these graphs are perfect. They generalize triangulated graphs. We first consider the cycles of the intersection graph $G(P)$ of the maximal rectangles of a polyomino P, and show that the length of a chordless cycle in $G(P)$ is less than 5 . Then we cstablish that every induced subgraph of G has a loose vertex or a star cutset. At this point we have the following.

Theorem 1. The intersection graph $G(P)$ of the maximal rectangles of a polyomino P has no chordless cycle of length 5 or more, and every induced subgraph contains a loose vertex or has a star cutset.

Hence $G(P)$ is perfict. In the following G stands for the intersection graph $G(P)$ of the maximal rectangles of a polyomino P. The graph G is derived from P as follows. Let the vertices of G be the maximal rectangles contained in P. Let two vertices of G be joined by an edge iff the rectangles have a non-empty intersection.

2. Cycles of $\boldsymbol{G}(\boldsymbol{P})$

A (geometric) vertex of a maximal rectangle of P will be called a corner to avoid confusion with the vertices of the graph. The interior of a rectangle is the interior in the usual Euclidean topological sense. Let x and y be two maximal rectangles of P. Since the rectangles are maximal we have the following.

Proposition 1. A corner of x is in the interior of y if and only if a corner of y is in the interior of x.

The intersection of x and y is called a cross if no corner of a rectangle is contained in the interior of the other. Otherwise the intersection is called a step.

Let $C=\left(r_{1}, \ldots, r_{k}\right), k \geqslant 5$, be a chordless cycle of G. Let a_{i} be a cell of $r_{i} \cap r_{i+1}$. We note $W_{i, j}$ the polygonal line from a_{i} to a_{j} through the segments $\left[a_{i}, a_{i+1}\right],\left[a_{i+1}, a_{i+2}\right], \ldots,\left[a_{j-1}, a_{j}\right]$. We are counting modulo k. We assume that C is chosen with a minimum number of step intersections. The smallest simply connected set containing C is an orthogonal polygon for which the rectangles of C are maximal too. We can thus assume that P is this polyomino. Suppose that there is an i such that $r_{i} \cap r_{i+1}$ is a step. Then $r_{i-1} \cap r_{i}$ and $r_{i+1} \cap r_{i+2}$ are crosses. Otherwise, if for example $r_{i-1} \cap r_{i}$ is a step then one of the rectangles of the sequence $\left(r_{i+2}, \ldots, r_{i-2}\right)$ meets r_{i}. (Here we use the simple connectivity of P and the maximality of the rectangles). This would contradict that C is chordless. Therefore we can assume that $r_{i-1} \cap r_{i}$ and

Fig. 1.

Fig. 2.
$r_{i+1} \cap r_{i+2}$ are crosses. The sides of r_{i} crossed by r_{i-1} and the sides of r_{i+1} crossed by r_{i+2} cannot be parallel. Otherwise $W_{i+1, i}$ would contradict the maximality of r_{i} or r_{i+1}. Therefore these sides are perpendicular. (See Fig. 1.) We can shrink the rectangles r_{i} and r_{i+1} so that their intersection become a cross. (See Fig. 2.) These rectangles are still maximal in the polyomino generated by the shrinked rectangles and the other rectangles of C. We have decreased the number of step intersections of C. In fact we can assume that all intersections are crosses. So, the cells a_{i} can be chosen so that the a_{i} are exactly the vertices of an orthogonal polygon. It is a well-known result that an orthogonal polygon admits a reflex vertex (its interior angle is equal to $3 \pi / 2$) as soon as the number of its vertices is greater than 4 . Let a_{i} be this vertex. It is easy to check that r_{i} cannot be maximal. Hence we have proved the following.

Theorem 2. The length of a chordless cycle in G is at most 4 .

3. Star cutset or loose vertex

Let L be a maximal rectangle of the polyomino P with the lowest top row. Let I be the top row of L. It is easy to see that the following holds.

Proposition 2. Every rectangle which meets L meets also I.

Now we shall show that if the neighbourhood of L in G contains a P_{4} then G contains a star cutset. Let $T_{1}, T_{2}, T_{3}, T_{4}$ be a P_{4} in the neighbourhood of L. Without loss of generality we assume that these rectangles are numbered so that the top row of T_{3} is higher than the top row of T_{2}. Then the low row of T_{2} is lower than the low row of T_{3}. Otherwise T_{2} would meet T_{4}. (See Fig. 3.) The set of vertices $T_{3} \cup\left(\Gamma_{G}\left(T_{3}\right) \backslash T_{4}\right)$ is a star cutset deconnecting T_{1} and T_{4}. Because if a chain of rectangles goes from T_{1} to T_{4} without meeting T_{3} then the top left corner of T_{3} would

Fig. 3.
be in the interior of P, contradicting the maximality of T_{3}. This ends the proof of Theorem 1.

References

[1] J.B. Shearer, A class of perfect graphs, SIAM J. Alg. Discrete. Math. 3 (1982) 281-284.
[2] F. Maire, Thesis, University Pierre et Marie Curie, Paris 6, 1993.
[3] C. Berge, C.C. Chen, V. Chvátal and C.S. Seow, Combinatorial properties of polyominoes, Combinatorica 1 (1981) 217-224.
[4] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1985).
[5] C. Berge and V. Chvátal, Topics on perfects graphs, Ann. Discrete Math. 21 (1984).

[^0]: Correspondence to: Frédéric Maire, Université Paris 6, UFR 921, Equipe Combinatoire, 4 Place Jussieu, 75005 Paris, France.

