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Abstract

We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More pre-
cisely, we consider the lens spades, and L2, and prove that their configuration spaces are not homotopy
equivalent by showing that their universal coverings have different Massey products.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The configuration spack, (M) of pairwise distinch-tuples of points in a manifol has been much
studied in the literature. Levitt reported[f] as “long-standing” the following:

Conjecture 1. The homotopy type @, (M), for M a closed compact smooth manifodipends only on
the homotopy type of M

There was some evidence in favor: Lei] proved that the loop spaceF, (M) is a homotopy
invariant ofM. Recently, Aouina and KleifiL] have proved that a suitable iterated suspensian, G#7)
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is a homotopy invariant. For example, the triple suspensidr@¥/) is a homotopy invariant. The stable
homotopy invariance has also been shown in a preprint by Cohen and Taylor. Moregwey is a
homotopy invariant whe is 2-connected (s€®]). A rational homotopy theoretic version of this fact
appears if4].
On the other hand, there is a related situation suggesting that the conjecture might fail: the Euclidean
configuration spac#s(R") has the homotopy type of a bundle ow#! with fiber $”~1 v §7~1 but
it does not split as a product in genefd]. However, the loop spaces é&(R") and of the product
s7=1x (s"~1v §7~1) are homotopy equivalent and also the suspensions of the two spaces are homotopic.
Lens spaces provide handy examples of manifolds which are homotopy equivalent but not homeomor-
phic, the first of these examples beihg 1 andL7 2. The aim of this paper is to prove the following.

Theorem 2. The configuration spacds,(L7,1) and F,,(L7,2) are not homotopy equivalent for any: 2.

Here is the plan of the paper. After recalling some definition, we will describe the universal coverings
of Fo(L7,1) andF2(L7,2). Such coverings can be written as bundles with same base and fiber, but the first
splits and the second does not. We will establish Theorem 2 in thexcasg by showing that Massey
products are all zero in the first case (Proposition 5), while there exists a non-trivial Massey product in
the second case (Proposition 6). Finally, in Section 5 we will extend this result for;a@y The same
result holds for unordered configuration spaces.

We remark that.7 1 and L7 » are not simple homotopy equivalent. Thus the conjecture is still open if
we ask invariance under simple homotopy equivalence.

2. Configuration spaces of lens spaces
The lens spaces are three-dimensional oriented manifolds defined as
Ly = 83/Z,y = {(x1,x2) € C x Cl|x1|? + |x2|% = 1}/ Z,.

where the group action is defined bi(x1, x2)) = (€2/™xq, €27/ x,) and( is the generator of,,,. It
is known thatL7 1 and L7 2 are homotopy equivalent, though not homeomorgp2jc

For any topological spackl, let F,,(M) be the configuration space ofpairwise distinct points in
M, namelyF,,(M) := M"\(J 4), where( 4 is the union of all diagonals. We first want to compute
the fundamental group af2(L7.1) and F2(L72). Observe thas? is the universal covering df7 ;, for
J =1, 2, and therefore the fundamental grouplaf; is Z7. Thenny(F2(L7,;)) = Z7 x Z7 because
n1(L7,; x L7,;) = Z7 x Z7 and removing the diagonal, which is a codimension 3 manifold, does not
change the fundamental group. _

The universal coverings8>(L7,1) and F2(L7 ) are the so-called “orbit configuration spaces” and are
given by pairs of pointgx, y) of $2 which do not lie on the same orbit, i.e. # g(y) for anyg € 77.

In the rest of the paper we identify; to the group of 7th complex roots of unity, and we use the symbol
', t € R, to denote the complex number™&/”.

The first universal covering has a simple structure, namely we have the following.

Proposition 3. F»(L7.1) is homotopy equivalent tagS2 x $3.
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Proof. Itis convenientto interpres® as the space of quaternions of unitary norm. Then the actigpaf
§3=L71isthe left translatlon by the subgrodp C C C H. We define amapy(L7.1) — (53\Z7) x §3
by sendindx, y)to (xy~1, ). Thisis ahomeomorphism singe# *(y)=(*yis eqU|vaIentt0cy—l £ (K
for any 7th root of unity*, k € {0, ..., 6}. Finally, we observe tha§3 minus a point isk® and hence
§3\77 is homotopic to the wedge of six two-dimensional spheresl

3. Massey products

We briefly recall the definition of Massey products for a topological spatsee[6]). Letx, y,z €
H*(X) such thatt Uy =y Uz =0. If we choose singular cochain representatives, z € C*(X), then
we have that U y = dZ andy U z = d X for some cochainZ andX. Notice that

d(ZUz— (=15 UX)=FUFUZ—TUIUZ) =

and hence we can defire, y, z) to be the cohomology class & U z — (—1)%€9%) % U X. Since the
choice ofZandX s not unique, the Massey produst y, z) is well defined only inH*(X)/{(x, z), where

(x, z) is the ideal generated byandz Clearly Massey products are homotopy invariants. A rational
commutative version of the following definition is j8].

Definition 4. A spaceX is (non-commutatively) formal, if the singular cochain compl&x X) is quasi-
isomorphic toH*(X) as an augmented differential graded ring.

This means there is a zig-zag of homomorphisms inducing isomorphism in cohomology and connecting
H*(X)andC*(X). Just as in the commutative case, it is easy to see that spheres are (hon-commutatively)
formal. Moreover, wedges and products of formal spaces are formal. By construction all Massey products
on the cohomology of a formal space vanish. This in turn implies the following result.

Proposition 5. All Massey products in the cohomologyIAéKL7,1) are trivial.

We deduce that in order to prove thé;(Lu) and fz(Lzz) are not homotopy equivalent, we only
need to construct a non-trivial Massey product in the cohomolod @t 2).

4. Non-trivial Massey product for fz(Lm)

The projection onto the first coordinate giv§§(L7 ») the structure of a bundle ove? with fiber
§3\77 ~ vgS2 that admits a section. It follows that the cohomology ring splits as a tensor product, so
that it does not detect the non-triviality of the bundle. In particular, we haveHHeEz(h ) = 7%and
H4(F2(L7 »)) = 0. This in turn implies that the Massey product of any triplédifi is well defined.

We want to compute Massey products “geometrically” by using intersection theory on the Poincaré
dual cycles as iij6]. More precisely, we will rely on the following observation: suppase A> and
Az are submanifolds of a fixed manifold with boundary, which are Poincaré dual to some elasges
andags, respectively. Suppose moreover tAatand A3 do not intersect off the boundarg; andA- are
transverse, and1 N A» is the relative boundary aX 12, which is transverse td3. ThenA3 N X1 is
Poincaré dual to the Massey prodyet, az, as).
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Letus define the embedded “diagonal” 3-spheties: $3x $3,fork=0, ... 6, by := {(x, (*(x)) | x €
S3}. Clearly 4 is the standard diagonal. The spa¢€L7 ») is the complement of the union of the diag-
onals

6
Fa(L72) = (8% x $%)\ (]_[ Ak> .

k=0
By Poincaré duality we have the isomorphism

6 6
H? ((53 x S3)\ (]_[ Ak>> ~ He_, <S3 x S3, (]_[ Ak)) .
k=0 k=0

Under this identification the cup product in cohomology corresponds to the intersection product in ho-
mology.

We observe that there exists an isotagy : S° x [0, 1] — $2 x S3 (wherek is considered mod 7)
defined by# ((x1, x2), 1) = ((x1, x2), (K1 xq, (2*=1+1 x,)). The images of#, at times 0 and 1 are,
respectivelyA;_1 and 4y, and the full image ofyfk is a submanifoldd;, c $2 x S3 which represents
an element inHa(S3 x 3, (1 [_, 44)) Poincaré dual to a clasg € HZ(F2(L72)). By using the
Mayer-Vietoris sequence one can easily see that the clagmnHz(Fz(Lzz)) under the relation
Z/?:o a; =0. We also notice that the inclusidid — $2 x $3 sendingkto (1, x) represents the generator
of Ha(S3 x §3,1[°_, 4) = Z. We denote its Poincaré dual bye H3(F»(L7,2)). We now prove the
following.

Proposition 6. The Massey productis, a1, az + ag) contains the clasa,; U 1 and hence is non-trivial

Proof. Itis easy to check that, intersects onlyd; 13 and A4 outside the boundary where ag#irs
considered mod 7. Hence in the computatioriaaf a1, a2 + ag) we must check the following.

Lemma 7. The submanifoldd; and A4 intersect transversally and

1 x[0,1] = A1 N Ag={((0, x2), (0, {"x2))| Ix2] = 1, Z € [0, 1]}.
Proof. We only need to verify that the tangent spacesttoand A4 at the point((0, x2), (0, (*x2))
span a six-dimensional vector space. Recall that we are representing pdihtasielementsxy, x) in

C x C such thatx1|? + |x2/2 = 1, and hence tangent vectors(8tx») are real linear combinations of
the vectorg1, 0), (i,0) and(0, ix2). These immediately give rise to the following tangent vectora to

at((0, x2), (0, 'x2)):

((L,0), (V2,00 ((,0), (L%,00),  ((0,ix2), (0,il"x2))
and to the following tangent vectors #y, at the same point:

((L,0), (=¢2,0),  ((1,0), (<iT72,0)),  ((0,ix2), (0,i¢"x2).
Finally consider the path id; N A4 given by

s = ((0,x2), (0, "' x2)).
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Its derivative fors = O gives, up to a scalar factor, the vect@, 0), (0, i{*x»)). By a simple inspection
one sees that the linear space spanned by these vectors is six dimensional.

Let us consider the closed 2-disc
Do={(r,x)|0<r<1,r?+ x?°=1xeC}C S
Lemma 8. The intersectiom1 N Ay is the relative boundary of the&-manifold
Do x [0, 1] = X14:= {((r, x), ((*r, {'x))|(r, x) € D2, 0<1<1).

Proof. The pieces of the boundary &t 4 correspondte=0,7=0and:=1. Clearlyé,—oX14=A1N A4.
If we now show that the other pieces belong to one of the diagohalthe Lemma is proved. Since
¢k = ¢+7 we have

0r=0X14={((r, x), (r, x))} C 4o,
d=1X14={((r, x), ((*r, x))} C 4. O

The next step is to find the intersection Xf4 with A> and Ag. Recall that: H3(I72(L7,2)) was
defined as the Poincaré dual to the class defined by the inclsidien $2 x $3 sendingx to (1, x).

Lemma 9. The manifolds<14 and Ag do not intersect. Moreovex 14 and A, intersect transversally and
X14N Ay = A> N S3is Poincaré dual to the class U 1.

Proof. The intersection ok14 with Ag is given by the solution to the system of equations

C4tr — C5+Sr
('xp = (10 s,
for 0<r<1,r2+ |x|? =1, 0<r<1 and 0<s < 1. If we equate the exponents of thigin the first and in
the second equation we immediately see that there are no solutions far

The intersection ok14 with A» is given by the solution to the system of equations

C4lr — Cl+sr’
Ctx — C2+2Sx’

which has solutiong(1, 0), ({1“, 0)), where O<s<1. In fact, from the second equation we get the
equatiorr =2+ 2s (mod 7), which has no solution forQz < 1. Therefore we must hawe=0 andr = 1.
From the first equation we have that = (1 which impliest = (1+s) /4. ThereforeX14N A, is a path
connectingds with 4, which equalsA, N S3.

Finally, we have to check transversality f&h4 and A». By repeating the arguments of Lemma 7,
we deduce that the tangent spacettoat the point((1, 0), ((1*, 0)) = ((1, 0), (¢¥, 0)) is spanned by
the vectors((i, 0), (it} 0)), ((0, 1), (0, £2t%)), ((0, i), (0, i?t%)) and ((0, 0), (it1**, 0)) while the
tangent space t&14 at the same pointis spanned, 1), (0, {*)), ((0, i), (0, i¢")) and((0, 0), (i*, 0)).
These vectors clearly span a six-dimensional space.
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This concludes the proof sinee U : does not belong to the subgroup generateduby : and
(ap +ag) U1in

H5(Fy(L72) = (ax U1lk=0,....6) [/ > aU1.

5. Generalizations

We extend our result to thepoints configuration space, thus concluding the proof of Theorem 2. We
have

Proposition 10. The configuration spaces,(L7,1) and F,,(L72) are not homotopy equivalent for any
n>2.

Proof. The universal coverin@,,(Lm) is the orbit configuration space oftuples of points ins® lying

in pairwise distinctZ7-orbits. The forgetful magxy, ..., x,) — (x1, x2) defines a bundlé?vn(Lz‘,-) —
fz(Lm) which admits a section. For example the valugs..., x,, of the section are pairwise distinct
points very close to 1 multiplied hy;. By naturality we deduce tha‘NTn(Lzz) has a non-trivial Massey
product onH 2. On the other hand, right multiplication b}{l induces aproductdecompositib?m(LM):

$3 x Y,_1, whereY,_1 is then — 1 points orbit configuration space of tie-spaces3\ Z7. The forgetful
map picking the first coordinate defines a buridle> $3\Z7having as fibe§2 with 14 points removed.
By iterating this procedure we find a tower of fibrations expressing, as twisted product, up to
homotopy, of the wedges of spheress?, V1352, and so on. The additive homology Bf_1 splits as
tensor product of the homology of the factors, by the Serre spectral sequence In particular, there is a map
V (n—1)(7n— 2)/25 — Y,_1 inducing isomorphism ot#,. The product mag3 x V (n—1)(Tn— 2)/25 —
F, (L7,1) induces isomorphism on the cohomology groups H3, H°. Thus all Massey products on
elements of42 (F (L7,1)) must vanish.

The unordered configuration spa€g(L7, ;) = F,(L7,;)/%, has as fundamental group the wreath
productX,:Z7 and has the same universal cover as the ordered configuration space. It also follows that
all unordered configuration spaces are not homotopy invariant.

Our approach shows that other infinite pairs of homotopic lens spaces have non homotopic configuration
spaces. It might be interesting to study whether the homotopy type of configuration spaces distinguishes
up to homeomorphism all lens spaces.
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