
Theoretical 
Computer Science 

Theoretical Computer Science 207 (1998) 387-395 

On tables of random numbers ’ 

A.N. Kolmogorov 

A cudenq of’ S~icwces. L’SSR 

1. Introduction 

The set theoretic axioms of the calculus of probability, in formulating which I had 

the opportunity of playing some part (Kolmogorov, 1950), had solved the majority of 

formal difficulties in the construction of a mathematical apparatus which is useful for 

a very large number of applications of probabilistic methods, so successfully that the 

problem of finding the basis of real applications of the results of the mathematical 

theory of probability became rather secondary to many investigators. 

I have already expressed the view [see Kolmogorov (1950), Chapter I] that the 

basis for the applicability of the results of the mathematical theory of probability to 

real ‘random phenomena’ must depend on some form of the ftiequency concept of 

probability, the unavoidable nature of which has been established by von Mises in a 

spirited manner. However, for a long time I had the following views: 

(1) The frequency concept based on the notion of limiting frequency as the number 

of trials increases to infinity, does not contribute anything to substantiate the ap- 

plicability of the results of probability theory to real practical problems where we 

have always to deal with a finite number of trials. 

(2) The frequency concept applied to a large but finite number of trials does not admit 

a rigorous formal exposition within the framework of pure mathematics. 

Accordingly I have sometimes put forward the frequency concept which involves 

the conscious use of certain not rigorously formal ideas about ‘practical reliability’, 

‘approximate stability of the frequency in a long series of trials’, without the precise 

definition of the series which are ‘sufficienly large’ ets. [see Foundations of the Thror~) 

of Probability, Chapter I and for more details Great Soviet Encyclopaediu (section 

on Probability) and Mathematika iou metod i Znachenye (Chapter on Probability 

Theory)]. 

I still maintain the first of the two theses mentioned above. As regards the second, 

however, I have come to realise that the concept of random distribution of a property 

in a large finite population can have a strict formal mathematical exposition. In fact, 

we can show that in sufficiently large populations the distribution of the property may 

be such that the frequency of its occurrence will be almost the same for all sufficiently 

’ Reprinted from Sankhy%: The Indian Journal of Statistics, Series A. Vol. 25, Part 4 (1963). 
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large sub-populations, when the law of choosing these is su$iciently simple. Such a 

conception in its full development requires the introduction of a measure of the com- 

plexity of the algorithm. I propose to discuss this question in another article. In the 

present article, however, I shall use the fact that there cannot be a very large number 

of simple algorithms. 

For definiteness we shall consider the table 

T = (tl,tz,...,cv) 

of N zeros and ones: tk = 0 or 1. 

Such a table will be called random, if, while choosing the subset A of sufficiently 

large size from 1, N by different methods there is a stability in the frequency 

of appearance of ones in A. One can, for example, choose A as 

(a) the set of first n even integers 2, 4, 6,. . . ,2n, 

(b) the set of first n prime numbers ~1, ~2,. . . , p,, and so on. 

The ordinary notion of ‘randomness’ of a table T does not consist merely of the 

stability of the frequencies while choosing A by methods entirely independent of the 

composition of the table T. One can for example, choose the set A as 

(c) the set of first n values k >2 for which tk__l = 0, 

(d) the set of first n values k > s for which 

t&l = aI, tk__2 = 02 ,..., tk__s = as, 

(e) the set of the first n even numbers k = 2i for which 

ti = 1, 

(f) the set of numbers kl, kz,. . . , k,, . . . chosen according to the law 

kl = 1, 

and so on. 

ki+i = ki + 1 + tk, pi 

The precise formulation of the concept of ‘admissible algorithm’ of choosing the set 

A will be given in Section 2. 

If while using a table of sufficiently large size N at least one single test of random- 

ness of this type with sufficiently large size of the sample n leads to a ‘significant’ 

departure from the principle of frequency stability then we immediately reject the hy- 

pothesis of ‘pure random’ origin of the given table. 

2. Admissible algorithms of selection and (n, &)-random tables 

An admissible algorithm of choosing the set 

A=R(T)cl,N 
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according to the table T of size N is defined by the functions2 

Fo, Go,Ho 

FI(<I,~I), Gl(t1,71), H1(51,71) 

F2(r1,71; <2,72), G2(51,71; (2,72)> H2(<1>71; r2372) 

. . . . . . . . . . . 

F!v-I(~I,~I; 52,72;...;~hi-1,7,~-1), GN-I(<I,~I; 92,75?;...;~,1:-1,7.hl~1), 

where the arguments 7k and the functions Gk and Hk take values 0 or 1 and the 

arguments <k and functions Fk take values from 1, N. The functions Fk are subject to 

an additional condition 

Fk(<1,7I;...;tk,7k)# ti. 

Defining an algorithm is equivalent to forming the sequence 

XI = Fo, 

x2 = FI(~I,& ), 

(2.1) 

x3 = F~(xI,L; x2,&2), 

. . . . . . . 

x, = F,-I(xI,G,;... ;.v,-I,&-,) (2.2 1 

and determining those elements of the sequence which are found in A. The sequence 

terminates as soon as the value3 

H,(x1,t,,;...;x,,t,)= 1 (2.3 1 

appears. In this case the sequence terminates with the element x,. If when k < N we 

have all the time 

Hk(~~,tr,;...;Xk,txn) = 0, 

the sequence is terminated by the element x, with s = N, i.e., by exhausting all the 

elements of the set 1, N: in view of the condition (2.1) all the elements of the sequence 

(2.2) are distinct. 

The set A is formed from those x1: for which 

Gk-~(xl,~,,;...;Xk-~,~~~_,) = 1. (2.4) 

It seems to me that the given construction correctly reflects the basic concept of von 

Mises in its complete generality, preserving, however, the basic limitation that for 

determining whether x E 1, N falls in the set A the value of tX is not used. 

* The functions in the first line are constants (functions on the empty set of arguments). 

3 In particular, if HO = 0 then the selection cannot begin and the set A is found to be empty 



390 A.N. Kolmogorovl Theoretical Computer Science 207 (1998) 387-395 

Now let the system 

2N = {R} 

of admissible algorithms of selection (the size N of the table being fixed) be given. 

Definition. The table T of size N is called (n,s)-random with respect to the system 

&!N, if there exists a constant p, 0 d p < 1, such that for any 

A = R(T), R E ~2~ 

with the number of elements 

Vdn, 

the frequency 

satisfies the inequality 

In(A) - PI de. 

Sometimes, it is convenient to say (n, E, p)-randomness, assuming that the constant 

p is fixed. Then the following theorem holds. 

Theorem 1. If the number of elements of the system 9~ does not exceed 

z(~,E) = ie2ns2 (2.5) 

then for any p, 0 < p< 1, there exists a table T of size N that is (n, F, p)-random 

with respect to .!%!N. 

The interpretation of the estimate, contained in the theorem, is made more transpar- 

ent, if we introduce the binary logarithm 

&gN) = log, ,dBN) 

of the number of elements p of the system %?N. a is equal to the quantity of 

information, which is necessary for choosing an individual element R from .%?N. It is 

clear that in the case of large n(gN) the SyStem %?f,! must contain algOi%hmS, the very 

determination (and not merely the actual realisation) of which is complicated (requires 

for its formulation not less than n(gN) binary symbols). 

In our theorem the condition of existence of tables which are (n,s)-random with 

respect to 8!?)N with arbitrary p is written in the form of the inequality 

A(g)N) <2(log2 e)ne2( 1 - &) - I. (2.6) 
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Such a qualitative formulation of the result contained in the theorem is instructive 

by itself. If the ratio L/n is sufficiently small then for any previously given c and 

any N and p there exist tables which are (n,s)-random with respect to any system of 

admissible algorithms with 

The proof of this theorem will be given in Section 3. In Section 4, we shall examine 

the possibility of improving the estimates contained in the theorem. Now we make two 

supplementary remarks. 

Remark 1. Since the algorithm of choosing the set A = R(T) is determined by the 

functions Fk, Hk, Gk it is natural to consider two algorithms to be same when and 

only when their corresponding functions Fk, Hk, Gk coincide. Already from this point 

of view the number of distinct possible algorithms of selection for a given N is finite. 

It is possible to hold on to a different point of view and consider two algorithms 

of selection to be different only in the case when they give different sets A = R(T) at 

least for one table T. From such a point of view the number of distinct algorithms is 

further reduced. But in any case it is not greater than 

@92” = 2N.2’. 

The question of precise estimation of the number of admissible algorithms under the 

second approach is not so simple. The problem is very simple only for algorithms, 

by which the set A is formed independently of the properties of the table T. Distinct 

number of such algorithms is equal to 2N according to the number of different sets 

A E 1, N. 

Remark 2. The admissible algorithms of selection from the set of all possible natural 

numbers was considered by Church (1940). Now, in our definition, instead of the finite 

table T we consider an infinite sequence of zeroes and ones, 

We assume that the values of the arguments ifk and the function Fk are arbitrary nat- 

ural numbers. But we reject the requirement that the selection must stop at s = N and 

instead assume that any (now infinite) table of functions Fk, Gk, Hk is ‘computable’ 

in the sense sufficiently well-known in all the numerous propositions for such for- 

mal definitions. Under these considerations we obtain the inessential generalisation 01 

Church’s concept. The basis of Church’s result is the existence, for any p, of sequences 

t1,t2>..., t&I.. the density of which is equal to p in any infinite4 set A obtained by 

an admissible algorithm. 

4 In this concept of Church substantial interest lies only in algorithms which extend infinitely. That is 

why, in this case, the functions Gk and all that is connected with these functions must be omitted. 
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3. Proof of Theorem 2 

This result belongs to the Theory of Finite Algorithms and its formulation does not 

contain any concept borrowed from Probability Theory. If, in proving this, we make 

use of certain results of Probability Theory then this proof will have a formal character 

as it would only include a certain distribution of ‘weights’ in the set of tables T of 

size N, the weight 

P(T) = p”( 1 - P)‘+~ 

being assigned to the table containing M ones. This method of proof does not affect 

the logical nature of the theorem itself, and does not hinder its use in the discussions 

needed for defining the domain of applicability of Probability Theory. 

In another paper we shall prove the following inequality relating to the ‘Bernoulli 

Scheme’: 

(3.1) 

Here p is the probability of success in each of a sequence of independent trials; pk 

is the number of successes in the first k trials. We can easily derive the following 

corollary from (3.1). 

Corollary. Let 5 

P(tk = 11 k<v, tl,...>tk-I) = P 

where 51,t2,...,tv is a sequence of a random number of random quantities and p is 

a constant. Then 

P (~>a, 1: -pi 2~) <2e-2”E2(1-“). (3.2) 

We shall now examine the system 9~ of admissible algorithms, p in number. 

We consider a table formed randomly with probability p for tx = 1 independently 

of the values taken by the other t,l. If we fix R E 92~ and denote by 

those elements of the sequence 

Xl,X2xz, ‘. . >xs 

which fall in A = R(T) (numbering them as they appear in the course of the algorithm) 

it can easily be seen that the conditions under which (3.2) is valid are fulfilled. Hence 

the probability that, for any given R E 9 N, the number of elements v of the set A will 

5 We are concerned here with the conditional probability that <k = 1 when k = v and 41, (2. <k-j are 
given. 
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not be less than n and the inequality /$A) - pi > tz will also be satisfied, will be less 
than 2 e-2nc2(1-E), 

If 

< ie2nc’( I-i:) 
P--.2 

then the sum of the probabilities of failure of the inequality 

for those algorithms which lead to the sets with not less than n elements will be less 

than unity. Hence with positive probability the table T will be found to be (n,~, p)- 

random in the sense of the definition of Section 2. Hence follows the existence of 

tables which are (PZ,E, p)-random with respect to 9,~ (indeed independently of the 

probabilistic assumptions on the distribution of P(T) in the space of tables). 

4. On the possibilities of improving the estimate by the theorem of Section 2 

If we fix n, E, N, p, then, for an integral non-negative p one of the two situations 

is possible: 

(a) whatever be the system 93~ of p admissible algorithms of selection, there exists a 

table T of size N which is (n, E, p)-random with respect to 9,; 

(b) there exists a system 9?,v of p admissible algorithms of selection relative to which 

there are no (n, a, p)-random tables T of size N. 

We can easily find that the existence of the situation (a) for some p follows from 

the existence of the same situation for p’ < p. It is clear that for p = 0 the situation 

(a) will always be true. Hence, there exists an upper bound 

z(n, E, N P) = SUP P 
pEa 

of those p for which the case (a) holds. For all p greater than z(n, E, N, p) the case 

(b) holds. 

If we put 

~(n, E) = i$ z(n, E, N, p) 

then the substance of the theorem of Section 2 can be expressed in the form of the 

inequality: 

1 r(n, E) 3 Ze2nr’(l-r), (4.1) 

Now taking logarithms 

4n, E,N P) = log, $n, E,N, P>, I(n, E) = log, z(n, E>, 
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we can write (2.6) in the form 

&Z,E)>2nE2(1 -&) - 1. (4.2) 

In fact, the main interest lies in the asymptotically precise estimation of I(n,s) when 

E is small and n and l(n,s) are large. When 

we get from (4.2) 

Z(n, E) > 2ne2 + o(ns2). 

We shall find later, on the other hand, that when 

(4.3) 

E --+ 0, nE + Co 

the relation 

qn, E) <4ne + o(m) (4.4) 

will hold. Unfortunately, I cannot remove the discrepancy between the power of E in 

(4.3) and (4.4). 

The estimate (4.4) is a simple consequence of the following theorem the formulation 

of which is unfortunately somewhat complex and will become clear through the method 

of proof chosen by us. 

Theorem 2. Ifk<(l -2~)/4~, n<(k - l)m, N>km then 

(4.5) 

For proving the theorem it is enough to construct, under the condition 

kd y, n = (k - l)m, N = km, 

a system L%N out of 

p=k.2m+l 

admissible algorithms, for which there does not exist an (n, E, +)-random table T. 

We partition 1, N into k sets di, i = 1,. . . k, with m elements in each. Every di 

contains 2”’ subsets. We form the set 

Ais, i = 1,2 ,..., k; s = 1,2 ,..., 2m 

by taking the union of all Ai, j # i and the p-th subset of Ai. We form the system 

5%~ from 

(a) k .2”’ algorithms Ris for selecting the sets Ais; 



A. N. Kolmogorov I Theoretical Computer Science 207 (1998) 387-395 395 

(b) one algorithm R for selecting A = 1, N. 

We prove that there does not exist a table T which is (n,~, i)-random with respect 

to %?)N. 

Let us take an arbitrary table T and assume that it is (n, c, i) -random with respect to 

.3?~. Then it must contain at least (4 - E) N zeroes and (i - e) N ones. Hence we can 

find i and ,j such that Ai contains LY > (i - E) m zeroes and A, contains /3 > (i - c) m 

ones. 

Let 

~=min(~,~)> l-.5 m. 
( 1 2 

There exists an algorithm R’ E RN (R” E RN) for selecting the set A’ (A”) which 

consists of the entire 1, N except y elements in Ai (Ai) which correspond to zero 

(one) in the table T. It is easy to see that the corresponding frequencies are equal to 

M 
n(A’) = ~ 

M-g 

N-y’ 
n(A”) = __ 

N-7’ 

where M is the total number of ones in the table T. Let us estimate the difference 

between these frequencies: 

/?(A’) - ],(A”) = 2 > 
N-Y 

(i - 4 m >&.. km 

This estimate contradicts the set of inequalities 

ix(A’)-;~ GE, lz(A”)-f~ de, 

which follow from the hypothesis of (n, C, i)- randomness of the table T. This contra- 

diction proves the theorem. 
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