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1. I N T R O D U C T I O N  

In a natural world, there exist many individuals of species which experience two stages in the 
lifetime, i.e., immature stage and mature stage, for example, animal and amphibian. Therefore, 
to make the models more practical, species are usually considered by dividing the individuals 
into two stages. Recently, there exist many papers [1-3] in the literature which investigate some 
stage-structured predator-prey systems, however, the papers which investigate stage-structured 
cooperative systems are scarce. In this paper, we study stage-structured nonautonomous coop- 
erative system of two species. Consider the following model: 

X~ (t)  ---- O/(t)$ 2 (t)  -- r I ( t )x  I (t)  -- ~ ( t )x  I (l~) -- T/1 (~:)x 2 (t),  

• '~( t )  = Z ( t ) ~ ( t )  - -  r ~ ( t ) x ~ ( t )  - -  V~(t)~(t) + b ( t ) ~ ( t ) y ( t ) ,  

y ' ( t )  = y ( t ) [ n ( t )  - a(t)y(t) + c(t)x~(t)], 
(1) 

where xl(t) denotes the density of immaturity of species X at time t, x2(t) denotes the density 
of maturi ty of species X at time t, y(t) denotes the density of species Y at time t, rl(t) is the 
death rate of the immature of species X, and r2(t) is the death rate of the mature of species X. 
a(t)  is the birth rate of species X, and ~(t) is the change rate of species X from the immature 
to mature, which is directly proportional to the density of the immature. Our purpose in the 
paper is, by using the continuation theorem which was proposed in [4] by Gaines and Mawhin, 
to establish the existence of at least one positive w-periodic solution of system (1). For the work 
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concerning the existence of periodic solutions of delay differential equations which was done by 
using coincidence degree theory, we refer to [5-7] and references cited therein. 

2.  E X I S T E N C E  O F  A P O S I T I V E  P E R I O D I C  S O L U T I O N  

In this section, by using Mawhin's continuation theorem we shall show the existence of at least 
one positive periodic solution of system (1). To do so, we need to make some preparations. 

Let X,  Y be real Banach space, let L : DotaL  C X ~ Y be a Fredholm mapping of index zero, 
and let P : X ~ X ,  Q : Y ~ Y be continuous projectors such tha t  I m P  = Ker L, Ke rQ  = ImL,  
and X = Ker L @ Ker P,  Y = Im L @ Im Q. Denote by Lp the restriction of L to Dora L N Ker P,  
Kp : Im L --+ Ker P N Dom L the inverse (to Lp), and J : Im  Q ~ Ker L an isomorphism of Im Q 
onto Ker L. 

For convenience, we introduce Mawhin's continuation theorem [4, p. 40] as follows. 

LEMMA 1. Let  ~ C X be an open bounded set and let N : X --* Y be a continuous operator 
which is L-compact  on (l (i.e., Q N  : ~ ~ Y and K p ( I  - Q ) N  : ~ --~ Y are compact).  Assume 
the following. 

(i) For each A 6 (0, 1), x 6 Oft A D o m n ,  L x  ¢ ANx .  

(ii) For each x 6 OR 0 Ker L, Q N x  ~ O. 
(iii) d e g { J Q N ,  fl N Ker L, 0} ¢ 0. 

Then Lx  = N x  has at least one solution in ~ n Dom L. 

In what follows, we use the following notation: 

lf0  f = w  f ( t ) d t ,  f l =  min If(t)l, f ~ =  max If(t)l, 
te[o,~] te [0,~] 

where f is a periodic continuous function with period w > 0. 
In system (1), we always assume the following. 

ASSUMPTION HI .  a( t) ,  r l ( t ) ,  r2(t), /3(t), r/l(f), u2(t), b(t), R(t),  a(t), c(t) are positive periodic 

continuous functions with period w > O. 

Now we state our fundamental theorem about the existence of a positive w-periodic solution 
of system (1). 

THEOREM 2. //1 addition to Assumpt ion  H1, we assume the following: 

(i) > 
(ii) ~/2 at > bUc ~. 

Then sys tem (1) has at least one positive w-periodic solution. 

PROOF. Consider the system 

dyl = a(t)eY 2 (t)-m (t) _ rl  (t) - /~ ( t )  - ~1 (t)e m (t), 
dt 

dy~ = ~(t)em (t)-y~ (t) _ r2 (t) - rj2 (t)e y~ (t) + b(t)ey,(t), (2) 
dt 

dye. = R ( t )  - + 
d t  

where a(t) ,  r l ( t ) ,  r2(t), fl(t), ?]l(t), ?~2(t), b(t), ~( t ) ,  a(t), e(t) are the same as those in Assump- 
tion H1. It is easy to see that  if system (2) has a w-periodic solution (y{ (t), y~ (t), y~(t)) x ,  then 
(e v~(t), e y~(t), eye(t)) T is a positive w-periodic solution of system (1). Therefore, for (1) to have at 
least one positive w-periodic solution, it is sufficient tha t  (2) has at least one w-periodic solution. 
In order to apply Lemma 1 to system (2), we take 

X = Y = { (yl(t),  y2(t), y3(t)) T e C (R, n 3) : yi(t  -~- w) = yi(t),  i = 1, 2, 3} 
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and 
[[(yl(t),y2(t),y3(t))x[[ = max [yl(t)[ + max [y2(t)[ + max [y3(t)[, 

t~ [0,~l t~ [0,~] te  [0,~] 

here I" I denotes the Euclidean norm in R. With  the norm It" II, X is a Banach space. 
L :  Dom L N X, L(y l ( t ) , y2( t ) ,y3( t ) )  T = (y~(t), Y2' (t), Y3' (t)) 7-, where 

Set 

Dom L = { (Yl (t), Y2 (t), Y3 (t)) T E C 1 (R, R 3) },  N :  X ~ X, 

and 
Yl] [ a ( t ) ey2 ( t ) - y~( t ) - r l ( t ) - f l ( t ) -~ l ( t ) ey~( t )  ] 

N y~ = |~(t)~l(~)-~(~) - ~(t)  - ~(t)~Y~(~) + b(t)~(~) | 
Y3 k R(t) - a(t)e y3(t) + c(t)e y2(t) J 

Define two projectors P and Q as 

] [] i yl (t) dt 

i P Y2 = Q  y2 = y2( t )dt  , y2 

y~ y3 , 1 ~  y3 

[ / 0 w  yu(t) dt 

E X .  

Clearly, Ke rL  = R 3, I m L  = {(yl ,y2,y3)  x 6 X : f o y i ( t ) d t  = 0, i = 1,2,3} is closed in X 
and dimKer L = codim Im L = 3. Hence, L is a Predholm mapping of index zero. Furthermore, 
through an easy computation, we can find tha t  the inverse Kp of Lp has the form Kp : Im L --+ 
Dom L n Ker P, 

/o ~ 1 / / / /  Yl (s) ds - -- Yl (t) dt d~ 
W 

[Yl]  f0 t 1 fo~ ~o n Kp Y2 = y 2 ( s ) d s - - -  y2(t)dtd~7 
W 

Y3 

/o ~ ~/o°// Y3 (s) ds - --  Y3 (t) dt d77 

Obviously, we can prove tha t  Q N  and Kp( I  - Q ) N  are continuous by Lebesgue theorem and 
that  QN((~), K p ( I  - Q ) N ( ~ )  are relatively compact for any open bounded set ~ C X by the 
Arzela-Ascoli theorem. Therefore, N is L-compact on ~t for any open bounded set ~ C X. 
Corresponding to the operator equation Lx  = ANx,  A C (0, 1), we have 

dyl 
dt 

dy2 = ~ [~(t)~1(~)-~2(~) - r~(t) - ~ ( t ) ~ ( ~ )  + b( t )~ (~) ]  (3) 
dt 

dy3 = A [ R ( t ) - a ( t ) e  y3(t) + c(t)e y2(t)] 
dt 

Suppose that  (y l ( t ) ,y2( t ) ,y3( t ) )  T C X is a solution of system (3) for a certain ), E (0, 1). By 
integrating (3) over the interval [0, w], we obtain 

/ /  i ~ / /  a( t )e  y~(t)-y~(t) dt = w ( t ) e  y~(t) dt + (r l( t )  + l~(t)) dt, (4) 

/ /  /o TM / /  /o ~ Z(t)e y~(t)-y2I~) dt + b(t)s ~ t )  dt = r2(t) dt + n2(t)e y~(t) dt, (5) 

and 

/o TM /o w /o ~ c(t)e y2(t) dt + R(t)  dt = a(t)e y3(t) dt. (6) 
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From (3)-(6), it follows that  

/? /0 TM /o ~ /? ]yi(t)l dt <_ a( t )e  y2(t)-y~(t) dt + (rl(t) + #(t)) dt + 7h(t)e y~(t) dt 

= 2(rl + fl)w + 2 rh (t)e y~(t) dt, 

~ /? /o TM /o ~ 1 TM o lY;(t)I dt < fl(t)e T M  dt + b(t)e y*(t) dt + r2(t) dt + 712(t)e y2(t) dt 

= 2f2w + 2 r]2(t)e w(t) dt, 

and 

/o ~ /o TM /o TM /o ~ ~o M(t)l dt <<_ c(t)e y~(t) dt + R(t)  dt + a(t)e y~(t) dt = 2 a(t)e y3(t) dr. 

Choose t~ E [0,w], i = 1, 2, 3, such that  

yi(ti) = max yi(t), 
t~[o,~] 

Then it is clear that  

From this and (3), we have 

i = 1,2,3. 

/ t Y i ( i ) = 0 ,  i----1,2,3. 

Equation (10) gives 

which implies that  

Equation (11) gives 

which implies that  

a ( t l ) e  y2( t l ) -y l ( t l )  -- r l ( Q )  --  f l ( t l )  --  ?71( t l )e  y~(t~) = 0,  

~ ( t ~ ) e ~ ( ~ ) - ~ ( ~ )  - -  ~ ( t ~ )  - -  . ~ ( t ~ ) ¢ ~ ( * ~ )  + b ( t ~ ) ¢ ~ ( * ~ )  = 0,  

n ( t ~ )  - ~( t~)e  ~ ( ~ )  + c( t~)e  ~(*~) = o. 

ul ( t l)e 2y~(t~) = a ( t l ) e  y2(t~) -- (r l ( t l )  -t-fl(tl))e yl(tl), 

T]~g 2y1(tl) < O~ue y2(t2). 

~7~e2y~(t2) = fl(t2)e y~(t~) + b(t2)e y~(t~)+y~(t2) _ r2(t2)eY~(t2), 

~/~e 2~2(t2) < fl~eY~(tl) + b~eY~(t~) +y2(t2). 

Combining (14) and (12) gives 

b~ [R(ta)ey~(t~) + c(t3)e 2y~(t2)] 7]/e 2y2(t2) < flueYl(tl) q- -~ 

b ~ [R~¢~/~) + c ~ ( ~ ] ,  
< fl~e~(tl) + 

that is, 

(7) 

(8) 

(9) 

(10) 

(11) 
(12) 

(13) 

(14) 

(Gd - b~c ~) e ~(~2) < ~a~e ~I(~I) + b ~nue~(`2) (15) 
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Substituting (13) into (15), we have Substituting (13) into (15), we have 

~ ~ e Y 2 ( t 2 )  /2 -]- bU RU ey2(t2) ' ( ~  - b~e~) e ~ ( ~ )  < z ~  ~ ~ 
V 7i 

from which it follows that there exists a positive constant P2 such that 

eY2(t2) < P2. 

From (13) and (16), it follows that there exists a positive constant p~ such that 

em(t~) < Pl. 

From (12) and (16), it follows that there exists a positive constant P3 such that 

ey3(t3) < P3. 

Equation (6) implies that 

Equation (5) implies that 

Thus, 

f ~ e  y3(t) dt > - -  a u 

/o TM /o /o w /o 77~ e y2(t) dt > ~2(t)e y2(t) dt > b(t)e y3(t) dt - w~2 > b l e y~(t) dt - w~2. 

J0 TM (bl/~ - ~2a ~) w e y2(t) dt > ~ a~ > O. 

Multiplying the first equation of system (3) by e re(t) and integrating over [0, w] gives 

/0 /j /0 TM 
?h(t)e 2re(t) dt + (rl(t) + f l ( t ) )e  re(t) dt = a ( t ) e  y2(t) dr, 

from which it follows that there exists a point t~ E [0, w] such that 

[ /J O~ l eY2(t) > dt. 

Substituting (20) into (21) gives 

~'e 2y~(q) + (rl +/~)~e y~(q) > 

Thus, 

~ (b'~ - ~ a  ~) 

~?~a ~ 

/ [ ( r l  + fl)~]2 ~ a ~  + 4~[a l (bl/~ _ ~2a~ ) 
2~eYl(t~) > 

V 
~ a ~  - (rl + g)~ > 0. 

From (7)-(9) and (17)-(19), we have 

lo  TM lye(t)[ dt < 2(rl + f l )w + 2 ~ p l w  d j  di ,  

~0 w 2 u def ly~(t)l dt < 2~2w + V2P2W = d2, 

703 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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and 

f0 TM < 2 ~ p 3 ~  d~. (2S) 
d f I%(t) l dt 

From (19), (20), and (22), it follows that there exist three constants pl, p~, and p~ and three 
points ~i E [0, w], i = 1, 2, 3, such tha t  

y~(~) > -p~,  i = 1, 2, 3. (26) 

Since for all t e [0, w], 

~ t y~(t) = y~(~) - y~(~) d~, 
i 

from (23)-(25) and (26), it follows tha t  for i = 1,2, 3, 

i = 1 , 2 , 3 ,  

~0 w y~(t) > -p~' - ly;(~)l ds > -p~ - d i .  (27) 

From (16)-(18) and (27), we can obtain 

ly~(t)l _< max{l lnm[,  P* + d~} ak-r R~, i = 1,2,3. 

Clearly, Ri (i = 1, 2, 3) are independent of )~. Denote M = R1 + R2 + R3 + Ro; here, R0 is taken 
sufficiently large such tha t  each solution (a*,/3*, 7") T of the following system: 

~e~-~  _ ¢2 - g 2 e ~ + ~ e T = 0 ,  

/ ~ -  ~ e T + ~ e Z = 0  

(~8) 

satisfies ]t(~*,~*,7*)TII = 15"1 + I~*l + 17"I < M,  provided tha t  system (28) has a solution or a 
number of solutions. Now we take ft = { ( y l ( t ) , y 2 ( t ) , y a ( t ) )  x e X :  [l(yl ,y2,y3)XI[ < M}. This 
satisfies Condition (i) of L e m m a  1. When ( y l , y 2 , y 3 )  x C O~t N K e r L  --- Oft A R 3, ( y l , y 2 , y 3 )  x is 
a constant vector in R a with ]yl[ + [y2[ + ]y3[ = M. If  sys tem (28) has a solution or a number  of 
solutions, then 

Q N  y2 = | ~ e  y l - y 2 - 4 2 - c / 2 e  y ~ + b e  y3 # 0 .  
Y3 k f t  - ~e y3 + ~e y2 

If system (28) does not have a solution, then natural ly 

[Yl] 
Q N  y2 # • 

Y3 

This proves tha t  Condition (ii) of L e m m a  i is satisfied. Finally, we will prove tha t  Condition (iii) 
of Lemma  1 is satisfied. To this end, we define ¢ : Dom L x [0, 1] -~ X by 

¢(y~,y2,y3,p)= ] - f 2  ~/2e y~ + b e  y~ + #  - | f l e y , - y 2 |  

where tt E [0,1] is a parameter .  When ( y l , y 2 , y 3 )  T C Oft A K e r L  = 0 ~  A R 3, (y~,y2,Y3)  T is 
a constant vector in R 3 with lYll + lY21 + lY31 = M. We will show tha t  when ( y l , y2 ,Y3)  T E 
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0fl N KerL, ¢(Yl, Y2, Y3, #) # O. If the conclusion is not true, then constant vector (Yl, Y2, Y3) T 
with ]Yl] + [Y21 + [Y3I = M satisfies ¢(Yl,Y2,Ya,#) = 0. From 

a e y 2 - y ,  _  leyl + - = 0 ,  

- %  - ~2e y= + be ~ +/*/~e y~-y2 = 0, 

/~ - ~ e  y~ + # ~ e  y= = 0, 

and following the argument of (16)-(18) and (26), we obtain 

ly, I < max{[lnpd,P*}, i = 1,2,3. 

Thus, 
3 3 

 ly, I < ~--~ max{llnp, l,Pg} < M, 
i=1 i=1 

which contradicts the fact that lYlI+ lY21 + [Yal = M. Therefore, according to topological degree 
theory, we have 

deg (JQN(y i ,  y2, ya) T , ~ n Ker L, (0, 0, 0) T) 

= deg (¢(Yi, Y2, Ya, 1), ~ n Ker L, (0, 0, 0) T) 

= deg (¢(Yi, Y2, Y3, 0), ~ N Ker L, (0, 0, 0) T) 

~--deg ( ( ~ e  y2-yl - - ? 7 1 e Y l , - q 2 -  772 ey2 + b e Y 3 , R - d e y a ) T , ~ A K e r L , ( O , O , O ) T ) .  

Because of Condition (i) of Theorem 1, then the system of algebraic equations 

&y 
- - -  ~ix = O, 
X 

- ~ 2 - ~ 2 y + b z = O ,  

- ~z = 0 

has a unique solution (x*, y*, Z*) T which satisfies x* > 0, y* > 0, and z* > 0, and thus, 

deg ((6e y=-yi - q i e m , - ~ 2 - , 2 e  y= +beY3,R-6~eY3) T 

--~1 x* -- ~Y-~* ~Y* 0 
X* X* 

= sign 0 -r/2Y* bz* 

0 0 -Sz* 

Consequently, 
deg (JQN(yi ,  y2, ya) T, ft n Ker L, (0, 0, 0) T) • 0. 

, ~ N Ker L, (0, 0, 0) T) 

This shows that Condition (iii) of Lemma 1 is satisfied. By now ~ verifies all the requirements 
of Lemma 1 and then system (2) has at least one w-periodic solution. This completes the proof 
of Theorem 2. 

3. A N  E X A M P L E  

We give a specific numerical example to test the validity of our result. 
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Consider the following nonautonomous stage-structured cooperative system: 

' =  - -  X l -  + s i n t  x l - ( l O + c o s t ) x  2, 

4 = ~ + sint ~1 - (2 + cost)x2 - (12 + 2 s in t )~  + (6 + sint)x2y, 

cos t 4 + sin t 3 + s in t 
y ' = y  l + y  ~ y +  2 x~j 

(23) 

In Theo rem 2, b(t) = 6 + s in t ,  R(t)  = 1 + (cos t ) /2 ,  a(t) = (4 + s i n t ) / 2 ,  r2(t)  = 2 + cost ,  

7]2(t) = 12 + 2 s i n t ,  c(t) = (3 + s i n t ) / 2 .  I t  is easy to verify bt/~ > ~2a ~ a n d  ~12al > b~c u. By 

Theorem 2, sys tem (29) has at  least one 2~-per iodic  solut ion.  
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