
Information and Computation 206 (2008)1334–1345

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier .com/ locate / ic

On the complexity of sequential rectangle placement in IEEE
802.16/WiMAX systems�

Amos Israeli a, Dror Rawitz b,∗,1, Oran Sharona

a Department of Computer Science, Netanya Academic College, Netanya 42100, Israel
b School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

A R T I C L E I N F O A B S T R A C T

Article history:

Received 17 July 2007

Revised 23 June 2008
Available online 26 July 2008

Keywords:

Approximation algorithms

IEEE 802.16/WiMAX systems

Scheduling

Sequential rectangle placement

We study the problem of scheduling transmissions on the downlink of IEEE 802.16/WiMAX

systems that use the OFDMA technology. These transmissions are scheduled using amatrix

whose dimensions are frequency and time, where every matrix cell is a time slot on some

carrier channel. The IEEE 802.16 standard mandates that: (i) every transmission occupies

a rectangular set of cells, and (ii) transmissions must be scheduled according to a given

order. We show that if the number of cells required by a transmission is not limited (up to

thematrix size), the problem ofmaximizingmatrix utilization is very hard to approximate.

On the positive side we show that if the number of cells of every transmission is limited

to some constant fraction of the matrix area, the problem can be approximated to within

a constant factor. As far as we know this is the first paper that considers this sequential

rectangle placement problem.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and motivation

The IEEE802.16/WiMAXsystem[6] is anemerging standard forWireless Local Loop (WLL) systems [13] that aredesigned to

enable residential andbusiness subscribersBroadbandWirelessAccess (BWA) to corenetworks, e.g., thepublic telephonenet-

work and the Internet. An IEEE 802.16 system consists of a Base Station (BS) and Subscriber Systems (SSs) as depicted in Fig. 1.

The wireless link from the BS to the SSs (from the SSs to the BS, respectively) is called the downlink (uplink, respectively).

One of the options to realize the physical layer in 802.16 is Orthogonal Frequency Division Multiplexing Access (OFDMA),

which is a form of multicarrier modulation. In OFDMA, the transmission bandwidth on the downlink is divided into several

subchannels that are used by the BS to transmit to the SSs in parallel. The transmission time over each subchannel is further

divided into time slots. A predefined number of slots from all the subchannels together are grouped into periods called

subframes. The same holds respectively on the uplink.

Notice that the downlink subframe is actually a time/frequency matrix, which for the sake of brevity is called from now

on simply the matrix. The matrix’ frequency dimension is equal to the number of the OFDMA subchannels, while the time

dimension is equal to the number of time slots in each downlink subframe. An example of a matrix is given in Fig. 2.

� A preliminary version of this paper appeared in the 15th Annual European Symposium on Algorithms, 2007 [7].
* Corresponding author.

E-mail addresses: amos@netanya.ac.il (A. Israeli), rawitz@eng.tau.ac.il (D. Rawitz), oran@netanya.ac.il (O. Sharon).
1 Part of the work on this paper was done while the author was a postdoc at the Caesarea Rothschild Institute, University of Haifa.

0890-5401/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.07.002

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:amos@netanya.ac.il
mailto:rawitz@eng.tau.ac.il
mailto:oran@netanya.ac.il

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1335

Subscriber System (SS)

BS

Downlink

Uplink

Subscriber System (SS)

Fig. 1. The physical architecture of an 802.16 system.

Frequency

Time

subchannel

Time slot in one
subchannel

Fig. 2. The downlink time/frequency matrix in OFDMA.

In each time slot the BS may transmit some fixed number of bits in some subchannel. We refer to such a time slot (in

some subchannel) as a cell. Each individual transmission of the BS to some SS is called a packet. In order to transmit packets

on the downlink, each packet should be assigned a set of matrix cells on which the packet will be transmitted, and all sets

must be disjoint. Every SS listens for some predefined number of time slots on predefined subchannels in order to receive

packets destined to itself. These time slots and subchannels can change from one downlink subframe to another.

The assignment of packets to sets of matrix cells should follow some requirements: for each packet transmitted on the

downlink, the IEEE 802.16 standard mandates that the set of scheduling matrix cells allocated for the packet transmission

must be rectangular. Further, an IEEE 802.16 system is intended to support various "high level" protocols, such as ATM and

IP. Thus, the system is supposed to have QoS capabilities for, e.g., ATM VCs. This means that the BS should be able to transmit

packets according to some scheduling disciplines that guarantee delay bounds, such as Delay-Earliest-Due-Date [3] in which

every packet is assigned a deadline for its transmission, and packets are transmitted according to these deadlines: thosewith

earlier deadlines are transmitted first. In addition, it is also important to preserve FIFO order among transmitted packets in

some data streams, e.g., in TCP connections. Keeping the relative order among packets in such connections is necessary in

order to avoid a false activation of Fast Retransmit/Fast Recovery algorithms, which may cause lower transmission rates and

reduced throughput [1].

To summarize, the BS needs to schedule its packets for transmission on the downlink matrix according to the following

requirements: (i) packets must be transmitted in a given rigid order, e.g., FIFO, and (ii) every packet transmission requires a

rectangular set of matrix cells.

Allocation of rectangular cell sets for each packet is a resource management problem for which the 802.16 standard

specifies no algorithm. Any vendor that implements an 802.16 system is expected to implement its own allocating algorithm.

In this paper, we investigate the complexity of this problem and develop an algorithm adhering to the aforementioned two

requirements.

We note that the relative order among packets within a given matrix is not of concern to the problem we investigate in

this paper. The given order of packets refers to the order in which the BS allocates transmission resources to the packets it

transmits. It is up to the receiver to decide on the order in which it processes packets that it receives in a given matrix. This

can be done by means that are out of the scope of this paper, e.g., by sequence numbers as in TCP [1].

1336 A. Israeli et al. / Information and Computation 206 (2008) 1334–1345

1.2. Problem definition

In this paper, we investigate the sequential rectangle placement problem (srp, for short). The input for this problem consists

of:

Matrix : The (scheduling) matrix is given by its dimensions: L × H. Without loss of generality we assume that L � H. We also

define S
�= L · H.

Jobs : The input sequence of jobs N = J1,J2, . . . ,Jn. Each job Ji is associated with a size ri ∈ N and a non-negative weight wi.

A solution is a placement which is an assignment of a rectangular set of matrix cells for each job in some prefix ofN, where

the number of matrix cells assigned for Ji is not smaller than ri, and all rectangles are non-intersecting. Throughout the paper,

we assume, without loss of generality, that the sum of all the job sizes is at most L × H. The goal of the sequential rectangle

placement problem is to find a placement of the longest possible prefix of jobs of the input sequence. In other words, our

goal is to find a placement for the jobs J1, . . . ,Jt , where t is as high as possible.

A bounding rectangle of job Ji is a rectangular set of cells whose area is at least ri, and that does not contain any proper

sub-rectangle whose area is at least ri. That is, a bounding rectangle is a rectangle of length Li and height Hi such that (1)

ri � Li · Hi, (2) ri > Li · (Hi − 1), and (3) ri > (Li − 1) · Hi. Henceforth, we assume without loss of generality that a rectangle

that is reserved for a job is a bounding rectangle. Notice that a bounding rectangle can be larger than the job size. For instance,

a bounding rectangle for a job of size 5 can be of size 6, with length 3 and height 2. In this example, the bounding rectangle

occupies one additional cell above the minimal number of matrix cells needed for placing this job. Thus, it wastes resources

because free cells in a bounding rectangle cannot be used by other jobs [6]. On the other hand, the somewhat weakened

requirement to use bounding rectangles yields some additional freedom in rectangle shaping, e.g., in the above example we

are not restricted to a rectangle of dimensions 5× 1 and can also use a rectangle of dimensions 3× 2.

Given a placement of the prefix J1, . . . ,Jt , the sum
∑t

i=1 wj is referred to as the weight of the placement. We evaluate the

placement by its weight. In the sequel, we prove that srp is NP-hard, and in general is also hard to approximate. Therefore,

we turn to look for approximation algorithms for some special cases. We consider two weight functions: the unit weight

function,wi = 1 for every job Ji, and the proportional weight function,wi = ri for every job Ji. In the unit weight function the

weight of the placement is simply the number of jobs that were placed on the matrix, while in the second the weight of the

placement is the total area that is occupied by the placed jobs. The motivation for these two weight functions is as follows.

In the unit weight function we count the number of served jobs, which is important in order to serve as many clients in

the system as possible. In the proportional weight function we evaluate the amount of transmission resources we use (cells

in the transmission matrix). This weight function is important because the wireless transmission resource is a very scarce

resource that must be used as efficiently as possible [12].

1.3. Related work

As far as we know this is the first paper to consider srp. However, the following rectangle packing problemwas considered

by several studies. The input consists of a set of rectangles Ri = (ai,bi), for i = 1, . . . ,n, where ai and bi are the length and

height of Ri, and a larger rectangle R = (a,b). Each rectangle has a profit pi. The goal is to pack a subset of the rectangles

into R such that the total profit of packed rectangles is maximized. The packed rectangles may not overlap. This problem in

NP-hard since it contains knapsack as the special case in which ai = a for every i. Constant factor approximation algorithms

for this problem were given in [10,9], and a PTAS that packs the rectangles into a rectangle that is slightly bigger than Rwas

presented in [4].

Note that srp is very different from this rectangle packing problem. First, in srp the requirement that the output placement

is computed for a prefix of the input job sequence is crucial, while in the latter problem the input is an unordered set and the

only optimized parameter is the total weight of the successfully placed rectangles. Furthermore, although in some studies

of the rectangle packing problem, the given rectangles may be rotated (see, e.g., [10]) the dimensions of the rectangles are

predetermined, while in srp the input consists of requests for areas only.

The problem of scheduling malleable parallel tasks can also be viewed as a sort of rectangle packing problem. In this

problem one is given a set of n jobs to be scheduled onm identical processors with linear topology. Similarly to srp, each job

has a work requirement, and it must be scheduled on processors contiguously for an amount of time so that the product of

number of processors and time is at least thework requirement. In otherwords, each job is alloted a rectangle that is induced

by a consecutive set of processors and a time interval whose area is at least the work requirement. The goal in this problem

is to minimize the makespan. Jansen and Porkolab [8] considered that case where the scheduling is done on a fixed number

of parallel processors and propose a PTAS for this case. Turek et al. [14] showed that any r-approximation algorithm for the

problem of scheduling non-malleable tasks can be used to obtain an r-approximation algorithm for malleable tasks. Mounié

et al. [11] improved the result of [14] and obtained a
√
3-approximation algorithm for the problem of scheduling malleable

tasks. For more details about this problem the reader is referred to [14].

Recently, Cohen and Katzir [2] studied the OFDMA scheduling problem. They considered a version of the problem where

the FIFO requirement is relaxed and obtained hardness results and constant factor approximation algorithms.

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1337

1.4. Our results

The results of our paper are both negative and positive. On the negative sidewe prove that srp is very hard to approximate.

Specifically, we show that it is NP-hard to approximate srp within a factor of O(n1−ε) even when restricted to the case of

unit weights. We also show that it is NP-hard to approximate srp within a factor of 1
2
(
√
S − 1) or within a factor of cn2 for

some constant c, even when restricted to the case of proportional weights. Our third hardness result is that srp is NP-hard

even when ri � 1+ε
n · S for every i, for any constant ε > 0. Moreover, we show that for this special case of srp (with arbitrary

weights) there cannot exist an r-approximation algorithm for any ratio r, unless P=NP. All our hardness results are obtained

using reductions from the well known NP-hard partition problem (partition) [5].

On the positive side we present an approximation algorithm for srpwith proportional weights for the special case where

ri � βS, for some β ∈ (0,1). The approximation ratio of the algorithm is 1− β − ε and its running time is O(n), for every

constant ε > 0 (Albeit, the running time is not polynomial in 1
ε
). Our algorithm works as follows. First, it divides the range

of job sizes into O(logH) subranges. For each such size subrange, the jobs in this subrange are further divided into job sets

such that each set holds O(
√
L) jobs. The jobs in each such set are placed on a separate set of matrix rows. Furthermore, they

are placed such that the unused area for each set is relatively small. In the analysis of our algorithmwe compare the solution

obtained by the algorithm to the area of the matrix, S, which is an upper bound on the weight of an optimal solution in the

case of proportional weights.

1.5. Organization

The remainder of the paper is organized as follows. Section 2 contains our hardness results. Our approximation algorithm

is presented and analyzed in Section 3. Finally, we conclude in Section 4 with some open problems.

2. Hardness results

In this section, we present our hardness results. In the first part of the sectionwe show that srp is NP-hard to approximate

within a factor of O(n1−ε) even for the case of unit weights and within a factor of 1
2
(
√
S − 1) or within a factor of cn2 for some

constant c, even in the case of proportional weights. In the second part of the section we show that srp is NP-hard even

when ri � 1+ε
n · S for every i, for any constant ε > 0. Moreover, we show that for this special case of srp there cannot exist

an r-approximation algorithm for any r, unless P=NP.

2.1. Proportional and unit weights

Wepresent a reduction from partition to srp. Intuitively, given a partition instance the reductionworks as follows. First,

it creates m jobs whose sizes are inflated versions of the partition numbers. Second, it produces a square matrix whose

length (or height) is a bit more than half of the sum of the inflated numbers. Then, it adds a huge job whose dimensions are

(L − 1)× (H − 1). The role of this job is to make sure that the other jobs use only one row and one column. The last set of

jobs contains jobs of size one.

Reduction 1. Let (x1, . . . ,xm) be a partition instance, and denote B
�= 1

2

∑m
j=1 xi (henceforth, we assume that B is integral). We

construct an srp instance (r1, . . . ,rn,L,H) as follows. First, let m′ be an even integer. (The exact value of m′ will be determined later.)

We define b = m′(B+ 1
2
) and L = H = b+ 1. Also, let n = 2+m+m′, and let rj = m′ · xj for every 1 � j � m, rm+1 = b2, and

rj = 1 for every m+ 2 � j � n. We refer to jobs J1, . . . ,Jm as medium jobs and to jobs Jm+2, . . . ,Jn as small jobs.

Note that the reduction is polynomial in case m′ = O(mk) for some constant k.

Observation 1.
∑n

j=1 rj = L · H.

Proof.
∑n

j=1 rj = b2 +∑m
j=1 m′·xj + (n−m− 1) = b2 + 2B·m′ + (m′ + 1) = b2 + 2b+ 1 = L·H. �

We show that if (x1, . . . ,xm) belongs to partition then all jobs can be placed. Otherwise, we will not be able to place more

thanm jobs.

Lemma 1. (x1, . . . ,xm) ∈ partition if and only if the jobs J1, . . . ,Jn can be placed on an L × H matrix. Furthermore, if (x1, . . . ,xm) �∈
partition then jobs J1, . . . ,Jm+1 cannot be placed on the matrix.

Proof.

First, observe that since rm+1 = b2, job Jm+1 must be placed in such a way that leaves one empty column and one empty

row, if it is placed on an L × H matrix. Hence, every other job must be placed as a rectangle of either length 1 or height 1.

It follows that, if job Jm+1 is placed on the matrix then the only freedom we have in deciding how to place a job Jj /= Jm+1 is

whether to place it in the empty row or in the empty column (see example in Fig. 3).

1338 A. Israeli et al. / Information and Computation 206 (2008) 1334–1345

Fig. 3. Example of placement of Jm+1.

If (x1, . . . ,xm) ∈ partition then there exists a subset I ∈ {1, . . . ,m} such that
∑

i∈I xi = B. Hence, we can place the medium

jobs on the matrix as follows. If j ∈ I we place the job in a rectangle of length rj and height 1 in the empty row of the matrix,

and otherwise we place the job as a rectangle of length 1 and height rj in the empty column of the matrix. We can place all

the medium jobs that are contained in I (not contained in I) in a single row (column) since m′B < b. The small jobs can be

placed in the remaining space due to Observation 1. It follows that if (x1, . . . ,xm) ∈ partition, then all jobs can be placed on

the matrix.

Now, for the other direction, let (x1, . . . ,xm) �∈ partition and assume that jobs J1, . . . ,Jm+1 are placed on thematrix. Denote

by S1 the set of medium jobs whose rectangle is placed in the empty row (the row that is left empty after the placement of

job Jm+1), and denote by S2 the set of medium jobs whose rectangle is placed in the empty column. We now claim that it

follows that
∑

j∈S1 xj =
∑

j∈S2 xj = B. Notice that if this is not the case then |∑j∈S1 xj −
∑

j∈S2 xj|� 2, and therefore |∑j∈S1 rj −∑
j∈S2 rj|� 2m′.Without loss of generality let

∑
j∈S1 rj >

∑
j∈S2 rj . Hence, since

∑m
j=1 rj = m′ · 2Bweget that

∑
j∈S1 rj � m′ · B+

m′ = m′(B+ 1) and
∑

j∈S2 rj � m′ · B−m′ = m′(B− 1). It follows that
∑

j∈S1 rj > m′(B+ 1
2
)+ 1 = b+ 1 = L, a contradiction.

(Note that here we implicitly assumed that m′ > m′/2+ 1, and this holds form′ � 3.) �
The lemma directly implies that srp is NP-hard. Next, we show that this problem is also very hard to approximate. In the

sequel we denote the optimum of an srp instance by opt.

Theorem 1. It is NP-hard to approximate srp within a factor of
√
S−1
2

or within a factor of cn2 for some constant c, even for the

restricted case of proportional weights.

Proof.Weuse Reduction 1 by lettingm′ be the first evennumber that is greater than or equal tom. By Lemma1 if (x1, . . . ,xm) ∈
partition thenall jobs canbeplaced, and theweight of theplacement is (b+ 1)2.On theotherhand, if (x1, . . . ,xm) �∈ partition,

then the weight of any placement is less than (b+ 1)2 − b2 = 2b+ 1. Hence, for instances that are generated by Reduction 1

with proportional weights, distinguishing between instances for which opt = (b+ 1)2 and instances for which opt � 2b is

NP-hard.

Suppose now that there exists a polynomial algorithm that computes
√
S−1
2

-approximate solutions for srp. Then, we can

use it on instances generated by Reduction 1 to determine whether opt = (b+ 1)2 and thus solve partition. Since
√
S−1
2
= b

2

for such instances, it follows that if opt = (b+ 1)2 then the algorithm computes a placement whose weight is at least 2b+ 4.

Otherwise, the algorithm computes a placement of weight at most 2b. We therefore conclude that there cannot exist a√
S−1
2

-approximation algorithm for srp, unless P=NP.
Using similar arguments we can show that it is NP-hard to approximate srp within a factor of cn2 for some constant

c. By definition b = m′(B+ 1
2
), hence b

2
� m

2
(B+ 1

2
). Since B � m and n = �(m), it follows that there exists a constant c

such that b
2

� cn2. It follows that a cn2-approximation algorithm can distinguish between Reduction 1 instances for which

opt = (b+ 1)2 and instances for which opt � 2b. �

Theorem 2. It is NP-hard to approximate srpwithin a factor of O(n1−ε) for every ε > 0, even for the restricted case of unit weights.

Proof. For a given ε, we use Reduction 1 by setting k =
⌈
2
ε

⌉
and letting m′ be the first even number that is greater than or

equal tomk . Note that k is a constant, and therefore the reduction is polynomial. In Lemma 1 we showed that if (x1, . . . ,xm) ∈
partition then all n = m+m′ + 2 jobs can be placed on the matrix, and that otherwise at mostm jobs can be placed on the

matrix. Thus, for instances that are generated by Reduction 1 with unit weights, distinguishing between instances for which

opt = m+m′ + 2 and instances for which opt � m is NP-hard.

Suppose now that there exists a polynomial time algorithm that computes O(n1−ε)-approximate solutions for srp. If this

is the case, we can use this algorithm on instances generated by Reduction 1 to determine whether opt = �(mk) and thus

solve partition.

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1339

Notice that since n = m+m′ + 2 andm′ = �(mk), we get that

O(n1−ε) = O(n
1− 2�2/ε�) = O(n1−

2
k) = �(n

k−2
k) = �(mk−2).

Therefore, it follows that if opt = �(mk) then the algorithm computes a placement that places �(m2) jobs. Otherwise, the

algorithm outputs a placement containing at most m jobs. We conclude that there cannot exist an O(n1−ε)-approximation

algorithm for srp, unless P=NP. �

2.2. General weights and small jobs

In this section, we show that srp is NP-hard even when ri � 1+ε
n · S for every i, for any constant ε > 0. Moreover, we show

that for this special case of srp there cannot exist an r-approximation algorithm for any r.

As a first step we show that partition remains hard even if all the numbers in the instance are odd and not very large

with respect to the sum of the numbers. For an odd integer qwe define partitionq to be the language that contains partition

instances (x1, . . . ,xm) that satisfy the following additional two conditions: (i) xi is odd for every i, and (ii) xi � 1
q

∑
j xj for

every i.

Reduction 2. Let (x1, . . . ,xm) be a partition instance, and denote B
�= 1

2

∑m
j=1 xi. We construct an instance (y1, . . . ,yM) of

partitionq, where M = 2m+ q− 1. We define yi = 2m · xi + 1 for every i ∈ {1, . . . ,m}, yi = 1 for every i ∈ {m+ 1, . . . ,2m
}
, and

yi = 4mB+ 2m− 1 for every i ∈ {2m+ 1, . . . ,M
}
.

We first prove that partitionq is NP-hard if q is polynomial in m.

Lemma 2. partitionq is NP-hard for q = O(mc) for some constant c.

Proof. First, Reduction 2 is polynomial if q = O(mc) for some constant c.

y1, . . . ,yM are odd by the construction. We show that yi � 1
q

∑
i yi for every i. Clearly, yi � 4mB+ 2m− 1 for every i. On

the other hand,

M∑
i=1

yi =
m∑
i=1

(2mxi + 1)+m+ (q− 1) · (4mB+ 2m− 1) = q · (4mB+ 2m)− (q− 1).

Hence, yi � 1
q

∑
i yi.

Next, we show that (x1, . . . ,xm) ∈ partition if and only if (y1, . . . ,yM) ∈ partitionq. If (x1, . . . ,xm) ∈ partition then there

exists an index set I such that
∑

i∈I xi =
∑

i �∈I xi. In this case let I′ = I ∪ {m+ 1, . . . ,2m− |I|} ∪ {2m+ 1, . . . ,2m+ (q− 1)/2
}

(recall that q is odd). It is not hard to verify that
∑

i∈I′ yi =
∑

i �∈I′ yi.
For the other direction, if (y1, . . . ,yM) ∈ partitionq then there exists an index set I′ such that

∑
i∈I′ yi =

∑
i �∈I′ yi. It must be

the case that
∣∣I′ ∩ {2m+ 1, . . . ,2m+ q− 1

}∣∣ = q−1
2

, since otherwise the total sum of one of the partitions is at least

(4mB+ 2m− 1)

(
q− 1

2
+ 1

)
= q+ 1

2
· (4mB+ 2m)− q+ 1

2
>

1

2

∑
i

yi.

Hence,
∑

i∈I′ ,i�2m yi =
∑

i �∈I′ ,i�2m yi. Since
∑2m

i=m+1 ri = m, it follows that
∑

i∈I xi =
∑

i �∈I xi, where I = I′ ∩ {1, . . . ,m}. Otherwise,

|∑i∈I xi −
∑

i �∈I xi|� 2, which means that |∑i∈I′ yi −
∑

i �∈I′ yi| > 2 · 2m−m−m > 0. A contradiction. �
Now we move to the hardness result.

Reduction 3. Let (x1, . . . ,xm) be a partitionq instance. We construct an srp instance (r1, . . . ,rn,L,H) as follows. Define n = m,

ri = xi for every i, L = 1
2

∑
i xi and H = 2 (the weights of the jobs are defined later).

Clearly, the reduction is polynomial. Moreover, notice that
∑

i ri = L · H and that ri � 1
q · S, for every i.

Lemma 3. (x1, . . . ,xm) ∈ partitionq if and only if all the jobs can be placed on the matrix.

Proof. If (x1, . . . ,xm) ∈ partitionq then there exists an index set I such that
∑

i∈I xi =
∑

i �∈I xi. In this case it is not hard to verify

that we can place the jobs that correspond to I in the top row, and the rest in the bottom row.

Since
∑

i ri = L · H and r1, . . . ,rn are odd, it follows that if we are able to place all the jobs on the matrix, then Ji must be

placed as a rectangle of height 1 for every i. Such a placement induces a partition of (x1, . . . ,xm). �
The previous lemma directly implies that it is NP-hard to distinguish between opt =∑n

i=1 wi and opt =∑n−1
i=1 wi. Hence,

srp is hard in the case of relatively small jobs even for unit or proportional weights.

1340 A. Israeli et al. / Information and Computation 206 (2008) 1334–1345

Corollary 3. Let β ∈ (0,1). srp is NP-hard even when ri � β · S for every i. Moreover, for this special case of srp there cannot

exist an r-approximation algorithm for any r, unless P=NP.

Proof.Weuse Reduction 2with an odd number q � ⌈
1/β

⌉
. Now, definewi = 0 for every i < n, andwn = 1. Hence, by Lemma

3 it is NP-hard to distinguish betweenopt = 0 andopt > 0. This implies that there cannot exist an r-approximation algorithm

for any r, unless P=NP. �
However, we can obtain an even stronger hardness result.

Corollary 4. srp is NP-hard even when ri � 1+ε
n · S for every i, for any constant ε > 0. Moreover, for this special case of srp there

cannot exist an r-approximation algorithm for any r, unless P=NP.

Proof.We use Reduction 2 and set q = 2m2 + 1. The resulting instance containsM = 2m+ 2m2 integers. Observe that

M

q
= 2m2 + 2m

2m2 + 1
= 1+ 2m− 1

2m2 + 1
= 1+ 1

�(m)
.

Hence, for every constant ε > 0 there exists m0 such that M
q � 1+ ε for every m � m0. By Lemma 3 it follows that srp is

NP-hard even when ri � 1+ε
n · S for every i, for any constant ε > 0.

The rest of the proof is similar to the proof of Corollary 3. �

3. An algorithm for SRP with proportional weights

In this section,wedevelop a linear time approximation algorithm for srpwith proportionalweights. For the special case in

which ri � β · S for every job Ji where β ∈ (0,1), the algorithm achieves an approximation ratio of 1− β − ε, for any constant

ε > 0.

3.1. Definitions and notation

Before presenting the algorithm, we introduce some notation. The placement computed by our algorithm is row oriented.

Definition 1. A job placement of a job set JS is called row oriented if the following conditions hold:

(1) The set JS is divided into some disjoint subsets {JSi}ki=1.
(2) The jobs in each job set JSi are placed on a set of consecutive matrix rows dedicated to JSi. The rows occupied by distinct job

sets are distinct.

(3) For any job set JSi, and for any job Jk ∈ JSi, the base of the bounding rectangle of Jk is placed on the first row dedicated to JSi and

the height of the bounding rectangle is equal to the number of rows dedicated to JSi.

Let P be a row oriented placement and let JSi be a job set of P. The number of rows required by JSi, denoted by rows(JSi),

is the minimal number of rows on which all jobs of JSi can be placed adhering to Definition 1. The number of rows required

by P, denoted by rows(P), is the total number of rows required by the job sets of P.

Our algorithmmaintains a collection of disjoint job sets, where the sizes of all jobs in each set are within a certain range.

The ranges for the job sets depend on L and H, the matrix dimensions, and are defined as follows.

Definition 2. We divide the jobs into three types 2:

• Small jobs: A job Jk is called small if rk � 2
√
L.

•Medium jobs: A job Jk is called medium if 2 · √L < rk � H
2
· √L.

A medium job is called i-medium if 2i−1
√
L < rk � 2i

√
L for i ∈ {2, . . . , logH − 1

}
. 3

• Large jobs: A job Jk is called large if rk > H
2
· √L.

We consider row oriented placements in which for each type of a job set, the number of rows required by the set is

limited.

Definition 3. A row oriented placement P is called bounded if the job sets of P followDefinition 2 and the number of rows required

by each job set is bounded as follows:

• Small jobs: A job set of small jobs can have at most one row.

2 The distinction between job sizes is different from the one that was made in Section 2.
3 For now, we assume that logH is integral for reasons of clarity.

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1341

Algorithm 1 - Placement(L,H,N = J1, . . . ,Jn)

1: P ← ∅; i← 0

2: repeat

3: P′ ← P; i← i+ 1

4: LetM be the open set of P that corresponds to Ji (according to Definition 3)

If there is no such job set, then open such a job set

5: if
∑

Jj∈M∪{Ji}
⌈

rj
max(M)

⌉
� L then

6: M← M ∪ {Ji}
 Ji fits in open job set M

7: if ri > 2
√
L then

8: rows(M)←min

{⌈∑
Jj∈M rj

L−|M|

⌉
,max(M)

}

 Ji is medium or large

9: end if

10: else

11: CloseM and open a new job set for Ji with
⌈
ri
L

⌉
rows
 No room for Ji; M is closed

12: end if

13: until rows(P) > H or i = n

14: if rows(P) > H then P ← P′
 Revert to previous placement

15: return P

•Medium jobs: A job set of i-medium jobs, where i ∈ {2, . . . , logH − 1
}
, can have at most 2i rows.

• Large jobs: A job set of large jobs can have at most 2H rows (note that the value 2H is used for intermediate computations.

The output placement P satisfies: rows(P) ≤ H).

Henceforth, the maximal number of matrix rows allowed for JSi is denoted by max(JSi).

3.2. The algorithm

In this section, we present an algorithm for srp with proportional weights called Algorithm Placement. The algorithm

gets as input thematrix dimensions, L andH, and the sequence of jobs,N = J1, . . . ,Jn, and computes a row oriented placement

P. A job set of P can be either open or closed, where jobs can be added only to open job sets. At any given time during execution

of the algorithm there exists a single open job set for every range of job sizes specified by Definition 2. Therefore, at any given

time, the number of non-empty open sets is at most logH.

AlgorithmPlacement (see Algorithm1)works as follows. After placing the jobs J1, . . . ,Ji−1, it tries to place Ji. The algorithm
tries to add Ji to its corresponding open set (according to Definition 2), and if it fails, i.e., if the placement of J1, . . . ,Ji requires

more than H matrix rows, then the algorithm terminates with the placement of J1, . . . ,Ji−1.
LetM be the open set that corresponds to Ji. If Ji is large than it is simply put inM which is the single open set of large jobs.

If Ji is either small or medium the algorithm places it in M, as long as the number of rows required for M does not exceed

max(M) (Line 6). If there is no room in M, then M is closed and a new set containing Ji is opened (Line 11).

After adding Ji toM the number of rows required for M is updated. If M is small than rows(M) = 1, otherwise we set

rows(M) =min

{⌈∑
Jj∈M rj

L − |M|

⌉
,max(M)

}
. (1)

As we shall see in the sequel this number ensures that (i) there is enough room for the jobs ofM, and (ii) there is not a lot of

wasted space after placing the jobs of M on rows(M) matrix rows.

We note that the number of rows in (1) can be reduced by substituting the sum
∑

Jj∈M rj with
∑

Jj∈M rj − |M|. However, this

does not improve the approximation ratio. Furthermore, in the conference version of this paper [7], we used binary search

to compute theminimum number of rows required for the job setM, but this increased the running timewithout improving

the approximation ratio.

In the next lemma, we show that the computed placement P is indeed feasible.

Lemma 4. Let M be an open job set of P. Then the jobs of M can be placed on rows(M) matrix rows.

Proof. First, ifM contains small jobs, then rows(M) = 1 and we are done. IfM contains either large or medium jobs we need

to show that the jobs of M fit on rows(M) matrix rows. Observe that due to Line 5 the jobs of M fit on max(M) rows. Hence,

for the rest of the proof we assume that

1342 A. Israeli et al. / Information and Computation 206 (2008) 1334–1345

rows(M) =
⌈∑

Jj∈M rj

L − |M|

⌉
< max(M).

We now have to show that the sum of bases of all bounding rectangles of jobs inM is not greater than L. The length of the

base of the bounding rectangle of Ji is

Bi =
⌈

ri
rows(M)

⌉
� ri

rows(M)
+ 1 � ri(L − |M|)∑

Ji∈M ri
+ 1.

Hence,

∑
Ji∈M

Bi �
∑
Ji∈M

(
ri(L − |M|)∑

Ji∈M ri
+ 1

)
= (L − |M|)∑Ji∈M ri∑

Ji∈M ri
+ |M| = L

as required. �
It is not hard to verify that Algorithm Placement investsO(1) time in any job.We note that P ′was added to the description

of the algorithm for reasons of readability. There is no need to ’copy’ the whole placement. When rows(P) > H we only need

to revert to the previous placement, and this takes O(1) time. Hence, the running time of Algorithm Placement is O(n).

3.3. Approximation ratio

If Algorithm Placement managed to place all jobs, then it obtained an optimal solution. Hence, in the sequel we assume

that Algorithms Placement succeeded in placing jobs J1, . . . ,Jt , but failed to place jobs J1, . . . ,Jt+1. We compute the wasted

matrix space of the placement P of jobs J1, . . . ,Jt .

Observe that the space wasted by P is comprised of two parts. First, there is the space that is wasted within the rows that

P uses. The second part is the space that P does not use because this part is not large enough to accommodate Jt+1. We first

bound the wasted space due to open job sets and due to closed job sets. Then, we calculate the overall wasted space within

the rows that P uses. Afterwards, we bound the space that is not used by P. We show that the total wasted space is at most(
logH
H + 3√

L
+ β

)
· S.

We start the analysis by bounding the number of jobs in a job set.

Lemma 5. Let M be a job set of medium or large jobs. Then, |M|� 2
√
L.

Proof. First, assume thatM is a set of i-medium jobs. By Definition 3, the number of rows inM is at most 2i. Since the size of

the smallest job in M is at least 2i−1
√
L, the length of the base of each job in M is at least 2i−1·√L

2i
�
√
L
2
. Since the base of the

bounding rectangle of each job resides on the first matrix row dedicated to M, the number of jobs in M is not greater than

� L√
L/2
�� 2

√
L.

Now, assume thatM is the (single) set of large jobs. Since the sum of the sizes of the jobs in the input is at most L · H, and

the size of a large job is at least H
2

√
L, there can be at most 2

√
L large jobs. �

Denote the wasted space due to job set M by Aw(M). We first bound the waste in closed sets.

Lemma 6. Let M be a closed set. Then, Aw(M) � rows(M) · 3√L.

Proof. The lemma is immediate for small jobs, since Aw(M) < 2
√
L ifM contains small jobs. Also, notice that there is no closed

set of large jobs. Observe that if L < 9, then the lemma is trivial. Hence, for the rest of the proof we assume that L � 9 and

thatM is a job set consisting of i-medium jobs.

Now, by Line 5 we know that there was a job, denoted by Jq, that was rejected from M just before M was closed since

M ∪ {Jq} did not fit on max(M) rows, namely because

∑
Jj∈M∪{Jq}

⌈
rj

max(M)

⌉
> L.

Since max(M)− 1 is the maximum wasted space per job, we get that

max(M)

⌈
rj

max(M)

⌉
� rj +max(M)− 1

Hence,∑
Jj∈M
[rj + (max(M)− 1)] + rq > max(M) · L.

(The addition of Jq requires more space than max(M) rows.)

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1343

Denote by A′w(M) the wasted space when placing M on max(M) rows. It follows that

A′w(M) = max(M) · L −
∑
Jj∈M

rj < (max(M)− 1) · |M| + rq

Since |M|� 2
√
L by Lemma 5, and since rq � 2i

√
L = max(M) · √L, we get that

A′w(M) < max(M) · 2√L +max(M) · √L < max(M) · 3√L.
Now, due to Line 8 rows(M) � max(M). Hence,

Aw(M) � rows(M) · L − (max(M) · L − A′w(M)) < max(M) · 3√L − (max(M)− rows(M)) · L � rows(M) · 3√L
where the last inequality follows from L � 9. �

Next, we bound the waste in open sets.

Lemma 7. Let M be an open set of P. Then, Aw(M) < L + 2
√
L · (rows(M)− 1).

Proof. First, notice that if rows(M) = 1 then we are done. Hence, the lemma is immediate for the set of small jobs. Assume

thatM is either i-medium or large and that rows(M) > 1.

Since

rows(M) <

∑
Jj∈M rj

L − |M| + 1

it follows that∑
Ji∈M

ri > (rows(M)− 1)(L − |M|) = rows(M) · L − L − (rows(M)− 1)|M|.

Hence,

Aw(M) � L · rows(M)−
∑
Ji∈M

ri < L + (rows(M)− 1)|M|� L + 2
√
L(rows(M)− 1)

where the last inequality is due to Lemma 5. �
Next, we bound the total waste within the matrix rows used by P.

Lemma 8. The space wasted within the rows that P uses is less than L · logH + 3
√
L · rows(P).

Proof. By Lemma 6, the wasted space incurred by each closed job set M of placement P is at most rows(M) · 3√L. Thus, the
total wasted space incurred by all closed job sets is at most:∑

M

rows(M) · 3√L � closed(P) · 3√L

where the summation is taken over all closed sets and closed(P) denotes the number of rows dedicated to closed sets.

By Lemma 7, the wasted space incurred by the open set M is less than L + 2
√
L · (rows(M)− 1). Hence, the total wasted

space incurred by open job sets is less than:

logH∑
j=1
[L + 2 · √L · (rows(Mj)− 1)] < L · logH + open(P) · 2√L

whereMj is the open set of type j according to Definition 2 and open(P) denotes that number of rows dedicated to open sets.

Since rows(P) = open(P)+ closed(P), we get that the wasted space in P is

Aw(P) < L · logH + open(P) · 3√L + closed(P) · 3√L < L · logH + 3
√
L · rows(P)

and the lemma follows. �
We now turn to bound the total wasted area.

Theorem 5. Let L � 9. Then, the wasted space of the solution computed by Algorithm Placement is less than L logH + 3H
√
L +

β · S.

Proof. Consider the infeasible placementQ on J1, . . . ,Jt+1. Clearly, rows(Q) > H. By lemma 8, the spacewasted byQ satisfies:

Aw(Q) = L · rows(Q)−
t+1∑
j=1

rj < L · logH + 3
√
L · rows(Q)

1344 A. Israeli et al. / Information and Computation 206 (2008) 1334–1345

Hence, the total matrix space wasted by P satisfies:

Aw(P)=L · H −∑t
j=1 rj

=L · rows(Q)− L · (rows(Q)− H)−∑t+1
j=1 rj + rt+1

<L logH + 3
√
L · rows(Q)− L · (rows(Q)− H)+ rt+1

=L logH + 3H
√
L + 3

√
L · (rows(Q)− H)− L · (rows(Q)− H)+ rt+1

=L logH + 3H
√
L + (rows(Q)− H) · (3√L − L)+ rt+1

If L � 9 it follows that Aw(P) < L logH + 3H
√
L + β · S. �

Corollary 6. Let L � 9. Then, the approximation ratio of Algorithm Placement is

1− logH

H
− 3√

L
− β.

Proof. Let opt be the area of thematrix that is covered by an optimal placement. Clearly, opt � S. Let alg be the area covered

by the jobs placed by the algorithm. Then, by Theorem 5 it follows that

alg

opt
� S − Aw(P)

S
>

S − L logH − 3H
√
L − β · S

S
� 1− logH

H
− 3√

L
− β

as required. �
Notice that since L � H we can solve the problem exactly for small L’s using exhaustive search. Hence, the approximation

ratio is in fact 1− logH
H − β − ε, for any ε > 0.

In order to further improve the approximation ratio we may use the powers of some number b instead of powers of 2

in Definition 2. In this case, if M is job set of medium or large jobs, then |M|� b
√
L. It follows that, for L � (b+ 1)2, the

approximation ratio of Algorithm Placement is 1− logb H
H − b+1√

L
− β. Hence, for every ε > 0 there exist b and L0 such that

1− logb H
H − b+1√

L
− β � 1− ε − β for every L � L0. This brings us to the following result.

Theorem 7. For every constant ε > 0, there exists a linear time (1− ε − β)-approximation algorithm for srp.

Finally, throughout this sectionwe assumed that logH is integral. If this is not the case, wemodify Definition 2.We define⌊
logH

⌋− 2 medium jobs types that correspond to i ∈ {2, . . . , ⌊logH⌋− 1
}
. There are now jobs that are not covered by any

job range — the jobs whose sizes are between b�logH�−1√L and H
2

√
L. We add these jobs to the largest medium job type.

This ensures that the number of ranges is logH, but increases the waste within closed sets. It is not hard to verify that the

resulting approximation ratio still remains 1− ε − β, for any ε > 0.

4. Conclusion

In this paper, we studied the sequential rectangle placement problem which is the problem of scheduling transmissions

on the downlink of IEEE 802.16/WiMAX systems that use the OFDMA technology.

We showed that the sequential rectangle placement problem is very hard to approximate in the case of general weights,

even when the transmissions are relatively small, and in the case of proportional weights. Moreover, it was shown that the

problem is NP-hard in the special case of proportional weights and relatively small transmissions. We presented a constant

factor approximation algorithm for this special case.We also showed that the problem is very hard to approximate in the case

of unit weights, and that the problem remains NP-hard in the special case of unit weights and relatively small transmissions.

Obtaining an approximation algorithm for this special case is an open problem.

Finally, all our negative results rely on the hardness of the weakly NP-hard partition. It follows that the complexity of

the special case in which the dimensions of the matrix are polynomial in the number of jobs remains unresolved.

Acknowledgment

We thank Yaron Alpert from Alvarion Ltd. for introducing the problem to us.

References

[1] M. Allman, V. Paxson, W. Stevens, TCP congestion control, RFC, 2581 (1999.)
[2] R. Cohen, L. Katzir, Computational analysis and efficient algorithms for micro and macro ofdma scheduling, in: 27th IEEE International Conference on

Computer Communications, 2008.

A. Israeli et al. / Information and Computation 206 (2008) 1334–1345 1345

[3] D. Ferrari, D.C. Verma, A scheme for real-time channel establishment in wide-area networks, IEEE Journal on Selected Areas in Communications 8 (3)
(1990) 368–379.

[4] A.V. Fishkin, O. Gerber, K. Jansen, R. Solis-Oba, Packing weighted rectangles into a square, in: 30th International Symposium on Mathematical
Foundations of Computer Science 2005, vol. 3618 of LNCS, 2005.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.
[6] IEEE Standard for Local and Metropolitan Area Networks, IEEE 802.16e, Part 16: Air Interface for Fixed and Mobile BroadbandWireless Access Sytems,

2005.
[7] A. Israeli, D. Rawitz, O. Sharon, On the complexity of sequential rectangle placement in IEEE 802.16/WiMAX systems, in: 15th Annual European

Symposium on Algorithms, vol. 4698 of LNCS, 2007.
[8] K. Jansen, L. Porkolab, Linear-time approximation schemes for schedulingmalleable parallel tasks, in: 10th Annual ACM-SIAM Symposium on Discrete

Algorithms, 1999.
[9] K. Jansen, G. Zhang, Maximizing the number of packed rectangles, in: 9th Scandinavian Workshop on Algorithm Theory, vol. 3111 of LNCS, 2004.

[10] K. Jansen, G. Zhang, On rectangle packing: Maximizing benefits, in: 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.
[11] G. Mounié, C. Rapine, D. Trystram, Efficient approximation algorithms for scheduling malleable tasks, in: 11th Annual ACM Symposium on Parallel

Algorithms and Architectures, 1999.
[12] P. Nicopolitidis, M.S. Obaidat, G.I. Papadimitriou, A.S. Pomportsis, Wireless Networks, John Wiley & Sons Ltd., 2003.
[13] A. Nordboten, LMDS systems and their application, IEEE Communications Magazine 38 (6) (2000) 150–154.
[14] J. Turek, J.L. Wolf, P.S. Yu, Approximate algorithms scheduling parallelizable tasks, in: 4th Annual ACM Symposium on Parallel Algorithms and

Architectures, 1992.

	Introduction
	Background and motivation
	Problem definition
	Related work
	Our results
	Organization

	Hardness results
	Proportional and unit weights
	General weights and small jobs

	An algorithm for SRP with proportional weights
	Definitions and notation
	The algorithm
	Approximation ratio

	Conclusion
	References

