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1 Introduction

Field theories on noncommutative (NC) Moyal space have many interesting properties.

One important aspect is the Seiberg-Witten map. In such spaces even a Û(1) gauge theory

becomes a non-Abelian theory. Although the Û(1) and the other gauge groups defined on

these spaces are fundamentally different from ordinary gauge groups, it turns out that we

can map the ordinary gauge fields Aµ to noncommutative gauge fields Âµ and the map is

commonly called Seiberg-Witten (SW) map [1]. Since this mapping is done in a way that

preserves the gauge equivalence in both ordinary and noncommutative cases, the map is

not unique and there are ambiguities in the relation between Aµ and Âµ [2]. Such freedom

in the SW-map turns out be necessary in the process of renormalization [3].

Another important property is concerned with the emergent gravity phenomenon which

is established using the SW-map. The noncommutative spaces can arise from the union of

Heisenberg’s uncertainty principle with Einstein’s theory of classical gravity [4] and there

are efforts to work out the inverse problem of whether the noncommutative theories in-

duced by Moyal product in flat spacetime possesses any signature of gravity. An important

step along this direction was taken in [5] where it was shown that translations along non-

commutative directions are equivalent to gauge transformations — a property similar to

the one in general relativity where local translations are gauge transformations associated

with general coordinate transformations. The next step was taken in [6] which established

at the first order in the noncommutative parameter θ that the Û(1) gauge theory in NC

Minkowski spacetime, after SW-mapping, is the same as the ordinary gauge theory cou-

pled to gravitational background and that the emergent gravitational field is generated by

ordinary gauge fields.
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The notion of emergent gravity has been extensively studied in the NC scenario and

in other contexts [7–20]. Recently, it was shown in [16] that the ambiguity terms in the

Seiberg-Witten map change the emerging metric in the emergent gravity scenario and that

a real NC scalar field is mapped to an ordinary scalar density field which is coupled non-

minimally to the emerging gravity. It was also shown that in such cases the conformal

coupling is strictly not allowed. This is in deep contrast to other metric theories of gravity

in which the non-minimal coupling of scalar field of non-gravitational origin has conformal

coupling to gravity because of the Einstein equivalence principle [21–26].

In this paper, we show that in addition to the ambiguities in the SW-map reported

so far [2, 27], there are further ambiguities in the map which can arise in the presence of

matter fields. We also show that the inclusion of these novel ambiguities in the context of

emergent gravity restores the possibility of conformal coupling of scalar density field which

is coupled non-minimally to the emerging gravitational field.

The paper is organized as follows. In section 2, we briefly review the ideas of Seiberg-

Witten map for the gauge and matter fields and the ambiguities in them. We show in

section 3 that the presence of matter fields can lead to further ambiguities in the map

and that the NC gauge field in general can also depend on ordinary matter fields. The

implications of these ambiguities to emergent gravity is discussed in section 4. We close

with concluding remarks in section 5.

2 Ambiguities in Seiberg-Witten map

The noncommutative gauge transformations are defined as

δλ̂Âµ = ∂µλ̂+ i(λ̂ ∗ Âµ − Âµ ∗ λ̂) , (2.1)

δλ̂F̂µν = i[λ̂, F̂µν ]∗ . (2.2)

One difference between the ordinary and noncommutative gauge theory is that the products

of functions are replaced by the Moyal *-products. Another difference is that since a

function Ĉ = Â ∗ B̂ is a function of the noncommutative parameter θ and since an NC

gauge field Âµ can always be written as a gauge transformation of another gauge field Â′µ,

the NC gauge field in general depends on θ, and hence we can have a series expansion of

Âµ in orders of θ. The only consistent way by which we can work out the explicit forms of

Âµ at each order of θ is through the amazing prescription given by Seiberg and Witten [1]

and it is called Seiberg-Witten map. The basic idea is to write the gauge field Ã in an

NC theory with NC parameter θ+ δθ in terms of the gauge field Â in the theory with NC

parameter θ in a way that preserves the gauge equivalence relation:

Ã(Â+ δ̂λ̂Â) = Ã(Â) + δ̃λ̃Ã(Â). (2.3)

If Ã = Â+Â1 and λ̃ = λ̂+ λ̂1 to first order in δθ, then the above gauge equivalence relation

gives the first order equation

Â1
µ(Â+ δλ̂Â)− Â1

µ(Â)− ∂µλ̂1 − i[λ̂1, Âµ]∗ − i[λ̂, Â1
µ]∗ = −1

2
δθαβ{∂αλ̂, ∂βÂµ}∗, (2.4)
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where {}∗ denotes the anti-commutator. Since the equation (2.4) involves two unknowns

Â1 and λ̂1, the solution in general is not unique and there are ambiguities in the map

Ã = Ã(Â) and λ̃ = λ̃(λ̂) [2]. In particular, the solution to (2.4) is given by

Â1 = −1

4
δθαβ{Âα, ∂βÂµ + F̂βµ}∗ + αδθαβD̂µF̂αβ + βδθαβD̂µ[Âα, Âβ]∗, (2.5)

λ̂1 =
1

4
δθαβ{∂αλ̂, Âβ}∗ + 2βδθαβ[∂αλ̂, Âβ]∗, (2.6)

where the terms involving the arbitrary constants α and β are the solutions to the ho-

mogeneous part of the equation (2.4). In addition to these ambiguities, there are further

ambiguities in the map which depend on the paths taken in the θ space to go from one

θ-value to another [2]. But these ambiguities can be removed by a combination of gauge

transformations, and field redefinitions that would change the functional form of the ac-

tion [2].

Although the original prescription by SW holds only for Û(N) theories, by allowing the

gauge fields and the gauge parameters to be enveloping algebra-valued, we can construct

the analogue of SW-map for arbitrary non-Abelian gauge theories [28].

In the presence of matter fields, we have the following gauge equivalence relation for

the matter fields [28]:

ψ̃(ψ̂ + δ̂λ̂ψ̂, Â+ δ̂λ̂Â) = ψ̃(ψ̂, Â) + δ̃λ̃ψ̃(ψ̂, Â). (2.7)

If ψ̃ = ψ̂ + ψ̂1, then for the matter field in the fundamental representation of the gauge

group, the above relation in the first order in δθ can be written as

ψ̂1(ψ̂ + δ̂λ̂ψ̂, Â+ δλ̂Â)− ψ̂1(ψ̂, Â)− iλ̂1 ∗ ψ̂ − iλ̂ ∗ ψ̂1 = −1

2
δθαβ∂αλ̂ ∗ ∂βψ̂. (2.8)

and the solution to (2.8) is given by [27]

ψ̂1 = iαδθαβF̂αβ ∗ ψ̂ + iβδθαβ[Âα, Âβ]∗ ∗ ψ̂. (2.9)

Although the above solution is like a gauge transformation, it turns out that the ambiguity

due to the non-equivalence of two paths in the θ-space are not completely removed in this

case since it involves a gauge parameter different from the one required to remove the

ambiguity in Â1 due to the non-equivalence of the paths [27].

Also, it was shown in [16] that the ambiguity in the SW-map could cause a physical

effect in the context of emergent gravity giving rise to a different geometry when compared

with the geometry in the absence of ambiguity.

In the next section, we show that if we relax the condition that NC gauge fields depend

only on ordinary gauge fields and their derivatives, then the gauge equivalence relation (2.3)

can lead to further ambiguities in the SW-map (2.5) which are different from the above

ambiguities. They arise in the presence of matter fields.
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3 More ambiguities in the presence of matter fields

In finding the solution to (2.4), Seiberg and Witten considered λ̃ as a function of λ̂ and

Â, and Ã as a function of Â. The dimensional constraints that δθ has power-counting

dimension −2 and Â and ∂/∂x have dimension one lead to an expansion of Ã in powers of

Â, ∂/∂x and δθ.

If we depart from the idea that Ã depends only on Â and its derivatives, and consider

only the gauge equivalence and the dimensional aspects, then the homogeneous part

Â1
µ(Â+ δλ̂Â)− Â1

µ(Â)− i[λ̂, Â1
µ]∗ = 0 (3.1)

of the equation (2.4) can lead to further ambiguities which involve the matter fields. If we

are to allow Ã to be a function of matter field ψ̂ as well as Â, then the eq. (3.1) takes the

form

Â1
µ(Â+ δλ̂Â, ψ̂ + δ̂λ̂ψ̂)− Â1

µ(Â, ψ̂)− i[λ̂, Â1
µ]∗ = 0. (3.2)

The nth-order counterpart of the above homogeneous equation is

Ânµ(Â+ δλ̂Â, ψ̂ + δ̂λ̂ψ̂)− Ânµ(Â, ψ̂)− i[λ̂, Ânµ]∗ = 0. (3.3)

3.1 Scalar fields

In the case of bosonic fields, the fields have power-counting dimension one and it is possible

to make Ã to be ψ̂-dependent without violating the gauge-equivalence condition. We do

not consider the fermionic case in this paper except noting that the fermionic matter fields

have dimension 3/2 in 4-d and so it is not possible to construct Â1 with only Â and ψ̂ and

their derivatives at the first order in θ. In particular, we consider the case of scalar fields

coupled to Û(1) gauge fields.

3.1.1 Adjoint representation

For a real scalar field φ̂ in the adjoint representation of the gauge group, the covariant

derivative is defined by

D̂µφ̂ = ∂µφ̂− i[Âµ, φ̂]∗. (3.4)

The field and its covariant derivative transform under a gauge transformation as

δ̂λ̂φ̂ = i[λ̂, φ̂]∗ , δ̂λ̂D̂µφ̂ = i[λ̂, D̂µφ̂]∗ . (3.5)

If Ĝ
(n)
1 is any polynomial function of φ̂, D̂µφ̂, D̂µD̂ν φ̂ . . ., then under a gauge transformation

δ̂λ̂Ĝ
(n)
1 (φ̂, D̂µφ̂, . . .) = i[λ̂, Ĝ

(n)
1 (φ̂, D̂µφ̂, . . .)]∗ , (3.6)

which implies that the solution to eq. (3.3) can be written as

Â(n)
µ = Ĝ

(n)
1 (φ̂, D̂µφ̂, D̂µD̂ν φ̂, . . . ; δθ) + (Ĝ

(n)
1 (φ̂, D̂µφ̂, D̂µD̂ν φ̂, . . . ; δθ))

† . (3.7)
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In particular, the solution to the first order equation (3.2) becomes

Â(1)
µ = δθµν

(
η φ̂ ∗ (D̂ν φ̂) + η† (D̂ν φ̂) ∗ φ̂

)
. (3.8)

where η is an arbitrary complex constant and η† is its complex conjugate. Note that

we have denoted the solution (3.8) with the superscript in parentheses to distinguish it

from (2.5).

As a result of (3.7), the higher order terms in λ̃ and φ̃ can have terms nonlinear in φ̂

and therefore even the free field part of the NC action for matter field can involve highly

non-trivial self-interaction terms, after SW-mapping is done.

3.1.2 Fundamental representation

In the fundamental representation, a complex scalar field transforms as

δ̂λ̂φ̂ = iλ̂ ∗ φ̂ , δ̂λ̂φ̂
† = −iφ̂† ∗ λ̂ , (3.9)

The covariant derivative is defined as D̂µφ̂ = ∂µφ̂− iÂµ ∗ φ̂. The solution to eq. (3.2) can

then be written as

Â(1)
µ = δθµν

(
ζ(D̂ν φ̂) ∗ φ̂† + ζ†φ̂ ∗ (D̂ν φ̂)†

)
, (3.10)

where ζ is an arbitrary complex constant.

In general we can construct the solution to the nth-order equation (3.3) in the following

way. Let Êi be the ith element in the set {φ̂, D̂µφ̂, D̂µD̂ν φ̂ . . .} and Ê†j be jth element in

the set {φ̂†, (D̂µφ̂)†, (D̂µD̂ν φ̂)† . . .}. Consider a polynomial function Ĝ
(n)
2 (Êi ∗ Ê†j ) that

depends on the star product Êi ∗ Ê†j of pair of elements — one from each set. Then the

gauge transformation of such a polynomial function becomes

δ̂λ̂Ĝ
(n)
2 (Êi ∗ Ê†j ) = i[λ̂, Ĝ

(n)
2 (Êi ∗ Ê†j )]∗ , (3.11)

and the solution to eq. (3.3) in this case can be written as

Â(n)
µ = Ĝ

(n)
2 + (Ĝ

(n)
2 )† . (3.12)

4 Implications to emergent gravity

To analyze the implications of the above ambiguities, we take the case of mapping between

U(1) gauge fields in the ordinary and noncommutative theories and especially consider the

real scalar field in the adjoint representation. In this case, the eq. (3.8) becomes

A(1)
µ = 2γθµνφ(∂νφ) , (4.1)

where γ is some real constant. The effect of the ambiguities as in (2.5) and (2.9) in the

context of emergent gravity was analyzed in [16], and it was shown that if the ambiguity

terms are included, then a real NC scalar field is mapped to an ordinary scalar density

field and that the ordinary scalar density field needs to be coupled non-minimally to the
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gravitational background induced by ordinary gauge fields. We briefly review a few ideas

of [16] as they are needed for further treatment of the problem.

Consider the action for a real NC scalar field φ̂ in the adjoint representation in NC

Minkowski spacetime:

Ŝφ̂ =
1

2

∫
d4x D̂µφ̂ ∗ D̂µφ̂, (4.2)

where the covariant derivative D̂µ is defined as in (3.4). If we don’t include (4.1), then

maps between NC fields and ordinary fields can be written as

Âµ = Aµ −
1

2
θαβAα(∂βAµ + Fβµ) + α∂µθF, (4.3)

φ̂ = φ− θαβAα∂βφ+ α θF φ, (4.4)

where θF = θαβFαβ. Upon substituting the above relations, the action (4.2), to first order

in θ, takes the form [16]

Ŝφ =
1

2

∫
d4x

[
(1 + 2α θF )∂µφ∂µφ− αφ2�θF − 2θµαFα

ν(∂µφ∂νφ−
ηµν
4
∂λφ∂λφ)

]
. (4.5)

This action is compared with the one for a scalar density field φ with weight −ω, the weight

of
√
−g being −1. This field is taken to be without self-interactions in a weak gravitational

background and coupled non-minimally to the curvature scalar. The relevant action is

Sgφ =
1

2

∫
d4x (

√
−g)2ω+1 gµν∇µφ∇νφ+

1

2
ξ

∫
d4x (

√
−g)2ω+1Rφ2, (4.6)

where ξ is the coupling constant and ∇µφ = ∂µ + ωΓνµνφ is the covariant derivative of the

scalar density of weight −ω. In the linearized limit, the metric gµν = ηµν + hµν + ηµνh,

where hµν is traceless, and the above action becomes [16]

Sgφ =
1

2

∫
d4x

[
((1 + (1 + 4ω)h) ηµν−hµν) ∂µφ∂νφ+ (3ξ − 2ω)φ2�h− ξ φ2∂µ∂νhµν

]
.(4.7)

Comparing (4.7) with (4.5), we get

hµν = θµαFα
ν + θναFα

µ +
1

2
ηµνθF , (4.8)

(1 + 4ω)h = 2αθF , (4.9)

(3ξ − 2ω)h+
ξ

2
θF = −αθF . (4.10)

From (4.9) and (4.10), it is clear that if α = 0 and h = 0, then ξ = 0 and ω is arbitrary. If

α = 0 and h 6= 0, then ω = −1/4 and ξ becomes arbitrary, but ξ = −1/6 is not a consistent

solution.

If α 6= 0, then h 6= 0 and ω 6= −1/4, and in this case, ξ can be worked out to be

ξ = − 1

6 + 1+4ω
2α

. (4.11)
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Therefore, the ambiguity term in (4.3) forces us to consider non-minimal coupling, and the

conformal coupling is strictly not allowed.

If we include the novel ambiguity (4.1), then it turns out that this ambiguity term

contributes to the action for the scalar field only through the action for the pure NC gauge

fields. The action for the NC Û(1) gauge theory in the NC Minkowski space is given by

ŜÂ = −1

4

∫
d4x F̂µν ∗ F̂µν , (4.12)

where F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]∗. To first order in θ, we write F̂ = F + F 1 + F (1),

where F + F 1 is constructed from (4.3), and F (1) is the term that involves φ due to (4.1)

and it is worked out to be

F (1)
µν = 2γ

(
θ λ
ν ∂µ(φ∂λφ)− θ λ

µ ∂ν(φ∂λφ)
)
. (4.13)

Then the part of the action (4.12) that involves φ can be shown to be equal to

S
(1)
A =

γ

2

∫
d4xφ2∂µ∂µθF . (4.14)

Adding (4.5) and (4.14), the total action for the scalar field becomes

Ŝtot
φ =

1

2

∫
d4x

[
(1 + 2α θF )∂µφ∂µφ− 2θµαFα

ν(∂µφ∂νφ−
1

4
ηµν∂

λφ∂λφ) +

+ (γ − α)φ2∂µ∂µθF

]
. (4.15)

Comparing (4.15) with (4.7), we get

hµν = θµαFα
ν + θναFα

µ +
1

2
ηµνθF , (4.16)

(1 + 4ω)h = 2αθF , (4.17)

(3ξ − 2ω)h+
ξ

2
θF = (γ − α)θF . (4.18)

We can rewrite eqs. (4.17) and (4.18) as

h =
−ξ + 2γ

1 + 6ξ
θF , (4.19)

ξ = −1

6

(
1− γ

(
1+4ω
α

)
1 + 1

12

(
1+4ω
α

)) . (4.20)

The novel ambiguity does not affect hµν , but the trace h and the non-minimal coupling

are changed. In particular, it follows from eq. (4.20) that when γ = −1/12, we get the

conformal coupling and when γ is zero we get back eq. (4.11). Also, eqs. (4.17) and (4.18)

imply that if ω 6= −1/4 and α = 0, then h = 0 and in this case the conformal coupling

ξ = 2γ.

If ω = −1/4, then we have α = 0. But ξ becomes arbitrary in this case. We can infer

from eq. (4.18) that in this case also, the conformal coupling is a consistent solution and

for this coupling γ takes the fixed value −1/12, but then h cannot be defined. If ξ 6= −1/6

then h is the same as in (4.19).
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5 Concluding remarks

We considered the noncommutative (NC) scalar fields coupled to Û(1) gauge fields. The

ambiguities presented in this paper are the solutions to the homogeneous equation (3.3) of

Seiberg-Witten gauge equivalence relation for the gauge fields, which can involve the matter

fields in the presence of matter fields. The scalar fields appear in the ambiguities (3.8)

and (3.10) non-linearly already at the level of first order itself. In the higher order of NC

parameter, after Seiberg-Witten-mapping is done, the part of the total NC action that

involves the scalar field will have terms with highly non-trivial self-interaction terms, even

if NC scalar field does not have any direct self-interaction term before mapping.

On the emergent gravity side, the inclusion of these novel ambiguities does not affect

the emergent gravity phenomenon and we have shown at the leading order in the NC

parameter θ, that the NC scalar field theory coupled to Û(1) gauge field, after the SW-map

is applied, leads to a theory of ordinary scalar density field that is coupled non-minimally

to the emerging gravitational field. We have also shown that the theory allows room for

conformal coupling which is strictly not allowed if we consider only the already known

ambiguity in the map. In this way, the theory is also in conformity with other metric

theories of gravity where the Einstein equivalence principle imply that the non-minimal

coupling of scalar field of non-gravitational origin has conformal coupling to gravity [21–

26]. Since the conformal coupling is possible only for the potentials V (φ) = 0 or λφ4, it

remains to be seen whether this coupling survives in the higher orders of θ.
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