

Available online at www.sciencedirect.com

Journal of Algebra 283 (2005) 1-5

www.elsevier.com/locate/jalgebra

Abelian sharp permutation groups $\stackrel{\text{\tiny{theta}}}{\longrightarrow}$

Clara Franchi

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Coure, Via Musei 41, I-2521 Brescia, Italy Received 30 January 2001

Available online 2 November 2004

Communicated by Michel Broué

Abstract

A permutation group *G* of finite degree *n* is a sharp irredundant group of type $\{k\}$, *k* a positive integer, if each non-identity element of *G* fixes exactly *k* points, |G| = n - k and *G* has no global fixed point and no regular orbit. In this note we give a method to construct all faithful representations of finite abelian groups as sharp irredundant permutation groups of type $\{k\}$ for some positive integer *k*. © 2004 Elsevier Inc. All rights reserved.

Keywords: Sharp permutation group; Partition

Let *G* be a permutation group of finite degree *n* and let *K* be a set of non-negative integers. *G* is called a group of type *K* if $K = \{fix(g) | g \in G, g \neq 1\}$, where fix(g) denotes the number of fixed points of *g*. We say that *G* is a permutation group of finite type if *G* is a group of type $\{k\}$ for some non-negative integer *k*. Blichfeld [2] has shown that if *G* is a group of type *K*, then |G| divides the product $\prod_{k \in K} (n - k)$. When equality holds, *G* is called *sharp permutation group of type K* (see [4]). Thus in particular a sharp group of degree *n* and type $\{k\}$ has order n - k. Note that each non-trivial permutation group with *k* global fixed points and an arbitrary number of regular orbits is of type $\{k\}$. Moreover a group of type $\{k\}$ which has $h \leq k$ global fixed points is isomorphic to a group of type $\{k - h\}$. A group is called an *irredundant* (*permutation*) group of type $\{k\}$ if it is a group of

Research supported by MURST. *E-mail address:* cfranchi@dmf.unicatt.it.

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.06.031

type {k} without global fixed points and regular orbits (see [5]). A sharp irredundant group of type {k} is a sharp group of type {k} which is also irredundant. Note that the absence of regular orbits forces k to be positive.

Finite groups admitting a faithful representation as sharp irredundant permutation groups of finite type have been investigated in [5]. In particular it is proved that a finite abelian group can be faithfully represented as a sharp irredundant group of finite type if and only if it is a non-cyclic elementary abelian p-group, for some prime number p. In this note we show that there is a correspondence between non-trivial partitions of an elementary abelian finite p-group G and faithful representations of G as sharp irredundant group of finite type. Recall that a *partition* of a group G is a set of non-trivial subgroups of G such that each non-identity element of G belongs to exactly one of them. A partition is *non-trivial* if each component is a proper subgroup.

Let *G* be a group. If ρ_i , i = 0, ..., r, are permutation representations of *G* on some sets Ω_i , we denote by $\sum_{i=0}^r \rho_i$ the permutation representation ρ of *G* on the disjoint union $\Omega = \bigcup_{i=0}^r \Omega_i$ defined by the position $\omega g^{\rho} = \omega g^{\rho_i}$ if $\omega \in \Omega_i$, $g \in G$. Moreover we denote by ρ_X the standard permutation representation of *G* on the right cosets of the subgroup *X*.

An autoduality of *G* is a bijection δ of the subgroup lattice of *G* into itself such that for all $H, K \leq G, H \leq K$ if and only if $K^{\delta} \leq H^{\delta}$, or equivalently $H^{\delta} \cap K^{\delta} = \langle H, K \rangle^{\delta}$ (see [7, Chapter 8]). Note that if δ is an autoduality of a finite *p*-group *G*, then $|H| = |G : H^{\delta}|$ for each $H \leq G$.

Let $\pi = \{X_i\}_{i=0,...,r}$ be a finite family of (not necessarily distinct) non-trivial subgroups of a group G. We say that π is an α -covering of G if it has the following properties:

- (i) G is the set-theoretical union of the subgroups X_0, \ldots, X_r .
- (ii) For each maximal subgroup M of G the sum $\sum_{X_i \leq M} |X_i|$ is a constant independent on M.

An α -covering π is *non-trivial* if X_i is a proper subgroup of G for each $0 \le i \le r$.

Theorem 1. Let G be a non-cyclic elementary abelian finite p-group and let δ be an autoduality of G. A permutation representation of G is a faithful representation of G as irredundant group of finite type if and only if it is equivalent to the representation $\rho_{\pi}^{\delta} = \sum_{i=0}^{r} \rho_{X_{i}^{\delta}}$ for some non-trivial α -covering $\pi = \{X_{i}\}_{i=0,...,r}$ of G. Furthermore ρ_{π}^{δ} represents G as sharp irredundant group of finite type if and only if π is a non-trivial partition of G. In such a case, $G^{\rho_{\pi}^{\delta}}$ is of type $\{r\} = \{|\pi| - 1\}$.

Proof. Let $\pi = \{X_i\}_{i=0,...,r}$ be a non-trivial α -covering of the elementary abelian *p*-group *G*. Let us show that ρ_{π}^{δ} is a faithful representation of *G* as irredundant permutation group of finite type. Since ker $\rho_{\pi}^{\delta} = \bigcap_{i=0}^{r} X_i^{\delta} = (\prod_{i=0}^{r} X_i)^{\delta} = G^{\delta} = 1$, ρ_{π}^{δ} is faithful. Let $1 \neq g$ be an element of *G*. Then

$$\operatorname{fix}(g^{\rho_{\pi}^{\delta}}) = \sum_{g \in X_i^{\delta}} |G: X_i^{\delta}| = \sum_{X_i \leqslant \langle g \rangle^{\delta^{-1}}} |X_i|.$$

Since $\langle g \rangle^{\delta^{-1}}$ is a maximal subgroup of *G*, by the property (ii) of α -coverings fix $(g^{\rho_{\pi}^{\delta}})$ does not depend on *g*. Hence ρ_{π}^{δ} represents *G* as a permutation group of finite type $\{\sum_{X_i \leq M} |X_i|\}$, where *M* is a maximal subgroup of *G*. Moreover since X_i^{δ} is a proper non-trivial subgroup of *G* for each *i*, the representation ρ_{π}^{δ} is irredundant.

Conversely let ρ be a faithful representation of *G* as irredundant permutation group of type $\{k\}$ on a set Ω , with orbits Ω_i , i = 0, ..., r. Then ρ is equivalent to the representation $\sum_{i=0}^{r} \rho_{H_i}$, where H_i is the stabilizer of a point $\omega_i \in \Omega_i$, $0 \leq i \leq r$. Set $X_i = H_i^{\delta^{-1}}$ for each i = 0, ..., r. To prove the first part of the theorem we show that $\pi = \{X_i\}_{i=0,...,r}$ is a non-trivial α -covering of *G*. Note that H_i is a non-trivial proper subgroup of *G* for each i = 0, ..., r and thus the X_i 's are non-trivial proper subgroups as well. Hence, since an element $g \in G$ belongs to X_i if and only if $X_i^{\delta} \leq \langle g \rangle^{\delta}$ and $\langle g \rangle^{\delta}$ is a maximal subgroup of *G* whenever $g \neq 1$, to prove that $G = \bigcup_{i=0}^{r} X_i$ it is enough to show that for each maximal subgroup *M* of *G* there exists an index i, $0 \leq i \leq r$, such that $X_i^{\delta} = H_i \leq M$. Suppose by contradiction that there exists a maximal subgroup *M* of *G* such that the *G*-orbits and thus *M* has r + 1 orbits as *G* does. Hence the Orbit-Counting Lemma [3, Theorem 2.2] applied to *G* and *M* gives $|G|(r + 1 - k) = |\Omega| - k = |M|(r + 1 - k)$. Since M < G it follows that $|\Omega| = k$: a contradiction since *G* is non-trivial and ρ is faithful. Therefore $G = \bigcup_{i=0}^{r} X_i$. Moreover, for each maximal subgroup *M* of *G* we have

$$\sum_{X_i \leqslant M} |X_i| = \sum_{M^{\delta} \leqslant X_i^{\delta}} \left| G : X_i^{\delta} \right| = k.$$

Therefore π is a non-trivial α -covering of *G*.

It remains to show that ρ_{π}^{δ} represents *G* as a sharp irredundant group of type {*k*} for some k > 0 if and only if the α -covering $\pi = \{X_i\}_{i=0,...,r}$ is a non-trivial partition of *G*. Since $G = \bigcup_{i=0}^r X_i$, we have that π is a non-trivial partition of *G* if and only if r > 0 and $\sum_{i=0}^r (|X_i| - 1) = |G| - 1$. Thus, since

$$\sum_{i=0}^{r} (|X_i| - 1) = \sum_{i=0}^{r} |G: X_i^{\delta}| - (r+1) = |G|(r+1-k) + k - r - 1,$$

it follows that π is a non-trivial partition if and only if |G| = |G|(r+1-k) + k - r, that is r = k and ρ_{π}^{δ} represents *G* as a sharp irredundant group of type $\{r\}$. Hence to conclude the proof of the theorem we need only to show that any partition of *G* is an α -covering. This follows from next Lemma 2. \Box

Lemma 2. Partitions of elementary abelian finite *p*-groups are α -coverings.

Proof. Let *G* be an elementary abelian finite *p*-group and let π be a partition of *G*. Let *M* be a maximal subgroup of *G* and set $s_M = \sum_{X \in \pi, X \leq M} |X|$. If π is the trivial partition, then $s_M = 0$ and we are done. So let us assume that π is non-trivial. Then $|G| = p^n$, n > 1. For each t = 1, ..., n - 1 denote by m_t the number of the components of π of order p^t

and by l_t the number of the components of π of order p^t which are contained in M. The number of subgroups of order p of M which are contained in a component $X \in \pi$ of order p^t , $1 \le t \le n-1$, is equal to $1 + p + \dots + p^{t-1}$ if $X \le M$ and to $1 + p + \dots + p^{t-2}$ if $X \le M$, since in the latter case $|M \cap X| = p^{t-1}$. Then, by counting the number of subgroups of order p of M, we get

$$1 + p + \dots + p^{n-2} = \sum_{t=1}^{n-1} l_t (1 + p + \dots + p^{t-1}) + \sum_{t=1}^{n-1} (m_t - l_t) (1 + p + \dots + p^{t-2}).$$

It follows that

$$\sum_{t=1}^{n-1} l_t p^{t-1} = 1 + p + \dots + p^{n-2} - \sum_{t=1}^{n-1} m_t (1 + p + \dots + p^{t-2})$$

and thus

$$s_M = \sum_{t=1}^{n-1} l_t p^t = p + \dots + p^{n-1} - \sum_{t=1}^{n-1} m_t (p + p + \dots + p^{t-1}).$$

Therefore s_M does not depend on M and we are done. \Box

Note that if *G* is an elementary abelian finite *p*-group of order p^n with n > 2, then the set of all maximal subgroups of *G* is an α -covering which is not a partition, and the set of all maximal subgroups of *G* containing a fixed non-identity element is not an α -covering of *G*, even if *G* is the set-theoretical union of them.

The next proposition describes how the permutation representation ρ_{π}^{δ} of Theorem 1 depends on the autoduality δ .

Proposition 3. Let G be a non-cyclic elementary abelian finite p-group and let π be a non-trivial α -covering of G. If δ and σ are autodualities of G, then there exists an automorphism φ of G such that the permutation representations of G ρ_{π}^{δ} and $\varphi \rho_{\pi}^{\sigma}$ are equivalent.

Proof. Let $\pi = \{X_i\}_{i=0,...,r}$, δ , σ be as in the statement. If $|G| = p^2$, then for each nontrivial proper subgroup H of G there exists i such that $X_i = H$ and the cardinality of the set $\{i \mid X_i = H\} \subseteq \{0, ..., r\}$ does not depend on H. Since δ and σ permute non-trivial proper subgroups of G, it is clear that ρ_{π}^{δ} and ρ_{π}^{σ} are equivalent. So let us assume that $|G| = p^n$ with n > 2. Then, since $\delta^{-1}\sigma$ is a autoprojectivity of G (see [7, Lemma 8.1.5.a]), by the Fundamental Theorem of Projective Geometry (see, for example, [1, p. 44]) there exists an automorphism φ of G such that $H^{\delta^{-1}\sigma} = H^{\varphi}$ for each $H \leq G$. Hence $H^{\sigma} = (H^{\delta})^{\varphi}$ for each $H \leq G$. Denote by Ω and Σ the sets on which G acts via ρ_{π}^{δ} and ρ_{π}^{σ} respectively. For each $0 \leq i \leq r, x \in G$ we have

$$(X_i^{\delta}x)^{\varphi} = (X_i^{\delta})^{\varphi}x^{\varphi} = X_i^{\sigma}x^{\varphi}.$$

Since φ is an automorphism of *G*, it follows that the position $X_i^{\delta} x \mapsto X_i^{\sigma} x^{\varphi}$ for each $0 \leq i \leq r, x \in G$, defines a bijection $\beta : \Omega \to \Sigma$; and for each $x, y \in G, 0 \leq i \leq r$, we have $((X_i^{\delta} x)y)^{\beta} = (X_i^{\delta} x)^{\beta} y^{\varphi}$. Therefore ρ_{π}^{δ} and $\varphi \rho_{\pi}^{\sigma}$ are equivalent representations. \Box

Remark that when *G* is an elementary abelian finite *p*-group of order not less than p^3 , then every autoduality δ of *G* is represented by a non-degenerate bilinear form *f* on *G* regarded as a vector space over the field with *p* elements, that is to say $H^{\delta} = \{x \in G \mid f(x, y) = 0 \text{ for all } y \in H\}$ for each $H \leq G$ (see [1, Chapter 4]).

Examples of sharp irredundant permutation finite abelian groups of finite type can be constructed, by using the tecnique of Theorem 1, once we are given an elementary abelian finite *p*-group *G* and a non-trivial partition of *G*. Note that the groups of Theorem 7 and Proposition 2 in [5] are actually constructed in this way. By [6, Lemma 4], if *G* is an elementary abelian finite *p*-group of order p^n , n > 1 and *n* can be written as n = kn' + t where $1 \le n' < n$ and n' < t < 2n', then *G* has a partition consisting of $p^{n-n'} + p^{n-2n'} + \cdots + p^{n-kn'} + 1$ components. Therefore, by Theorem 1, *G* has a faithful representation as a sharp irredundant permutation group of type $\{p^{n-n'} + p^{n-2n'} + \cdots + p^{n-kn'}\}$.

Note that by [5, Theorem 1] if *G* is any irredundant permutation group of type {*k*} on a set Ω , then *G* has a non-trivial partition denoted by π_{Ω} (called the standard partition associated to Ω) whose components are the subgroups $G_{\Delta} = \{g \in G \mid \omega g = \omega \text{ for each } \omega \in \Delta\}$ where $\Delta \subseteq \Omega$, $|\Delta| = k$ and $G_{\Delta} \neq 1$. Now assume that *G* is a sharp irredundant elementary abelian finite *p*-group of type {*k*}. If δ is an autoduality of *G*, then by Theorem 1 *G* has a non-trivial partition π whose components are the subgroups $S^{\delta^{-1}}$ where $S = St_G(\omega)$, $\omega \in \Omega$. We claim that $\pi_{\Omega} = \{Y^{\delta} \mid Y = \prod_{X \in \pi, X \leq M} X \text{ and } |G : M| = p\}$. To see this, for each element $1 \neq g \in G$, let us denote by H_g the intersection of all the point-stabilizers $St_G(\omega), \omega \in \Omega$, containing *g*. Then we have that $\pi_{\Omega} = \{H_g \mid 1 \neq g \in G\}$ and

$$H_g = \bigcap_{\substack{\omega \in \Omega, \\ g \in St_G(\omega)}} St_G(\omega) = \bigcap_{\substack{X \in \pi, \\ g \in X^{\delta}}} X^{\delta} = \left(\prod_{\substack{X \in \pi, \\ X \leq \langle g \rangle^{\delta^{-1}}}} X\right)^{\delta}.$$

Since, when g varies in the set of non-identity elements of G, $\langle g \rangle^{\delta^{-1}}$ varies in the set of all maximal subgroups of G, the claim follows.

References

- [1] R. Baer, Linear Algebra and Projective Geometry, Academic Press, New York, 1952.
- [2] H.F. Blichfeld, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution groups, Trans. Amer. Math. Soc. 5 (1904) 461–466.
- [3] P.J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts, vol. 45, Cambridge University Press, Cambridge, 1999.
- [4] P.J. Cameron, M. Deza, P. Frankl, Sharp sets of permutations, J. Algebra 111 (1987) 220-247.
- [5] C. Franchi, On permutation groups of finite type, European J. Combin. 22 (2001) 821-837.
- [6] O. Heden, Partitions of finite abelian groups, European J. Combin. 7 (1986) 11-25.
- [7] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, New York, 1994.