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We present a model based on the A4 non-Abelian discrete symmetry leading to a predictive five-
parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting
correlation among the atmospheric and the reactor angles which predicts θ23 ∼ π/4 for very small
reactor angle and deviation from maximal atmospheric mixing for large θ13. Only normal neutrino
mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is
constrained to be |mee | > 4 × 10−4 eV.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Neutrino oscillation and dark matter (DM) are so far the most
important evidences of physics beyond the standard model. Many
models for neutrino masses and mixings have been studied in liter-
ature, some of them with the aim of reproducing the tri-bimaximal
mixing pattern (TBM) [1] observed, within one standard deviation,
in the recent neutrino oscillation data [2,3], namely sin2 θ12 = 1/3,
sin2 θ23 = 1/2 and sin2 θ13 = 0. In this context, non-Abelian dis-
crete flavor symmetries have been largely used since, especially in
models based on A4 [4] and S4 [5] permutation groups, the TBM
limit can be easily reproduced.

While we have robust evidence for dark matter from rota-
tion curves of spiral galaxies, gravitational lensing, WMAP mea-
surement, CMB anisotropy, structure formation, X-ray observations,
bullet-clusters [6], we still do not have neither theoretical nor ex-
perimental indications about the nature of it; also the mechanism
for DM stability is still not understood yet. Many models assume
ad hoc extra Abelian symmetries [7] in order to stabilize the dark
matter. Such a symmetry can arise from the spontaneous break-
ing of a non-Abelian continuous symmetry, see for instance [8], or
from the breaking of Abelian U (1) group [9–11] as, for example, in
grand unified frameworks or in supersymmetry [12].
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Recently a model where the stability of the DM arises from the
spontaneous breakdown of a non-Abelian discrete flavor symmetry
was proposed [13]. Such a model is based on the property that the
A4 group is spontaneously broken into its subgroup Z2 which is
responsible for the stability (for a paper with decaying dark mat-
ter with discrete non-Abelian symmetry see [14–16]). In [13] the
same Z2 is also acting in the neutrino sector, giving a vanishing
reactor angle θ13 = 0 and allowing only the inverted hierarchy for
the neutrino mass spectrum.

However these properties are model-dependent features and
cannot be considered as general results of models where the sta-
bility of the dark matter is justified by non-Abelian discrete flavor
symmetries. In this Letter we want to provide an explicit exam-
ple of a model, based on a simple extension of [13], with a richer
neutrino phenomenology, predicting a normal mass ordering and
θ13 �= 0.

The Letter is organized as follows: in Section 2 we give the field
content of our model and derive the neutrino mass matrix, whose
phenomenological implications are discussed in Section 3; in Sec-
tion 4 we draw our conclusions.

2. The model

In Table 1 we summarized the model quantum numbers. In
contrast to [13], the right-handed neutrino N4 is assigned to 1′ in-
stead of 1 and we introduced one more right-handed neutrino N5
assigned to 1′′ . The operators needed to generate neutrinos masses
are the following:
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Table 1
Summary of relevant model quantum numbers.

Le Lμ Lτ lce lcμ lcτ NT N4 N5 H η

SU(2) 2 2 2 1 1 1 1 1 1 2 2
A4 1 1′ 1′′ 1 1′′ 1′ 3 1′ 1′′ 1 3

L = yν
1 Le(NT η)1 + yν

2 Lμ(NT η)1′′ + yν
3 Lτ (NT η)1′

+ yν
4 Lτ N4 H + yν

5 LμN5 H + M1NT NT + M2N4N5 + h.c.

The scalar and the lepton charged current sectors of our model are
the same as in [13] and we refer to that paper for all the details.
After electroweak symmetry breaking, two of the Higgs doublets
contained in the A4 triplet η do not take vev and we have:〈
H0〉 = vh �= 0,

〈
η0

1

〉 = vη �= 0,
〈
η0

2,3

〉 = 0. (1)

As a consequence, the Dirac and Majorana neutrino mass matrices
are:

mD =
⎛
⎝ yν

1 vη 0 0 0 0

yν
2 vη 0 0 0 yν

5 vh

yν
3 vη 0 0 yν

4 vh 0

⎞
⎠ ,

mM =

⎛
⎜⎜⎜⎝

M1 0 0 0 0
0 M1 0 0 0
0 0 M1 0 0
0 0 0 0 M2
0 0 0 M2 0

⎞
⎟⎟⎟⎠ . (2)

Using the seesaw type-I formula we get the following light neu-
trino mass matrix:

mν =
( a2 ab ac

ab b2 bc + k
ac bc + k c2

)
, (3)

where we defined:

a = yν
1 vη√
M1

, b = yν
2 vη√
M1

,

c = yν
3 vη√
M1

, k = yν
4 yν

5 v2
h

M2
. (4)

As discussed in more details in [13], the group A4 is broken by
the vev 〈η0

1〉 ∼ (1,0,0) down to the subgroup Z2, generated by
the diagonal A4 generator S = Diag{1,−1,−1}; the Z2 symmetry
acts on the triples fields in the following way:

Z2 : N2 → −N2, h2 → −h2, A2 → −A2,

N3 → −N3, h3 → −h3, A3 → −A3, (5)

where hi and Ai are respectively the CP-odd and CP-even com-
ponents of the Higgs doublet ηi for i = 2,3 and N2,3 are the
components of the triplet NT . This residual symmetry is respon-
sible for the stability of the lightest combination of h2 and h3,
which is the dark matter candidate. In fact it couples only to heavy
right-handed neutrinos and not to quarks, supposed to be singlets
under A4. Such a scalar dark matter candidate is potentially de-
tectable in nuclear recoil experiments [17,18].

3. Numerical analysis of the full mass matrix

The most general complex and symmetric matrix has twelve
independent real parameters which, after readsorbing the unphys-
ical phases, reduce to nine. The matrix in Eq. (3) has four complex
parameters and then five real independent parameters: the mod-
uli of a,b and c and the modulus and phase of the combination
Fig. 1. Correlation among the θ13 and θ23 angles as predicted by the model.

bc + k = deiφd . In terms of them, the matrix in Eq. (3) is rewritten
in the following form:

mν =
( a2 ab ac

ab b2 deiφd

ac deiφd c2

)
. (6)

We can relate three of the five parameters in Eq. (6) (i.e. a,b and c)
with the neutrino masses using the invariant quantities of the her-
mitian matrix M2

ν = mνm†
ν :

Tr
(
M2

ν

) = T = a4 + 2a2(b2 + c2) + b4 + c4 + 2d2

= m2
ν1

+ m2
ν2

+ m2
ν3

,

det
(
M2

ν

) = a4(b2c2 − 2bcd cosφd + d2)2

= m2
ν1

m2
ν2

m2
ν3

,

1

2

[
T 2 − Tr

(
M2

ν M2
ν

)]
= (

b2c2 − 2bcd cosφd + d2)
× [

2a4 + 2a2(b2 + c2) + b2c2 + 2bcd cosφd + d2]
= m2

ν1

(
m2

ν2
+ m2

ν3

) + m2
ν2

m2
ν3

, (7)

where the symbols Tr and det refer to the trace and determinant
of a matrix, respectively. The expressions of a,b and c in terms of
neutrino masses, derived from the inversion of the previous rela-
tions, produce lengthly formulae that we do not present here but
included in our numerical simulations. As independent parameters,
we decide to take mν1 , the two square mass differences �m2

sol and
�m2

atm and the other two parameters of the neutrino mass matrix,
i.e. d and φd; to study the correlations among the neutrino ob-
servables predicted by the model, we perform a parameter space
scan extracting randomly the previous parameters in the following
intervals:

d ∈ [−1,1], φd ∈ [−π,π), mν1 ∈ [
10−5,1

]
eV,

7.1 × 10−5 eV2 < �m2
sol < 8.3 × 10−5 eV2,

0.027 < r = �m2
sol

|�m2
atm| < 0.040.

Then, we require that the obtained mixing angles are within their
current 3σ confidence level [2]. We carefully checked that |d| > 1
is not compatible with data. We made the calculation for both
inverted and normal neutrino mass hierarchies finding that only
the latter is allowed in our framework (we have analitically dis-
cussed this point in the appendices: Appendix A.1 for the real
case, Appendix A.2 for the μ–τ invariant case and Appendix A.3
for the exact TBM case). Among all possible correlations, we found
that the (θ13–θ23) one is quite interesting, as shown in Fig. 1. As
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Fig. 2. Values of the effective mass |mee | (in eV) allowed in our model. The two
dashed horizontal lines represent the experimental sensitivities of some of the
forthcoming experiments while the dashed vertical line is the upper limit from tri-
tium β-decay experiment. For references to experiments see [20–24].

we can see, for very small θ13 the atmospheric angle is fixed to
its maximal value, as a consequence of the fact that the model
has the TBM limit built-in (see next section). Increasing θ13 two
different branches above and below θ23 = π/4 develop and for
θ13 � 1◦ maximal 2–3 mixing is strongly excluded. It is interesting
to observe that this result can be easily verified at the forthcom-
ing neutrino experiments [19] even with a reduced sensitivity to
θ13 since the largest deviation from θ23 = π/4 is obtained for θ13
close to its current upper bound. We checked that the previous
correlation is obtained with a,b, c and d all at the same order of
magnitude O(10−2), which ensures that no fine-tuning is required
among the matrix elements of Eq. (3), and with the phase φ uni-
formly distributed in the [−π,π) interval. We also verified that
the model does not produce any other relevant correlations among
the mixing parameters.

The other interesting neutrino observable that we want to dis-
cuss is the effective mass |mee| entering the neutrinoless double
beta decay rate. Since our model is only compatible with the nor-
mal hierarchy, we expect it to be quite small for small mν1 . The
result of our simulation can be found in Fig. 2, where we can see
that a lower bound (|mν1 |, |mee|) � (2 × 10−3,4 × 10−4) eV can be
set. The existence of such a lower bound on |mee| can be justi-
fied in the following way: since we are working in the basis where
the charged leptons are diagonal, a vanishing |mee| would imply
a vanishing parameter a; in that case, the mass matrix in Eq. (6)
would have a zero mass eigenvalue associated to the eigenvector
(1,0,0)T , which is not compatible with the neutrino experimental
data.

4. Conclusion

In this Letter we have studied a model explaining the stability
of dark and giving an interesting neutrino phenomenology based
on the A4 flavor symmetry. The model is an extension of the
standard model and contains four Higgs doublets and five heavy
right-handed neutrinos. Light neutrino masses are generated with
the type-I seesaw and the resulting Majorana mass matrix has only
five free parameters. We made a numerical scan of the allowed pa-
rameter space and found a correlation between the atmospheric
and the reactor angles. In particular, for θ13 � 1◦ maximal atmo-
spheric angle is strongly disfavored whereas for small reactor angle
the θ23 is close to maximal. The model gives only normal neutrino
mass hierarchy and predicts a lower bound for the neutrinoless
double beta decay |mee| � 4 × 10−4 eV.
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Appendix A. Mass hierarchy

A.1. Neutrino mass hierarchies for the real mass matrix

In this section we show that our model allows only the normal
hierarchy in the simplified case the mass matrix in Eq. (3) is real.
Since the absolute neutrino mass scale is unknown, we can re-
strict ourselves to study the situation where the lightest neutrino
mass eigenvalue is (almost) vanishing. For our discussion it is then
enough to consider the determinant of such a matrix, which re-
sults:

det(mν) = −a2(−bc + d)2. (A.1)

For an almost vanishing determinant, we can have two options,
namely a ∼ 0 and d ∼ bc. In the first case, the neutrino mass ma-
trix allows a diagonalizing matrix of the form:

mν �
( 1 0 0

0 x z
0 y f

)
, (A.2)

whose first line implies a vanishing solar mixing angle. The phe-
nomenological interesting case corresponds then to a �= 0 but, even
in this case, the null eigenvalue will always be associated with an
eigenvector different from (0,1,−1)T , so it cannot be mν3 any-
way. This excludes the inverted hierarchy as a viable neutrino mass
spectrum. The second choice d = bc always produces two vanishing
neutrino masses; if one of them would be mν3 then the atmo-
spheric mass difference would be vanishing; on the other hand, if
mν1 = 0, then one can have �m2

21 = 0 but �m2
31 �= 0. Then the nor-

mal mass scheme provides the only framework where to account
for such results.

A.2. Neutrino mass hierarchies for the vanishing reactor angle

We work here in the limit of vanishing θ13, which is a good ap-
proximation as given by the experimental data. In our case this
limit implies b = c in Eq. (6). This matrix has an eigenvector
(0,−1,1) with eigenvalue

mν3 = (
c2 − deiφd

)
. (A.3)

The absolute value of this mass squared is

|mν3|2 = c4 − 2c2d cosφd + d2. (A.4)

From the invariant equations (7), the determinant of the squared
mass matrix is

det
(
M2

ν

) = a4(c4 − 2c2d cosφd + d2)2

= |mν1 |2|mν2 |2|mν3 |2. (A.5)

From Eqs. (A.4) and (A.5) we have the relation
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a4 = |mν1 |2|mν2 |2
|mν3 |2

; (A.6)

we also know that |mbb| = a2 and therefore

|mbb|2 = |mν1|2 |mν2 |2
|mν3 |2

= |mν1|2
(

c4 + s4 + s4
�m2

12

|mν1|2

+ c2s2

√
�m2

12 + |mν1|2
|mν1| cosα

)
(A.7)

where α is the Majorana phase and c ≡ cos θ12 and s ≡ sin θ12.
From the previous relation we get:

|mν2 |2
|mν3 |2

=
(

c4 + s4 + s4
�m2

12

|mν1|2

+ c2s2

√
�m2

12 + |mν1|2
|mν1| cosα

)
(A.8)

which, for |mν1| �
√

�m2
12, can be approximated by:

|mν2 |2
|mν3 |2

∼ (
c4 + s4 + c2s2 cosα

)
= 1 − c2s2(2 − cosα) < 1. (A.9)

That means that |mν2|/|mν3| < 1 and implies a normal hierar-
chy. In the limit mν1 ∼ �m2

12 we cannot have the inverse hierarchy

because the minimal value for mν1 is mmin
ν1 =

√
�m2

13 >

√
�m2

12.

Notice that the relation (A.8) can be expressed as an implicit
function of mν1, �m2

12, �m2
13, θ12 and the Majorana phase α.

Using the experimental information on the mass differences and
the solar angle we can numerically evaluate the minimum allowed
value for mν1.

A.3. TBM limit

In this appendix we briefly discuss the TBM limit of the mass
matrix in Eq. (3). This can be achieved imposing the following re-
lations among the parameters:

b = c,

k = a2 + ab − 2b2 (A.10)

(the first relation is enough to get a μ–τ invariant mass matrix).
Then the masses depend on two complex parameters that can be
ordered according to:

m1 = a(a − b),

m2 = a(a + 2b),

m3 = −a2 − ab + 2b2. (A.11)

It is easier to study the phenomenology redefining

a = |a|eiφa ,

b = |b|eiφb ,

|b|
|a| = t, (φa − φb) = �φ

so that the solar and atmospheric mass differences are:
�m2
21 = 3|a|4t(2 cos �φ + t),

�m2
31 = 4|a|4t

(
cos�φ + t − 2t cos2 �φ − t2 cos�φ + t3).

(A.12)

The model is only compatible with a normal hierarchy spectrum
because the simultaneous requirements �m2

21 > 0 and �m2
31 < 0

give

− t

2
< cos�φ < 1,

cos�φ < −t, (A.13)

which are obviously incompatible. Moreover, it easy to check that
the conditions |m1| > 0 and |m3| � 0.5 eV imply:

0.07 � t � 5. (A.14)

For |mee| we found a lower bound |mee| > 6 × 10−4 eV; other
neutrino mass matrix models with two complex parameters pre-
dict different lower limits in the TBM limit, for instance |mee| >

7 × 10−3 eV in [25] and |mee| = 0 in [26].
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