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Abstract

We apply the procedure that was suggested in [B. Ezhuthachan, S. Mukhi, C. Papageorgakis, arXiv:
0806.1639] to the case of abelian D2-brane Dirac–Born–Infeld effective action and discuss its limitation.
Then we suggest an alternative form of this procedure that is based on an existence of interpolating action
proposed in [T. Ortin, hep-th/9707113, Y. Lozano, hep-th/9707011].
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

It was proposed by Bagger and Lambert in collection of very nice papers [1–3] and inde-
pendently by Gustavsson in [4]1 following earlier works [5,6] that a certain class of N = 8
super-conformal theories in three dimensions are potential candidates for the world-volume de-
scription of multiple M2-branes in M-theory. These constructions are based on introducing of
an algebraic structure known as Lie 3-algebra that is needed for closure of supersymmetry alge-
bra. The metric versions of the above theories fall into two classes that depend on whether the
invariant bilinear form in 3-algebra space is positive definite or indefinite. The original theories
proposed by Bagger–Lambert are Euclidean theories with positive definite bilinear form while
more recent proposals [24,25] contain bilinear form that is indefinite and these Lie 3-algebras
are known as Lorentzian 3-algebras.

E-mail address: klu@physics.muni.cz.
1 For related works, see [7–42,46–51,56,57,59,61,67,68,70,75–83,87,89–91,100,101,103]. For study of supergravity

duals of these theories, see [43–45,52–55,58,60,62–66,69,71–74,84–86,88,102].
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It was claimed that the Lorentzian 3-algebra theories capture the low-energy world-volume
dynamics of multiple parallel M2-branes. This model has the required classical symmetries, but
has several unresolved problems. In particular, the classical theory has ghosts, X±. Moreover,
the ghost-free formulation seems directly equivalent to the non-conformal D2-brane theory as
was argued in [39,42,46]. Explicitly, it was shown very clearly in [46] how it is possible-starting
from N = 8 SYM—systematically and uniquely recovery the theory [39,42].

Since the analysis presented in [46] is very nice and interesting it certainly deserves further
study. In fact, since (2 + 1)-dimensional N = 8 SYM theory describes low-energy dynamics of
N D2-branes one can ask the question whether it is possible to extend this analysis [46]2 when
we take non-linear corrections into account. As the first step in this direction we try to apply
EMP procedure to the case of single Dirac–Born–Infeld (DBI) action for D2-brane.

We start our analysis with the remarkable form of (2 + 1)-dimensional action that was pro-
posed long ago in [92,93]. This action is an interpolating action that—after appropriate integra-
tion of some world-volume fields—either describes D2-brane DBI effective action in massive
Type IIA supergravity or the directly dimensional reduced gauged M2-brane action. We show
that in linearized level this action is equivalent to the abelian form of the action given in [46] and
hence can be considered as the starting point for non-linear generalization of EMP procedure.
On the other hand, we argue that naive application of EMP procedure in this action leads to a
puzzle. Explicitly, we argue that there is a unique ground state of this new action with infinite
coupling constant. This is different from we would expect since M2 to D2-reduction is based on a
presumption that the vacuum expectation value of 〈X+〉 can take arbitrary constant value. Equiv-
alently, we would expect an infinite number of ground states that differ by vacuum expectation
values of X+.

In order to resolve this problem we suggest that the natural object for the definition of non-
linear EMP procedure is gauged M2-brane action. More precisely, it is well known that in the
case of IIA supergravity it is possible to introduce non-zero cosmological constant proportional
to m2 with m a mass parameter [94]. Such backgrounds are essential for the existence of D8-
branes whose charge is proportional to m [95]. The action for massive 11-dimensional theory has
the same contain as the massless one3

(1.1)ĝMN, ĈMNK, M,N,K = 0, . . . ,11.

The action for these fields is manifestly 11-dimensional Lorentz covariant but it does not corre-
spond to a proper 11-dimensional theory because, in order to write down the action, we need to
introduce an auxiliary non-dynamic vector field k̂M such that the Lie derivatives of the metric
and 3-form potential with respect to it are zero:

(1.2)L
k̂
ĝMN = 0, L

k̂
ĈMNL = 0.

An existence of this Killing vector is crucial for definition of massive M2-brane. In fact,
the world-volume theory of massive branes4 was extensively studied in the past, for example
[96–99]. These actions have as a common characteristic that they are gauged sigma models.
The gauged isometry is the same as an isometry that is needed in order to define the massive

2 In what follows we call this analysis as EMP procedure.
3 We use the following notation for the hats. Hats on target space fields indicate that they are 11-dimensional.
4 These branes-that propagate in the background with non-zero cosmological constant-are called as “massive branes”

as opposed to branes that propagate in a background with zero mass parameter. It is clear that all these branes are massive
in the sense that their physical mass is non-zero.
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11-dimensional supergravity theory. For example, the original un-gauged M2-brane action is the
same object as in the massless theory, i.e. the corresponding massless M2-brane.

Let us again return to generalized EMP procedure. We argue that it can be naturally applied
for gauged M2-brane action. As opposite to the original EMP procedure, where the Yang–Mills
coupling constant vector gI

YM is replaced with a dynamical field XI+ we replace the constant
Killing vector k̂M with dynamical field X̂M+ . Then we can easily find manifestly covariant form
of the generalized action with infinite number of ground states that differ by vacuum expectation
values of X̂M+ .

It is remarkable that the gauged isometry that appears in massive M2-brane action is related
to the gauge symmetry introduced in [46]. We hope that this observation will allow to find new
geometrical interpretations of gauge symmetries that were introduced in [39,42,46].

The organization of this paper is as follows. In the Section 2 we introduce the interpolating
D2-brane action and we argue that after appropriate redefinition of world-volume fields it agrees
with the abelian version of D2-brane action introduced in [46]. In Section 3 we apply EMP pre-
scription for gauged M2-brane action and we find covariant and non-linear version of M2-brane
action that has all desired properties. In Section 4 we outline our results and suggest possible
extension of our work. Finally, in Appendix A we explicitly show that the dimensional reduction
in gauged M2-brane action leads to the interpolating action introduced in Section 2.

2. D2-brane action

We start with the action that was proposed in [92,93]

S
[
Xm,X,Vμ,Bμ

]
= −τM2

∫
d3ξ e−Φ

√
−det

[
gμν + e2ΦFμFν

]

(2.1)+ τM2

3!
∫

d3ξ εμνρ
[
C(3)

μνρ + 6πα′DμXFνρ + 6m(πα′)2Vμ∂νVρ

]
,

where

Fμ = DμX + C(1)
μ ,

DμX = ∂μX + Bμ,

(2.2)Fμν = ∂μVν − ∂νVμ − 1

2πα′ bμν,

and where

gμν = ∂μXm∂νX
ngmn, bμν = bmn∂μXm∂νX

n,

(2.3)C(3)
μνρ = Cmnk∂μXm∂νX

n∂ρXk, C(1)
μ = C(1)

m ∂μXm, ,

where gmn, bmn are space–time metric and NS two form field respectively and where C
(3)
mnk ,

C
(1)
m are Ramond–Ramond three and one forms respectively. Further, Xm, m,n = 0, . . . ,9, are

world-volume modes that describe embedding of D2-brane in the target space–time. Finally, τM2

is D2-brane tension defined as τM2 = 1/l3
s .
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The action (2.1) contains extra fields as opposite to usual DBI action for D2-brane. Firstly, if
we integrate out Bμ we obtain

(2.4)− eΦ√−ggμνFν√
1 + e2ΦgμνFμFν

+ πα′εμνρ Fνρ = 0,

where we used the fact that

(2.5)
√

−det
[
gμν + e2ΦFμFν

] = √−detg
√

1 + e2ΦgμνFμFν.

Then if we insert (2.4) into (2.1) we obtain an action in the form

S = −τM2

∫
d3ξ e−Φ

√
−det[gμν + 2πα′Fμν]

(2.6)+ τM2

3!
∫

d3ξ εμνρ
(
C(3)

μνρ − 6πα′C(1)
μ Fνρ + 6m(πα′)2Vμ∂νVρ

)
,

that is standard form of D2-brane in massive Type IIA background and that reduces to the mass-
less Type IIA background when m = 0.

In order to see that the action (2.6) is related to abelian reduction of the action given in [46]
we take following background:

(2.7)gmn = ηmn, Φ = Φ0 = const, C(1)
m = C

(3)
mnk = 0.

Further, let us impose static gauge

(2.8)Xμ = ξμ, μ = 0,1,2,

so that

(2.9)gμν = ημν + δij ∂μXi∂νX
j , i, j = 3, . . . ,9.

Then in the quadratic approximation the action (2.6) takes the form

S
[
Xm,X,Vμ,Bμ

] = −τM2

∫
d3ξ e−Φ0

√−η

− τM2

∫
d3ξ

√−η

[
1

2
e−Φ0ημνδij ∂μXi∂νX

j + eΦ0

2
ημνFμFν

]

(2.10)+
∫

d3ξ εμνρ(πα′τM2)DμXFνρ.

As the next step we introduce the gauge theory coupling constant through the standard relations

(2.11)e−Φ0 l4
s τM2 = 1

g2
YM

(
τM2 = 1

l3
s

, 2πα′ = ls

)
,

so that after rescaling

√
τM2e

Φ0/2X = X̃,
√

τM2e
−Φ0/2Xi = X̃i,

(2.12)
1

l
5/2
s

Bμ = B̃μ, l
3/2
s Fμν = F̃μν
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the action (2.10) takes the form

S
[
X̃m, X̃, Ṽμ, B̃

]
= − 1

g2
YMl2

s

∫
d3ξ

√−η

−
∫

d3ξ
√−η

[
1

2
ημνδij ∂μX̃i∂νX̃

j + 1

2
ημν(∂μX̃ + gYMB̃μ)(∂νX̃ + gYMB̃ν)

]

(2.13)+
∫

d3ξ εμνρ

[
1

2
B̃μFνρ + 1

2l
3/2
s gYM

∂μX̃F̃νρ

]

that has the same form as the abelian form of the action given in [46].5 Motivated by this result
we perform the rescaling (2.12) in the action (2.6) and we obtain

S
[
X̃m, X̃, Ṽμ, B̃μ

] = −
∫

d3ξ
√−det Aμν +

∫
d3ξ εμνρ 1

2
B̃μ

˜Fνρ,

Aμν = 1

l
8/3
s g

4/3
YM

ημν + g
2/3
YMl

4/3
s ∂μX̃i∂νX̃

j δij

(2.14)+ l
4/3
s g

2/3
YM(∂μX̃ + gYMB̃μ)(∂νX̃ + gYMB̃ν),

where we ignored term that contributes to the action as total derivative. Now we are ready
to apply EMP procedure for (2.14). We introduce 8-dimensional vector gI

YM as gI
YM =

(

7︷ ︸︸ ︷
0, . . . ,0, gYM), I = 1, . . . ,8, and “covariant derivative D̃”

(2.15)D̃μX̃i = ∂μX̃i + gi
YMB̃μ, D̃μX̃ = ∂μX̃ + gYMB̃μ.

Further, we rewrite g2
YM in manifest SO(8) covariant manner as g2

YM = gI
YMgJ

YMδIJ = |gYM|2
and then we replace vector gI

YM with dynamical field XI+ so that the action (2.14) takes the form

S
[
X̃I , X̃I+, Ṽμ, B̃μ,C

μ
I

] = −
∫

d3ξ

(√−det Aμν + εμνρ 1

2
B̃μ

˜Fνρ + C
μ
I ∂μX̃I+

)
,

(2.16)Aμν = 1

l
8/3
s

(
XI+XJ+δIJ

)2/3
ημν + (

XI+XJ+δIJ

)1/3
l
4/3
s D̃μX̃I D̃νX̃

J δIJ ,

where we introduced auxiliary field C
μ
I that renders X̃I+ non-dynamical.

Let us now analyze some properties of the action (2.16). We are mainly interested in the study
of the ground state of this theory that has to solve the equations of motion that follow from the
action (2.16). We presume that the ground state is characterized by following configuration of
the world-volume fields

(2.17)X̃8+ = v = const, D̃μX̃I = 0, B̃μ = 0, F̃μν = 0.

Firstly, the equation of motion for C
μ
I takes the form

(2.18)∂μX̃I+ = 0

5 This is true up to total derivative term since
∫

d3ξ εμνρ∂μX̃F̃νρ = ∫
d3ξ ∂μ[εμνρX̃F̃νρ ]−∫

d3ξ X̃∂μ(εμνρ F̃νρ) =∫
d3ξ ∂(· · ·).
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that is clearly obeyed by the ansatz (2.17). On the other hand the equation of motion for XI+ takes
the form

(2.19)−1

2

δAμν

δXI+

(
A−1)νμ√−det A − εμνρ 1

2l
1/2
s (XI+XJ+δIJ )3/2

∂μX̃F̃νρ = 0.

Since for the ansatz (2.17) the matrix Aμν is equal to

(2.20)Aμν = 1

l
8/3
s v4/3

ημν,

Eq. (2.19) implies

(2.21)
1

v3
= 0.

In other words, the ground state corresponds to the point v → ∞ that implies that there is unique
ground state of the theory. As we argued in introduction this is not the same what we want
since we would like to have a theory with infinite number of ground states that differ by vacuum
expectation values of X̃+. In order to find solution of this problem we suggest an alternative
procedure how to introduce XI+ as a new dynamical variable. In the next section we present
such an alternative procedure that is based on the fact that the action (2.6) can be considered as
dimensional reduction of massive M2-brane.

3. Gauged theory for M2-brane

Let us again consider the action (2.6) and determine the equations of motion for Vμ

(3.1)πmα′εμνρ(∂νVρ − ∂ρVμ) + εμνρ(∂νBρ − ∂ρBν) = 0.

Inserting (3.1) back to (2.6) we obtain the action in the form

S = −τM2

∫
d3ξ

√
−det

(
e−2/3Φgμν + e4/3ΦFμFν

)

(3.2)+ τM2

6

∫
d3ξ εμνρ

(
C(3)

μνρ − 3DμXB(1)
νρ + 6

m
Bμ∂νBρ

)
.

As was shown in [93] (and reviewed in Appendix A) this action is very close to the action that
one gets by direct dimensional reduction of the massive M2-brane that is also known as gauged
M2-brane action. This action can be defined in the background with Killing vector isometry
k̂M(X̂). Then the gauged M2-bane action takes the form [93]

S = −τM2

∫
d3ξ

√
−detDμX̂MDνX̂N ĝMN

(3.3)+ τM2

∫
d3ξ εμνρ

[
DμX̂MDνX̂

NDρX̂KĈMNK − 6

m
Bμ∂νBρ

]
,

where the covariant derivative Dμ is defined as

(3.4)DμX̂M = ∂μX̂M + Bμk̂M(X̂),

where Bμ is world-volume gauge field related to the Killing gauge isometry. To clarify meaning
of this gauged form of the action let us consider following transformation:

(3.5)δηX̂
M(ξ) = X̂′M(ξ) − X̂M(ξ) = η(ξ)k̂M(X̂),
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where η(ξ) is a parameter of gauge transformations. This transformation immediately implies
following transformation rules of background fields:

(3.6)δηĝMN = ηk̂K∂KĝMN, δηĈKMN = ηk̂L∂LĈKMN, δηk̂
K = ηk̂L∂Lk̂K,

and transformation of covariant derivative

(3.7)δηDμX̂M = ηDμX̂L∂Lk̂M,

where we postulate following transformation rule for gauge field Bμ:

(3.8)δBμ = −∂μη.

Then

(3.9)δ
(
DμX̂MDνX̂

N ĝMN

) = ηDμX̂M
(
∂Mk̂LĝLN + ĝML∂N k̂L + ∂LĝMN

)
DνX̂

N = 0

since

(3.10)L
k̂
ĝMN = 0.

In the same way we obtain that

(3.11)δη

(
DμX̂MDνX̂

NDρX̂KĈMNK

) = 0, L
k̂
ĈMNK = 0,

hence we see that the action is invariant under transformations (3.5) and (3.6).
Having clarified the fact that the D2-brane action (2.6) is related to the gauged M2-brane

action we now introduce modified EMP procedure to the action (3.3). As the first step in our con-
struction we will presume an existence of adapted system of coordinates where k̂M = const. This
is always possible to achieve in flat background ĝMN = ηMN , ĈMNK = 0. Further, in analogy
with EMP prescription, we replace constant k̂M with dynamical field X̂M+ and add to the action
term 1

2C
μ
M∂μX̂M+ to render this field non-dynamical. Further, we rewrite the Wess–Zumino term

in (3.3) as

(3.12)πα′εμνρBμFνρ + (πα′)2mεμνρVμ∂νVρ.

In fact it is easy to see that now the equation of motion for Vμ that follow from (3.12) implies

(3.13)
1

mπα′ (∂μBν − ∂νBμ) = −(∂μVν − ∂νVμ),

and hence when we insert it back to (3.12) we obtain the last term in (3.3). Note also that this
expression is invariant under η transformations (up to total derivative) since

(3.14)δ
(
εμνρBμFνρ

) = εμνρ∂μηFνρ = −ηεμνρ∂μ∂νAρ + ηεμνρ∂μ∂ρAν = 0.

In summary we derive the action in the form

S = −τM2

∫
d3ξ

[√−det Gμν + 1

2

√−det Gμν CN
ν ηNM

(
G−1)νμ

∂μX̂M+
]

(3.15)+ τM2

3!
∫

d3ξεμνρ
[
6πα′BμFνρ + 6m(πα′)2Vμ∂νVρ

]
,

where we added term 1
2CM

μ (G−1)μνηMN∂νX̂
N+ that renders X̂M+ constant on-shell and where we

also introduced “generalized metric” Gμν

(3.16)Gμν = (
∂μX̂M + BμX̂M

)
ηMN

(
∂νX̂

N + BνX̂
N

)
.
+ +
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Following [46] we introduce field X̂M− and add to the action an expression

1

2

√−det G ∂μX̃M− ηMN

(
G−1)μν

∂νX̃
N+

in order the action will be invariant under additional shift symmetry

(3.17)δCM
μ = ∂μλM, δX̂M− = λM.

Then the final form of the action takes the form

S = −τM2

∫
d3ξ

√−det Gμν

(
1 + 1

2

(
CM

μ − ∂μX̂M−
)
ηMN

(
G−1)μν

∂νX̂
M+

)

(3.18)+ τM2

3!
∫

d3ξ εμνρ
[
6πα′BμFνρ + 6m(πα′)2Vμ∂νVρ

]
.

Note also that in order to achieve that X̂M+ is constant on-shell and that the action possesses
additional shift symmetry we can consider more general form of the action

S = −τM2

∫
d3ξ

√−det Gμν

√
1 + (

CM
μ − ∂μX̂M−

)
ηMN

(
G−1

)μν
∂νX̂

N+

(3.19)− τM2

3!
∫

d3ξ εμνρ
[
6πα′BμFνρ + 6m(πα′)2Vμ∂νVρ

]
that can be finally written in a suggestive form as

S = −τM2

∫
d3ξ

√−det Aμν − τM2

3!
∫

d3ξ εμνρ
[
6πα′BμFνρ + 6m(πα′)2Vμ∂νVρ

]
,

(3.20)Aμν = Gμν + (
CM

μ − ∂μX̂M−
)
ηMN∂νX̂

N+ .

Let us now study properties of the action (3.20). Clearly it is invariant under shift symmetry
(3.17). Further, the variation of this action with respect to CM

μ implies

(3.21)ηNM∂νX̂
M+

(
A−1)νμ√−det A = 0

that implies ∂νX̂
M+ = 0. Let us again presume the ground state of the theory in the form

(3.22)Bμ = X̂M− = CM
μ = Vμ = 0, X̂M+ = vM.

It is easy to see that the equations of motion for X̂M , Bμ,CM
μ and X̂M− are obeyed for this ansatz.

Finally, the problematic equation of motion for X̂M+ takes the form

BμηMN

(
∂νX̂

N + BνX̂
N+

)(
A−1)νμ√−det A

(3.23)+ 1

2
∂μ

[
ηMN∂νX̂

N−
(
A−1)νμ√−det A

] = 0

that is clearly solved by (3.22) for any vM . Finally, let us impose the static gauge in the following
form:

X̂μ = ξμ, μ, ν = 0,1,2,

(3.24)Cν
μ = 0, X̂

μ
+ = X̂

μ
− = 0,
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so that the matrix Aμν takes the form

Aμν = ημν + (
∂μX̂I + BμX̂I+

)(
∂νX̂

J + BνX̂
J+
)
δIJ

(3.25)+ (
CI

μ − ∂μX̂I−
)
δIJ ∂νX̂

J+, I, J = 1, . . . ,8.

Then the action up to quadratic approximation can be written as

(3.26)S = −τM2

∫
d3ξ

√−η − τM2

∫
d3ξ

√−detη L,

where the Lagrangian density takes the form

L = 1

2
ημν

(
∂μX̂I + BμX̂I+

)
δIJ

(
∂νX̂

J + BνX̂
J+
)
δIJ + 1

2
ημν

(
CI

μ − ∂μX̂I−
)
∂νX̂

J+δIJ

(3.27)− εμνρ
(
πα′BμFνρ + m(πα′)2Vμ∂νVρ

)
,

that is again very close to the abelian form of the action given in [46] and provides further support
of our construction.

4. Conclusion

Let us summarize our results. We studied EMP procedure for Dirac–Born–Infeld action for
D2-brane and we found its limitation. Then we suggested an alternative form of this procedure
that is based on a formulation of gauged M2-brane action. This fact however implies that the
theory should be defined in background with non-zero mass parameter m and this observation
certainly deserves better understanding and more detailed study. Further, it would be also in-
teresting to develop BRST Hamiltonian treatment of the action (3.20) and compare it with the
similar analysis that was given in [24]. Finally, it will be extremely interesting to see whether
there exists an non-abelian extension of the action (3.20). We hope to return to these problems in
future.
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Appendix A. Direct dimensional reduction for massive M2-brane

In this appendix we show that the gauged M2-brane action upon direct dimensional reduction
in the direction X associated to the gauged isometry reduces to the action (3.2). To begin with
we choose coordinates that are adapted to the isometry so that k̂M = δMx and we split eleven
coordinates X̂M into the ten 10-dimensional Xm,m = 0, . . . ,9, and the extra scalar X̂x ≡ X.
Using the relations between the 11-dimensional and 10-dimensional fields

ĝxx = e
4
3 Φ, ĝmx = e

4
3 ΦC(1)

m ,

ĝmn = e− 2
3 Φgmn + e

4
3 ΦC(1)

m C(1)
n ,

(A.1)Ĉmnk = C
(3)
mnk, Ĉmnx = Bmn,
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it is straightforward to see that

(A.2)Aμν = e− 2
3 Φ∂μXm∂νX

ngmn + e
4
3 Φ

(
∂μX + Bμ + C(1)

μ

)(
∂νX + Bν + C(1)

ν

)
.

Then if we insert (A.2) together with (A.1) into the action (3.3) we easily obtain that it reduces
to the action (3.2).
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J. Klusoň / Nuclear Physics B 808 (2009) 260–271 271
[70] S. Terashima, F. Yagi, Orbifolding the membrane action, arXiv: 0807.0368 [hep-th].
[71] N. Gromov, P. Vieira, The AdS4/CFT3 algebraic curve, arXiv: 0807.0437 [hep-th].
[72] C. Ahn, P. Bozhilov, Finite-size effects of membranes on AdS4 × S7, arXiv: 0807.0566 [hep-th].
[73] N. Gromov, P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, arXiv: 0807.0777 [hep-th].
[74] B. Chen, J.B. Wu, Semi-classical strings in AdS4 × CP3, arXiv: 0807.0802 [hep-th].
[75] S. Cherkis, C. Saemann, Multiple M2-branes and generalized 3-Lie algebras, arXiv: 0807.0808 [hep-th].
[76] C.S. Chu, P.M. Ho, Y. Matsuo, S. Shiba, Truncated Nambu–Poisson bracket and entropy formula for multiple

membranes, arXiv: 0807.0812 [hep-th].
[77] M.A. Bandres, A.E. Lipstein, J.H. Schwarz, Studies of the ABJM theory in a formulation with manifest SU(4)

R-symmetry, arXiv: 0807.0880 [hep-th].
[78] Y. Zhou, Interpreting N M2 branes, arXiv: 0807.0890 [hep-th].
[79] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk, H. Verlinde, A massive study of M2-brane proposals, arXiv:

0807.1074 [hep-th].
[80] M. Schnabl, Y. Tachikawa, Classification of N = 6 superconformal theories of ABJM type, arXiv: 0807.1102 [hep-

th].
[81] T. Li, Y. Liu, D. Xie, Multiple D2-brane action from M2-branes, arXiv: 0807.1183 [hep-th].
[82] N. Kim, How to put the Bagger–Lambert theory on an orbifold: A derivation of the ABJM model, arXiv: 0807.1349

[hep-th].
[83] Y. Pang, T. Wang, From N M2’s to N D2’s, arXiv: 0807.1444 [hep-th].
[84] M.R. Garousi, A. Ghodsi, M. Khosravi, On thermodynamics of N = 6 superconformal Chern–Simons theories at

strong coupling, arXiv: 0807.1478 [hep-th].
[85] A. Hashimoto, P. Ouyang, Supergravity dual of Chern–Simons Yang–Mills theory with N = 6,8 superconformal

IR fixed point, arXiv: 0807.1500 [hep-th].
[86] D. Astolfi, V.G.M. Puletti, G. Grignani, T. Harmark, M. Orselli, Finite-size corrections in the SU(2)× SU(2) sector

of type IIA string theory on AdS4 × CP3, arXiv: 0807.1527 [hep-th].
[87] M. Ali-Akbari, M.M. Sheikh-Jabbari, J. Simon, Relaxed three-algebras: Their matrix representations and implica-

tions for multi M2-brane theory, arXiv: 0807.1570 [hep-th].
[88] C. Ahn, R.I. Nepomechie, N = 6 super-Chern–Simons theory S-matrix and all-loop Bethe ansatz equations, arXiv:

0807.1924 [hep-th].
[89] K. Hanaki, H. Lin, M2–M5 systems in N = 6 Chern–Simons theory, arXiv: 0807.2074 [hep-th].
[90] H. Verlinde, D2 or M2? A note on membrane scattering, arXiv: 0807.2121 [hep-th].
[91] Y. Imamura, K. Kimura, N = 4 Chern–Simons theories with auxiliary vector multiplets, arXiv: 0807.2144 [hep-th].
[92] Y. Lozano, Eleven dimensions from the massive D2-brane, Phys. Lett. B 414 (1997) 52, hep-th/9707011.
[93] T. Ortin, A note on the D2-brane of the massive type IIA theory and gauged sigma models, Phys. Lett. B 415 (1997)

39, hep-th/9707113.
[94] L.J. Romans, Massive N = 2a supergravity in ten dimensions, Phys. Lett. B 169 (1986) 374.
[95] E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos, P.K. Townsend, Duality of type II 7-branes and 8-branes,

Nucl. Phys. B 470 (1996) 113, hep-th/9601150.
[96] E. Eyras, B. Janssen, Y. Lozano, 5-branes, KK-monopoles and T-duality, Nucl. Phys. B 531 (1998) 275, hep-

th/9806169.
[97] E. Bergshoeff, J.P. van der Schaar, On M9-branes, Class. Quantum Grav. 16 (1999) 23, hep-th/9806069.
[98] E. Bergshoeff, Y. Lozano, T. Ortin, Massive branes, Nucl. Phys. B 518 (1998) 363, hep-th/9712115.
[99] E. Bergshoeff, P.M. Cowdall, P.K. Townsend, Massive IIA supergravity from the topologically massive D2-brane,

Phys. Lett. B 410 (1997) 13, hep-th/9706094.
[100] Y. Honma, S. Iso, Y. Sumitomo, H. Umetsu, S. Zhang, Generalized conformal symmetry and recovery of SO(8) in

multiple M2 and D2 branes, arXiv: 0807.3825 [hep-th].
[101] E.A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, E. Sezgin, The superconformal gaugings in three dimensions,

arXiv: 0807.2841 [hep-th].
[102] B.H. Lee, K.L. Panigrahi, C. Park, Spiky strings on AdS4 × CP3, arXiv: 0807.2559 [hep-th].
[103] C. Krishnan, C. Maccaferri, Membranes on calibrations, arXiv: 0805.3125 [hep-th].


	D2 to M2 procedure for D2-brane DBI effective action
	Introduction
	D2-brane action
	Gauged theory for M2-brane
	Conclusion
	Acknowledgements
	Direct dimensional reduction for massive M2-brane
	References


