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a b s t r a c t

The cost of servicing a warranty depends, amongst other factors, on the type of repair
performed under warranty. Although ‘‘all minimal repair’’ and ‘‘all replacement’’ policies
are easy to implement and analyze, they are not always feasible and/or practical. Having
a combination of different types of repair often leads to lower warranty servicing costs.
In this article, to reduce the warranty servicing cost, we study a servicing strategy that
involves performing imperfect repairs in place of some of the minimal repairs of an ‘‘all
minimal repair’’ strategy; the effect of an imperfect repair is characterized by a drop in the
conditional intensity function of the failure process. We consider both fixed and random
degrees of repair. For a given type of product, we partition the warranty region so that the
expected total warranty servicing cost is minimized. We provide a numerical illustration
and a comparison with previously-studied repair–replacement strategies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An effective warranty servicing strategy is essential in reducing manufacturers’ warranty servicing costs and increasing
profits from product sales.

Repair strategies for repairable products are often categorized by the types of repair performed during the warranty
period and instances when different repairs are performed. A repair is typically characterized by its ‘‘degree’’, which usually
ranges from 0 (minimal repair) to 1 (perfect repair or replacement). A repair with a degree between 0 and 1 is an imperfect
repair [1,2]. Minimal and perfect repairs are often viewed as special (extreme) cases of imperfect repair. Strategies with a
single type of repair (e.g. ‘‘all minimal repair’’ or ‘‘all replacement’’ strategies) are often the simplest, but not always feasible
and/or realistic options. Strategies that include a combination of various types of repair are expected to be more effective in
reducing warranty servicing costs.

In this article,we study amodification of the ‘‘allminimal repair’’ strategy,where someof theminimal repairs are replaced
by repairs of degree greater than zero, which can be random or pre-assigned. This strategy involves (optimally) partitioning
the warranty region into a number of disjoint subregions and performing repairs of random degree in each subregion. This
is a generalization of previously-suggested warranty servicing strategies in which the degrees of repair are pre-assigned.
We also study an alternative model to the virtual age models, namely, an intensity reduction model, to model the effects of
the imperfect repairs [3,4].

The outline of this article is as follows. In Section 2, we define the imperfect repair strategy and review other two-
dimensional warranty servicing strategies. In Section 3, we provide formulation for the failure (imperfect repair) model
and derive the distribution of the times to imperfect repair. In Section 4, we derive the expected total warranty servicing
cost for the proposed strategy and provide an analysis of the model. In Section 5, we present a numerical example of the
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Fig. 1. Subregions of the warranty region: (left) r1 ≤ r2; (right) r2 ≤ r1 .

proposed strategy and a comparison with the best strategy amongst previously-studied repair–replacement strategies. In
Section 6, we conclude with a summary of our study and outline possible research directions.

2. The warranty servicing strategy

In the case of two-dimensional warranties, failures of the warranted product are assumed to be caused by an increase in
the age and/or the usage of the product. Often the usage of the product is assumed to be a linear function of its age, thus,
reducing the two-dimensional failure process to a one-dimensional one. In analyzing two-dimensional warranty strategies,
using this one-dimensional approach is commonpractice, andwe also adopt this approach formodeling failures (repairs) [1].

For a repairable product sold with a two-dimensional free-replacement warranty policy, we propose the following
warranty servicing strategy.

2.1. Imperfect repair strategy

First, the rectangular warranty regionΩ = [0, K)× [0, L) is partitioned into n disjoint subregions. Here, K and L are the
warranty time and usage limits (respectively), and the warranty expires when either limit is exceeded. For i = 1, . . . , n, the
partitioning is such that

Ωi = {[0, Ki)× [0, Li)} \ {[0, Ki−1)× [0, Li−1)},

where K0 = L0 = 0, Kn = K and Ln = L. For simplicity, the shapes of the subregions are governed by a single rate parameter
r1 (r1 > 0), such that

L1
K1

=
L2
K2

= · · · =
Ln−1

Kn−1
= r1,

and the warranty coverage (region) is defined by Ln/Kn = L/K = r2 (see Fig. 1). In other words, the time limits defining the
subregions depend on a single usage rate (parameter) and not on the individual customer usage rates.

Then, given the subregionsΩ1,Ω2, . . . ,Ωn, the imperfect repair strategy is such that

(i) all repairs in the first (Ω1) and last (Ωn) subregions are minimal with cost cmin;
(ii) the first repair in each of the intermediate subregions, Ω2, . . . ,Ωn−1, is imperfect with corresponding degrees

δ1, . . . , δn−2 and cost cimp, and all subsequent repairs in each of these subregions are minimal with cost cmin.

At the start and towards the endof thewarranty coverage, having onlyminimal repairs is reasonable, because it is unlikely
for a new product to need major repair at the start of its life, and when the warranty is near its expiry, keeping the product
in an operating condition (as opposed to attempting to improve its reliability) is sufficient, from the manufacturer’s point
of view. Away from the start and end, around the middle of the warranty coverage, imperfect repairs undo the product
degradation to a degree and improve its reliability. However, having toomany imperfect repairs can result in an undesirably
higher servicing cost.

The optimal strategy, based on the partition (subregions) {Ω∗

1 ,Ω
∗

2 , . . . ,Ω
∗
n }, for a given type of product, is determined

by minimizing the expected total warranty servicing cost over the warranty regionΩ . This expected cost, say E[CΩ(ψn)], is
viewed as a function of the following n decision variables ψn = (K1, K2, . . . , Kn−1, r1), which define the servicing strategy.
Therefore, the objective is tominimize this expected cost by determining the optimal servicing strategy, i.e., optimal decision
variables ψ∗

n = (K ∗

1 , K
∗

2 , . . . , K
∗

n−1, r
∗

1 ), such that ψ∗
n = argminψn E[CΩ(ψn)].

We denote this imperfect repair strategy by Sδ
n , where n is the number of subregions and δ = (δ1, δ2, . . . , δn−2) denotes

the degrees of the imperfect repairs in the n − 2 intermediate subregionsΩ2, . . . ,Ωn−1.
This strategy is designed to improve product reliability (thus reducing the number of future failures), while reducing the

warranty servicing cost (when compared to repair–replacement strategies) by employing a combination of minimal and
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imperfect repairs. This strategy, as a generalization of repair–replacement strategies, provides more flexibility in terms of
the degree of repairs within the warranty coverage.

In [5], a 3-subregion repair–replacement strategy is proposed, where all repairs are minimal except the first repair in
the middle subregionΩ2, which is perfect (replacement). In [6], the strategy in [5] is extended to an n-dimensional strategy
where all repairs are minimal except the first repair in each of the intermediate subregions (Ω2–Ωn−1), which is perfect.
In [7], the strategy in [5] is generalized to an imperfect repair strategy, where all repairs are minimal except the first repair
in the middle subregion Ω2 which is imperfect. In [8], these repair strategies are generalized to an n-subregion strategy,
where all repairs are minimal except the first repair in each of the intermediate subregions (Ω2–Ωn−1), which is imperfect.

A number of unrestricted repair–replacement strategies have been proposed, where the shape of the subregions are not
all governed by a single parameter; see [9–11]. In [10,11], non-rectangular subregions are considered, where optimal time
limits for each customer (usage rate) generate a closed curve that defines the subregions of the two-dimensional warranty
strategy. In [11], the first repair within this closed curve is perfect and all other repairs are minimal, whereas in [10] the first
repair within this curve is imperfect and all other repairs are minimal. The effect of the usage rate on product degradation
is modeled using the concept of accelerated failure time. For more on accelerated failure time modeling please refer to
[12–14] (and the references therein). The reader is also referred to [15,16] for modeling warranty costs in two dimensions,
failure time models, reliability assessment and two-dimensional warranty policies and analysis.

In this article, we generalize the strategy in [8] to account for random degrees of repair (not pre-assigned), and use an
alternative framework (intensity reduction model) to model the effect of the imperfect repairs, for an arbitrary number of
subregions of the warranty coverage partition.

2.1.1. Fixed degrees of imperfect repair
For a given type of product, the degrees of the imperfect repairs in the intermediate subregions could be preassigned

(fixed) by the manufacturer, and the optimal servicing strategy is determined for a given fixed set of degrees of repair
δ = (δ1, δ2, . . . , δn−2). The optimal servicing strategy can vary for different sets of degrees of repair.

2.1.2. Random degrees of imperfect repair
In some situations, the preassigned degrees of repair may not be adequate or appropriate to fix the faulty product. Hence,

we also consider the case where the degrees of repair are random with estimated (empirical) distributions.
Twomodels for randomdegrees of repair are the (p, q)model proposed in [17] and the age-dependent (p(t), q(t))model

proposed in [18], where with probability p (p(t)) the repair is perfect (degree δ = 1) and with probability q = 1−p (q(t) =

1 − p(t)) the repair is minimal (degree δ = 0). For the case where repairs are categorized as minimal (δ = 0), imperfect
(0 < δ < 1), and perfect (δ = 1), one may consider the following probability structure: the repair performed on a failed
product isminimalwith probability pmin, imperfectwith probability pimp andperfectwith probability pper. This discretization
does not take into consideration the various degrees of imperfect repairs. Since the degree of repair is a continuous variable
in [0, 1], having a density function seems appropriate.

Let Di denote the degree of the i-th imperfect repair, with δi ∈ [0, 1] (this interval may or may not include the extremes
0 and 1, depending on the strategy), denoting its realization, for i = 1, . . . , n− 2. We assume that D1, . . . ,Dn−2 all have the
same distribution, and suggest the following two scenarios:

• The distribution of Di, i = 1, . . . , n − 2, is independent of the age and usage of the product at failure, i.e., D1, . . . ,Dn−2
are identically distributed, with probability density function h(.).

• Thedistribution ofDi, i = 1, . . . , n−2, depends on the age andusage of the product at failure, so they canbeparametrized
by the age t at failure and the usage rate r , i.e., the density function has the form h(.; t, r).

The servicing strategy remains the same as in the case of having fixed degrees of repair, with the adjustment for random
degrees of imperfect repair. Here, the optimal servicing strategy is determined for a given distribution of the degrees of
repair.

3. Modeling imperfect repairs

We model the failure process using the one-dimensional approach to modeling failures in two dimensions. Here, the
usage of the product is modeled as a linear function of its age, such that U(t) = R A(t), where U(t) and A(t) are the usage
and age of the product at time t and the usage rate R is a random variable with known distribution G (see [1] for details).

Tomodel the effect of the imperfect repairs on the failure intensity of the process, we use amodification of the ‘‘intensity
reduction’’ model proposed in [4], where the effect of an imperfect repair is characterized by a reduction in the conditional
intensity function of the underlying failure process. At any time, the conditional intensity function of the process after an
imperfect repair is between the conditional intensities after a minimal repair and a perfect repair. Also, we assume that: (1)
a failure results in an immediate repair; (2) repairs are instantaneous.
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Fig. 2. Conditional intensity function following imperfect repairs.

3.1. The effect of imperfect repairs on the conditional intensity function

Let {Ñ(t | r); t ≥ 0} denote the one-dimensional counting process conditional on R = r , and let λ̃(t | r) denote the
conditional intensity function of the process. We assume that, the effect of an imperfect repair is characterized by a drop
in the conditional intensity function of the process. This model is such that, given the times and degrees of all previous
imperfect repairs, after the i-th imperfect repair of degree δi at time ui, the conditional intensity function becomes

λi(t | r) = λi−1(t | r)− δi[λi−1(t | r)− λ(t − ui | r)], (1)

for ui < t ≤ ui+1, where λ(.|r) is the initial intensity function of the process. Here, the reduction in the intensity function is
proportional to the degree of the imperfect repair. If the repair is minimal (δi = 0), then

λi(t | r) = λi−1(t | r),

where λi−1(t | r) is the intensity function after the (i − 1)-th and before the i-th imperfect repair. If the repair is perfect
(δi = 1), then

λi(t | r) = λ(t − ui | r),

which is the initial intensity function of the process at time t − ui.
Therefore, conditional on R = r and given the times to imperfect repair u1, u2, . . . , un−2, and the degrees of these repairs

δ1, δ2, . . . , δn−2, the conditional intensity function of the process {Ñ(t | r); t ≥ 0} is given by

λ̃(t | r) =


λ(t | r), 0 ≤ t ≤ u1
λi(t | r), ui < t ≤ ui+1,
λn−2(t | r), un−2 < t < ∞.

for 1 ≤ i ≤ n − 3.

Fig. 2 depicts a possible shape of λ̃(t | r).
The expected number of minimal repairs in any interval (x, t] between two imperfect repairs at times ui and ui+1, i.e., for

ui ≤ x < t ≤ ui+1, is given by

E[Ñ(t | r)− Ñ(x | r)] =

∫ t

x
λ̃(s | r) ds =

∫ t

x
λi(s | r) ds, (2)

where λi(s | r) is a function of the imperfect repair times u1, . . . , ui and their degrees of repair δ1, . . . , δi. Let Λi(t | r)
denote the expected number of failures in (ui, t], so that∫ t

x
λi(s | r) ds =

∫ t

ui
λi(s | r) ds −

∫ x

ui
λi(s | r) ds = Λi(t | r)−Λi(x | r), (3)

denotes the expected number of minimal repairs in (x, t]. This expected number is conditional on the times to imperfect
repair u1, u2, . . . , un−2, and when the degrees of repair are random, it is also conditional on the degrees of the imperfect
repairs δ1, δ2, . . . , δn−2.

3.2. The distribution of times to imperfect repair

The first failure in each of the intermediate subregions is followed by an imperfect repair. Therefore, the time to imperfect
repair in a subregion is the time to first failure in that subregion.

For l = 1, . . . , n, the interval (Kl−1, Kl] corresponds to the l-th subregionΩl, and we will use the interval and subregion
notations interchangeably. Let, conditional on R = r, TKl|r , l = 1, 2, . . . , n − 2, denote the time to first failure after Kl, in
subregionΩl+1. If there has been at least one failure in each of the subregionsΩ2, . . . ,Ωl, then TKl|r is the time of the l-th
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imperfect repair. To derive the distribution of TKl|r , we must consider all imperfect repairs in previous subregions (before
Kl), since they affect the conditional intensity function.

Let i denote the number of previous intermediate subregions in which at least one failure has occurred. When in Ωl+1,
we have l − 1 previous intermediate subregions which are Ω2, . . . ,Ωl, and therefore, i ∈ {0, 1, . . . , l − 1}. Since the first
repair in each of these subregions is imperfect, i is also the number of previous imperfect repairs performed.

When i = 0, the first failure after Kl is actually the first failure after K1, and hence, the first imperfect repair since the start
of the warranty. In other words, no failures have occurred in subregionsΩ2, . . . ,Ωl, i.e., no failures in the interval (K1, Kl].
This event can occur in


l−1
0


ways.

When 0 < i ≤ l − 1, the previous imperfect repairs can be in any i of the l − 1 previous intermediate subregions
Ω2, . . . ,Ωl; this event occurs in


l−1
i


ways. To generate the i corresponding subregions (subintervals), we define the

following set:

Ji,l = {{j1, . . . , ji} : {j1, . . . , ji} ⊆ {2, . . . , l} and j1 < · · · < ji} , (4)

whose elements are the set of indexes that generate all possible combinations of size i, i.e., (Kj1−1, Kj1 ], . . . , (Kji−1, Kji ], of the
l−1 previous intermediate intervals (K1, K2], . . . , (Kl−1, Kl], in which the i previous imperfect repairs have been performed.

Now, by conditioning on the times to imperfect repair performed in the i subintervals, and then removing the
conditioning, we account for all possible times to imperfect repair within the corresponding subintervals.

Hence, for given degrees of repair δ1, . . . , δl−1, the density function of TKl|r is given by

fTKl |r (t) = fTK1 |r (t)+

l−1−
i=1

−
∀{j1,j2,...,ji}∈Ji,l

∫ Kji

Kji−1

. . .

∫ Kj2

Kj2−1

∫ Kj1

Kj1−1

{λi(t | r)e−{Λi(t|r)−Λi(Kji |r)}

× λi−1(ui | r)e−{Λi−1(ui|r)−Λi−1(Kji−1 |r)}

...

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(Kj1 |r)}fTK1 |r (u1)} du1 du2 . . . dui, (5)

where λi(t | r) is the conditional intensity function following the i-th imperfect repair, and e−{Λi(t|r)−Λi(Kji |r)} is the
probability that no failures have occurred in the interval (Kji , t]. In addition,

fTK1 |r (t) = λ(t | r)e−[Λ(t|r)−Λ(K1|r)], (6)

is the density component corresponding to i = 0, which is the density function of the time to the first imperfect repair [9,
5]. Each element of the form

λi−1(ui | r)e−{Λi−1(ui|r)−Λi−1(Kji−1 |r)}

corresponds to the event that {the imperfect repair after Kji−1 is at time ui ∈ (Kji−1, Kji ], and no failures have occurred in the

interval (Kji−1 , ui)}. The density function for TKl|r , l = 1, . . . , n − 2, has
∑l−1

i=0


l−1
i


summands.

When l = 1, the density function for the time to first imperfect repair, TK1|r , is given by Eq. (6). When l = 2, the density
function for TK2|r is given by

fTK2 |r (t) = fTK1 |r (t)+

∫ K2

K1
λ1(t | r)e−{Λ1(t|r)−Λ1(K2|r)}fTK1 |r (u1) du1,

where the summands correspond to the cases where no imperfect repairs have been performed before K2 (i = 0) and one
imperfect repair has been performed before K2 (i = 1) at time u1, respectively. When l = 3, we have

fTK3 |r (t) = fTK1 |r (t)+

∫ K2

K1
λ1(t | r)e−{Λ1(t|r)−Λ1(K2|r)}fTK1 |r (u1)du1 +

∫ K3

K2
λ1(t | r)e−{Λ1(t|r)−Λ1(K3|r)}fTK1 |r (u1)du1

+

∫ K3

K2

∫ K2

K1


λ2(t | r)e−{Λ2(t|r)−Λ2(K3|r)}λ1(u2 | r)e−{Λ1(u2|r)−Λ1(K2|r)}fTK1 |r (u1)


du1 du2,

where the first summand corresponds to i = 0 previous imperfect repairs, the two summands with the single integral
correspond to i = 1 previous imperfect repair, performed either in (K1, K2] or in (K2, K3], and the last summand with the
double integral corresponds to i = 2 previous imperfect repairs, one in each of the subintervals (K1, K2] and (K2, K3]; and
so on.

When the degrees of the imperfect repairs are random, we remove the conditioning on Di = δi, before removing the
conditioning on ui, using the density function h(δi; ui, r) over the interval (0, 1), for i = 1, . . . , l − 1.

Next, given the density function derived in (5), we derive the expected warranty servicing cost.
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4. Analysis of the warranty servicing strategy

The expected total warranty servicing cost over the warranty region Ω is denoted by E[CΩ(ψn)], where ψn =

(K1, . . . , Kn−1, r1). We consider two cases: (A) r1 ≤ r2 with expected cost denoted by E[CΩA (ψn)] and (B) r2 ≤ r1 with
expected cost denoted by E[CΩB (ψn)]; see Fig. 1.

4.1. Case A: r1 ≤ r2

We divide the warranty region based on r1 and r2 and, conditional on the usage rate R = r , derive the expected warranty
servicing costs for the following subcases:

(1) r ≤ r1 ≤ r2, (2) r1 ≤ r ≤ r2, and (3) r1 ≤ r2 ≤ r.

We denote the expected warranty servicing costs, conditional on R = r , for the three subcases by E[C (1)r (ψn)], E[C (2)r (ψn)],
and E[C (3)r (ψn)] respectively. Then the expected total warranty servicing cost for case A is given by

E[CΩA (ψn)] =

∫ r1

0
E[C (1)r (ψn)]dG(r)+

∫ r2

r1
E[C (2)r (ψn)]dG(r)+

∫
∞

r2
E[C (3)r (ψn)]dG(r). (7)

Each of the expected costs E[C (j)r (ψn)], j = 1, 2, 3, is the sum of the corresponding expected costs in the n subregions.

4.1.1. Subcase r ≤ r1 ≤ r2
We denote the cost of an imperfect repair by cimp and the cost of a minimal repair by cmin. These costs can have any form.

For simplicity, we assumed that these costs are constant. Later, we will adjust them to account for the degrees of repair.
The expected cost for a subregion is computed if there has been at least one failure in that subregion, otherwise, the cost

is zero.
In the first subregionΩ1, since there have been no previous imperfect repairs, the expected cost is

E[CΩ1
r (ψn)] = cminΛ(K1 | r), (8)

whereΛ(K1 | r) is the expected number of minimal repairs in (0, K1].
When deriving the expected warranty servicing cost in all remaining subregions Ω2, . . . ,Ωn, we must consider all

imperfect repairs performed in these and preceding subregions. Let u1, u2, . . . , un−2 denote the realizations of the times
of these imperfect repairs. Conditional on these times, we determine the expected warranty servicing cost in a subregion,
and then using the components of the density functions derived earlier, we uncondition to derive the expected costs in the
subregions.

In the n− 2 intermediate subregionsΩl, l = 2, . . . , n− 1, the first repair is imperfect and all other repairs are minimal,
thusmaking the conditional expected costs similar in patternwith the only distinction being the number of possible previous
imperfect repairs. This conditional expected cost is given by

cimp + cminΛi+1(Kl | r),

where i denotes the number of previous imperfect repairs, and Λi+1(Kl | r) is the expected number of minimal repairs in
the subinterval (ui+1, Kl], and i ∈ {0, 1, . . . , l − 2}.

To derive the expected cost inΩl, we remove the conditioning on the times to imperfect repair u1, . . . , ul−1, by using the
set Ji,l−1, i = 1, . . . , l − 2, defined in (4) and the corresponding density functions. Then, the expected cost becomes

E[CΩl
r (ψn)] =

∫ Kl

Kl−1

[cimp + cminΛ1(Kl | r)] fTK1 |r (u1) du1 +

∫ Kl

Kl−1

 −
∀{j1}∈J1,l−1

∫ Kj1

Kj1−1


[cimp + cminΛ2(Kl | r)]

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(Kj1 |r)}fTK1 |r (u1)


du1


du2

+

∫ Kl

Kl−1

 −
∀{j1,j2}∈J2,l−1

∫ Kj2

Kj2−1

∫ Kj1

Kj1−1


[cimp + cminΛ3(Kl | r)]λ2(u3 | r)e−{Λ2(u3|r)−Λ2(Kj2 |r)}

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(Kj1 |r)}fTK1 |r (u1)


du1 du2


du3 + · · ·

+

∫ Kl

Kl−1

∫ Kl−1

Kl−2

. . .

∫ K3

K2

∫ K2

K1


[cimp + cminΛl−1(Kl | r)]
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× λl−2(ul−1 | r)e−{Λl−2(ul−1|r)−Λl−2(Kl−1|r)}λl−3(ul−2 | r)e−{Λl−3(ul−2|r)−Λl−3(Kl−2|r)}

...

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(K2|r)}fTK1 |r (u1)


du1 du2 . . . dul−2 dul−1. (9)

The first summand corresponds to the case where the number of previous imperfect repairs is i = 0, making the imperfect
repair in (Kl−1, Kl], the first imperfect repair. The second summand corresponds to the case i = 1, making the imperfect
repair in (Kl−1, Kl] the second imperfect repair. The sum is over the elements of J1,l−1, each indicating the subregion
(subinterval) in which the previous imperfect repair has been performed. The third summand corresponds to the case
i = 2, making the imperfect repair in (Kl−1, Kl] the third imperfect repair. Here, the sum is over the elements of J2,l−1,
each indicating the two subregions (subintervals) in which the two previous imperfect repairs have been performed, and so
on. The last summand is for the case i = l − 2, which implies that there has been at least one failure in each of the previous
subregionsΩ2, . . . ,Ωl−1, and hence l − 2 previous imperfect repairs. This makes the imperfect repair inΩl the (l − 1)-th.

Now, we have the expected cost for the n − 2 intermediate subregions. The pattern in this cost becomes clear when we
look at specific subregions. For instance, the cost inΩ2 is given by

E[CΩ2
r (ψn)] =

∫ K2

K1


cimp + cminΛ1(K2 | r)


fTK1 |r (u1) du1, (10)

whereΛ1(K2 | r) is the number of minimal repairs in (u1, K2]. The cost inΩ3 is given by

E[CΩ3
r (ψn)] =

∫ K3

K2


cimp + cminΛ1(K3 | r)


fTK1 |r (u1) du1

+

∫ K3

K2

∫ K2

K1


cimp + cminΛ2(K3 | r)


λ1(u2 | r)e−{Λ1(u2|r)−Λ1(K2|r)}fTK1 |r (u1)


du1 du2 (11)

where Λ1(K3 | r) and Λ2(K3 | r) are the expected number of minimal repairs in the subintervals (u1, K3] and (u2, K3]

respectively.
In the last subregion Ωn, although there is no imperfect repair, the cost depends on the previous imperfect repairs.

Therefore, the conditional expected warranty servicing cost in the last subregion Ωn, for a given number of previous
imperfect repairs, i, is

cmin

Λ(K | r)−Λ(Kn−1 | r)


, i = 0

cmin

Λi(K | r)−Λi(Kn−1 | r)


, 0 < i ≤ n − 2

when at least one failure has occurred in Ωn. To derive the expected warranty servicing cost in the last subregion Ωn, we
remove the conditioning on u1, . . . , un−2 as follows

E[CΩn
r (ψn)] = cmin[Λ(K | r)−Λ(Kn−1 | r)]e−{Λ(Kn−1|r)−Λ(K1|r)}

+

−
∀{j1}∈J1,n−1

∫ Kj1

Kj1−1


cmin[Λ1(K | r)−Λ1(Kn−1 | r)]e−{Λ1(Kn−1|r)−Λ1(Kj1 |r)}fTK1 |r (u1)


du1

+

−
∀{j1,j2}∈J2,n−1

∫ Kj2

Kj2−1

∫ Kj1

Kj1−1


cmin{Λ2(K | r)−Λ2(Kn−1 | r)}

× e−{Λ2(Kn−1|r)−Λ2(Kj2 |r)}λ1(u2 | r)e−{Λ1(u2|r)−Λ1(Kj1 |r)}fTK1 |r (u1)


du1 du2 + · · ·

+

∫ Kn−1

Kn−2

∫ Kn−2

Kn−3

. . .

∫ K3

K2

∫ K2

K1


cmin{Λn−2(K | r)−Λn−2(Kn−1 | r)}

× λn−3(un−2 | r)e−{Λn−3(un−2|r)−Λn−3(Kn−2|r)}λn−4(un−3 | r)e−{Λn−4(un−3|r)−Λn−4(Kn−3|r)}

...

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(K2|r)}fTK1 |r (u1)


du1 du2 . . . dun−3 dun−2, (12)

where, for i = 1, 2, . . . , n − 2, the probability e−{Λi(Kn−1|r)−Λi(Kji |r)} reflects the event that the last imperfect repair was
performed in the subinterval (Kji−1, Kji ], i.e., no failures have occurred in the subregions betweenΩji andΩn.
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Having derived the costs in the n subregions, we now derive the expected cost for subcase (1) of case A by adding the
expected costs in the n subregions. Conditional on R = r , this cost is given by

E[C (1)r (ψn)] = E[CΩ1
r (ψn)] + E[CΩ2

r (ψn)] + · · · + E[CΩn
r (ψn)]

= cminΛ(K1 | r)+ cmin[Λ(K | r)−Λ(Kn−1 | r)]e−{Λ(Kn−1|r)−Λ(K1|r)}

+

n−1−
l=2

∫ Kl

Kl−1

[
cimp + cminΛ1(Kl | r)+ cmin{Λ1(K | r)−Λ1(Kn−1 | r)}

× e−{Λ1(Kn−1|r)−Λ1(Kl|r)}
]
fTK1 |r (u1)


du1

+

n−1−
l=3

l−2−
i=1

∫ Kl

Kl−1

 −
∀{j1,j2,...,ji}∈Ji,l−1

∫ Kji

Kji−1

. . .

∫ Kj2

Kj2−1

∫ Kj1

Kj1−1

{[cimp + cminΛi+1(Kl | r)

+ cmin{Λi+1(K | r)−Λi+1(Kn−1 | r)}e−{Λi+1(Kn−1|r)−Λi+1(Kl|r)}]

× λi(ui+1 | r)e−{Λi(ui+1|r)−Λi(Kji |r)}λi−1(ui | r)e−{Λi−1(ui|r)−Λi−1(Kji−1 |r)}

...

× λ1(u2 | r)e−{Λ1(u2|r)−Λ1(Kj1 |r)}fTK1 |r (u1)} du1 du2 . . . dui


dui+1. (13)

When the degrees of repair are random, we remove the conditioning on δi before removing the conditioning on ui, i =

1, . . . , n − 2.
The expected cost in this equation can be viewed as a function of the decision variables K1, K2, . . . , Kn−1 and thewarranty

time limit K . Let

E[C (1)r (ψn)]
def
= ξ(K1, K2, . . . , Kn−1, K). (14)

Then, the costs for subcases (2) and (3) of case A, and for case B (see Fig. 3) can be obtained as follows.

4.1.2. Subcase r1 ≤ r ≤ r2
For subcase (2) of case A, the warranty over the subregionsΩ1,Ω2, . . . ,Ωn−1 will expire at time points

τ1 =
L1
r
, τ2 =

L2
r
, . . . , τn−1 =

Ln−1

r
,

due to exceeding the usage limits L1, L2, . . . , Ln−1, respectively. Hence, the expected warranty cost for subcase (2) of case A
becomes

E[C (2)r (ψn)] = ξ(τ1, τ2, . . . , τn−1, K),

where the time limits K1, . . . , Kn−1 in Eq. (13) have been replaced by τ1, . . . , τn−1, respectively; see Fig. 3: A-(2).

4.1.3. Subcase r1 ≤ r2 ≤ r
Similarly, the expected cost for subcase (3) of case A is given by

E[C (3)r (ψn)] = ξ(τ1, τ2, . . . , τn−1, τ ),

since the warranty over the entire regionΩ expires at time τ = L/r , instead of at K ; see Fig. 3: A-(3).
Next, we remove the conditioning on R = r , where R has distribution function G(r), to get the expected total warranty

servicing cost for case A, given in Eq. (7).

4.2. Case B: r2 ≤ r1

For case B, as for case A, we condition on the usage rate R = r and derive the expected warranty servicing costs for the
following subcases:

(1) r ≤ r2 ≤ r1, (2) r2 ≤ r ≤ r1, and (3) r2 ≤ r1 ≤ r.

Let E[C (1)r (ψn)], E[C (2)r (ψn)], and E[C (3)r (ψn)] denote the expected warranty servicing costs, conditional on R = r , for the
three subcases of case B respectively [6].
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Fig. 3. Warranty time limits for the subcases: (left column) subcases of case A: r1 ≤ r2; (right column) subcases of case B: r2 ≤ r1 .

Using (13), the expected warranty servicing costs for the subcases of case B become

E[C (1)r (ψn)] = ξ(K1, K2, . . . , Kn−1, K),

E[C (2)r (ψn)] = ξ(K1, K2, . . . , Kn−1, τ ),

E[C (3)r (ψn)] = ξ(τ1, τ2, . . . , τn−1, τ ).

Note that subcases (1) and (3) for both cases A and B are the same, and the only difference is in the expected costs for subcase
(2) of both cases; see Fig. 3.

The expected total warranty servicing cost for case B is computed by unconditioning R = r:

E[CΩB (ψn)] =

∫ r2

0
E[C (1)r (ψn)] dG(r)+

∫ r1

r2
E[C (2)r (ψn)] dG(r)+

∫
∞

r1
E[C (3)r (ψn)] dG(r). (15)

When δ1 = δ2 = · · · = δn−2 = 1, the expected cost derived here, reduces to the one derived in [6].
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In [8], the chosen imperfect repair model is the virtual agemodel, where the effect of an imperfect repair is characterized
by a reduction in the virtual age of the product while the intensity function remains untouched. Here, the effect of an
imperfect repair ismodeled by a drop in the conditional intensity function. Note that,when δ = 1, the expected costs derived
here are equal to the expected costs derived using the age reductionmodel used in [8].When the number of imperfect repairs
is small (say 1 or 2), the age reduction and the intensity reductionmodels result in similar costs. However, when the number
of imperfect repairs increases, the differences in the expected costs are more pronounced. Hence, choosing the appropriate
imperfect repair model is important.

4.3. Notes on the imperfect repair strategy

In deriving the expected costs, for simplicity and generalization purposes, we denoted the cost of an imperfect repair by
cimp. For a particular product, this cost can be replaced by an appropriate cost function. For instance, the cost of an imperfect
repair could be modeled as a function of the time of repair and/or the degree of repair. One such cost function, suggested
in [7], is

cimp = cmin + (cper − cmin)(ρδ + (1 − ρ)δ2),

where cmin and cper are the costs of minimal and perfect repairs, ρ (0 ≤ ρ ≤ 1) is a cost parameter, and δ (0 ≤ δ ≤ 1) is the
degree of the imperfect repair. Another option, adapted from [19], is

cimp = cmin + (cper − cmin)δ
u
K
,

where u ∈ (0, K ] is the time of the imperfect repair, δ is the degree of the repair, and K is the Warranty time limit.
Other forms of cost function can be defined, once the product and the estimated cost of its repair are known. The cost

function can also be pro-rated to account for the amount of time the product has been in service.

5. An example

To numerically illustrate the imperfect repair strategy proposed in this article, we use the example from [5]. To make a
fair comparison between the perfect repair (replacement) and imperfect repair options, the example used here is identical
to the one used in [5,6].

As the number of subregions increases, the numerical optimizationprocedure (grid search) to find theminimumexpected
cost (and hence, the optimal strategy) becomes computationally intensive, and therefore, we illustrate the procedure for
n = 3 and n = 4 subregions only. The results are then compared to previously reported 3-subregion and 4-subregion
repair–replacement strategies applied to the same example.

5.1. Numerical example

As in [5], we consider an automobile component covered by a free-replacement warranty policy with time and usage
limits K = 2 (2 years) and L = 2 (20000 km), respectively, so that the rate parameter r2 = L/K = 1.

For the 3-subregion strategy, the interval (0, K ] is divided into (0, K1], (K1, K2] and (K2, K ], and the first repair in (K1, K2]

is imperfect with degree δ1.
For the 4-subregion strategy, the interval (0, K ] is divided into (0, K1], (K1, K2], (K2, K3] and (K3, K ]; the first repair in

(K1, K2] is imperfectwith degree δ1 and the first repair in (K2, K3] is imperfectwith degree δ2. For simplicity (and comparison
purposes), we take δ1 = δ2 = δ, i.e., we take the degrees of the imperfect repairs in both intermediate subregions to be
equal. Thus, when δ = 1, this strategy becomes comparable to those in [5,6].
Cost of repair. Minimal repair, imperfect repair and perfect repair (replacement) costs are denoted by cmin, cimp and cper,
respectively, and it is assumed that cmin < cimp < cper. The costs cmin and cper are assumed to be constant, and cimp is
assumed to be proportional to the degree of the imperfect repair. The cost of a perfect repair is set to 1, so that

cmin

cper
= cmin

def
= µ and

cimp

cper
= cimp

def
= δ.

This makes the degree of repair δ directly related to the cost of the corresponding imperfect repair.
Initial intensity function and usage categories. In this example, the initial intensity function of the failure process, conditional
on R = r , is taken to be

λ(t | r) = θ0 + θ1r + (θ2 + θ3r)t2

= 0.1 + 0.2r + (0.7 + 0.7r)t2,

and for unconditioning the consumer usage rate R = r , the following distributions are considered:

Light : R ∼ uniform [0.1, 0.9]
Medium : R ∼ uniform [0.7, 1.3]
Heavy : R ∼ uniform [1.1, 2.9].
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Table 1
Minimum expected warranty servicing costs for the three usage categories.

Ratios Light usage Medium usage Heavy usage
µ δ E[C�(ψ∗

3 )] E[C�(ψ∗

4 )] δ = 1 or 0 E[C�(ψ∗

3 )] E[C�(ψ∗

4 )] δ = 1 or 0 E[C�(ψ∗

3 )] E[C�(ψ∗

4 )] δ = 1 or 0

0.1

0.2 0.3209 0.3218

0.3200 (SMR)

0.3643 0.3649

0.3637 (SMR)

0.1465 0.1470

0.1460 (SMR)

0.3 0.3218 0.3237 0.3649 0.3661 0.1470 0.1480
0.4 0.3227 0.3255 0.3655 0.3673 0.1475 0.1490
0.5 0.3236 0.3274 0.3661 0.3685 0.1480 0.1500
0.6 0.3245 0.3293 0.3667 0.3697 0.1485 0.1510
0.7 0.3254 0.3311 0.3673 0.3709 0.1490 0.1520
0.8 0.3263 0.3330 0.3679 0.3721 0.1495 0.1530
0.9 0.3272 0.3349 0.3685 0.3732 0.1500 0.1540

0.2

0.3 0.6260 0.6262

0.6400 (SMR)

0.7033 0.7032

0.7274 (SMR)

0.2924 0.2928

0.2919 (SMR)

0.4 0.6416 0.6433 0.7281 0.7290 0.2929 0.2939
0.5 0.6425 0.6450 0.7289 0.7304 0.2934 0.2949
0.6 0.6434 0.6468 0.7296 0.7317 0.2939 0.2959
0.7 0.6443 0.6486 0.7301 0.7328 0.2944 0.2969
0.8 0.6451 0.6504 0.7307 0.7340 0.2949 0.2979
0.9 0.6460 0.6522 0.7313 0.7352 0.2954 0.2989

0.3

0.4 0.8531 0.8411

0.9600 (SMR)

0.9579 0.9390

1.0894 (S3)

0.4365 0.4366

0.4379 (SMR)

0.5 0.8885 0.8889 0.9908 0.9904 0.4387 0.4395
0.6 0.9180 0.9211 1.0189 1.0226 0.4392 0.4405
0.7 0.9410 0.9454 1.0431 1.0498 0.4397 0.4415
0.8 0.9569 0.9588 1.0635 1.0706 0.4402 0.4425
0.9 0.9623 0.9666 1.0791 1.0843 0.4407 0.4435

0.4

0.5 1.0425 1.0119

1.1401 (S3)

1.1713 1.1279

1.2420 (S3)

0.5569 0.5561

0.5839 (SMR)
0.6 1.0661 1.0592 1.1884 1.1753 0.5811 0.5815
0.7 1.0872 1.0885 1.2038 1.2043 0.5849 0.5859
0.8 1.1065 1.1106 1.2178 1.2231 0.5854 0.5869
0.9 1.1239 1.1308 1.2304 1.2388 0.5859 0.5879

0.5

0.6 1.1978 1.1496

1.2258 (S3)

1.3463 1.2800

1.3390 (S3)

0.6630 0.6594

0.7299 (SMR)
0.7 1.2072 1.1881 1.3459 1.3163 0.6943 0.6947
0.8 1.2141 1.2124 1.3440 1.3396 0.7164 0.7176
0.9 1.2211 1.2237 1.3417 1.3453 0.7286 0.7290

0.6
0.7 1.3202 1.2593

1.2971 (S3)
1.4834 1.4006

1.4249 (S3)
0.7585 0.7522

0.8384 (S3)0.8 1.3132 1.2867 1.4642 1.4245 0.7908 0.7910
0.9 1.3062 1.3001 1.4449 1.4351 0.8172 0.8184

0.7 0.8 1.4093 1.3425 1.3552 (S4)
1.5824 1.4921 1.4950 (S4)

0.8451 0.8364 0.9022 (S3)0.9 1.3862 1.3551 1.5447 1.5002 0.8757 0.8755

0.8 0.9 1.4649 1.3999 1.3952 (S4) 1.6433 1.5553 1.5449 (S4) 0.9220 0.9118 0.9489 (S4)

In order to make a valid comparison between the imperfect repair strategy and the repair–replacement strategies, the
parameters of the conditional intensity function (i.e., the θi) and the distribution of the three usage categories are identical
to those used in previous works [5,6].
Optimization procedure. For different values ofµ and δ (µ < δ) and for each of the three usage categories, we perform a grid
search to find the optimal decision variables denoted by ψ∗

3 = (K ∗

1 , K
∗

2 , r
∗

1 ) and ψ
∗

4 = (K ∗

1 , K
∗

2 , K
∗

3 , r
∗

1 ) that minimize the
expected total warranty servicing costs E[CΩ(ψ3)] and E[CΩ(ψ4)], respectively. The variables Ki, are incremented in steps
of 0.1 over the interval [0.1, 2.0), and the rate parameter r1 is incremented in steps of 0.2 over the interval [0.2, 3.0]. This
is the grid considered in [5,6].

5.2. Numerical results and analysis

Theminimumexpected totalwarranty servicing costs for the 3-subregion and the 4-subregion imperfect repair strategies
for the three usage categories and for different cost ratios are presented in Table 1.

Columns 3–5 are the costs for the light usage category. For each (µ, δ) pair (in the first and second columns), the
minimum expected cost E[C�(ψ∗

3 )] of the 3-subregion imperfect strategy is given in column 3 and the minimum expected
cost E[C�(ψ∗

4 )] of the 4-subregion imperfect repair strategy is given in column 4. Presented in column 5 is the minimum of
the expected servicing costs, and the corresponding repair strategy in brackets, among four previously-studied strategies:
the ‘‘all minimal repair’’ strategy (denoted by SMR), the ‘‘all replacement strategy’’ (denoted by SR), the 3-subregion
repair–replacement strategy in [5] (denoted by S3) and the 4-subregion repair–replacement strategy in [6] (denoted by
S4). All these strategies are based on minimal repairs and replacements (i.e., when δ = 0 or δ = 1).

Columns 6–8 are the corresponding costs for the medium usage category and columns 9–11 are the corresponding costs
for the heavy usage category.
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Table 2
Optimal warranty servicing strategies for the three usage categories.

Usage category µ K ∗

1 K ∗

2 K ∗

3 r∗

1 Expected cost Strategy

Light

0.1 – – – – 0.3200 SMR

0.2 0.7 1.5 – 1.0 0.6260 S0.33

0.3 0.4 1.1 1.7 1.0 0.8411 S0.44

0.4 0.4 1.1 1.8 1.0 1.0119 S0.54

0.5 0.3 1.1 1.9 1.0 1.1496 S0.64

0.6 0.3 1.1 1.9 1.0 1.2593 S0.74

0.7 0.3 1.1 1.9 1.0 1.3425 S0.84
0.8 0.3 0.9 1.9 1.0 1.3952 S4
0.9 0.2 1.0 1.9 1.0 1.4292 S4

Medium

0.1 – – – – 0.3637 SMR

0.2 0.6 0.8 1.5 1.0 0.7032 S0.34

0.3 0.4 1.1 1.8 1.0 0.9390 S0.44

0.4 0.4 1.1 1.9 1.0 1.1279 S0.54

0.5 0.3 1.1 1.9 1.0 1.2800 S0.64

0.6 0.3 1.1 1.9 1.0 1.4006 S0.74

0.7 0.3 1.1 1.9 1.0 1.4921 S0.84
0.8 0.3 0.9 1.9 1.0 1.5449 S4
0.9 0.3 1.0 1.9 1.0 1.5880 S4

Heavy

0.1 – – – – 0.1460 SMR

0.2 – – – – 0.2919 SMR

0.3 1.1 1.6 – 0.8 0.4365 S0.43

0.4 0.6 1.0 1.6 1.0 0.5561 S0.54

0.5 0.4 1.0 1.7 1.0 0.5694 S0.64

0.6 0.3 1.0 1.8 1.0 0.7522 S0.74

0.7 0.3 1.0 1.9 1.0 0.8364 S0.84

0.8 0.3 0.9 1.9 1.0 0.9118 S0.94
0.9 0.2 0.9 1.9 1.0 0.9794 S4

For each of the three usage categories, theminimumof the expected costs in each row is printed in boldface. The costs for
the ‘‘all replacement’’ strategy for the light, medium and heavy usage categories are 1.4281, 1.5850 and 0.9902, respectively.
This strategy does not appear in this table, because it is not among the optimal warranty servicing strategies here.

Note that for all three categories of usage,whenµ (cost of aminimal repair) is low, either the ‘‘allminimal repair’’ strategy
SMR or the 3-subregion imperfect repair strategy with the lowest degree of repair costs the least. As the cost of a minimal
repair increases, the strategy with the minimum expected cost is the 4-subregion imperfect repair strategy with the lowest
degree of repair δ > µ. When the cost of a minimal repair is very high, for the light (columns 3–5) and medium (columns
6–8) categories, the 4-subregion repair–replacement policy proposed in [6] costs the least.

The summary of these results is presented in Table 2, along with the optimal partition of the warranty region for the
strategy with the minimum expected cost (for different values of µ).

6. Conclusions

In this article, we use an intensity reduction approach to model the imperfect repairs, and under the specified warranty
servicing strategy, identify the optimal strategy from the manufacturer’s point of view. We provide a comparison of our
results with results previously reported in the literature of warranty servicing strategies.

We conclude that the approach employed tomodel the imperfect repairs has a significant impact on the estimation of the
expected warranty servicing cost for similar servicing strategies. Therefore, an appropriate model for the imperfect repairs
is needed, so that the computed expected costs provide accurate estimations of the warranty servicing costs, which is useful
to manufacturers in decision-making and developing servicing strategies.

This line ofwork can be extended in severalways. One possible extension is tomodel the usage rate as a stochastic process
instead of a random variable. Another option for generalization is to use delayed (or accelerated) functions (as in [20]) to
model the lifetime distribution of the product after the completion of an imperfect repair. Also, introducing non-zero repair
times will make the models more realistic. Non-zero repair time models are very valuable if they are related to customer
satisfaction or incurring high penalty costs for the time the product is down (e.g. when a plant assembly line is down).
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