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1 Introduction

A complete understanding of the space of two-dimensional conformal field theories is not

yet available, even for the so-called rational conformal field theories (RCFTs). These the-

ories have a finite number of characters and one can, in principle, attempt to classify them

using their modular (and other consistency) properties. In particular, in the modular dif-

ferential equation approach, RCFTs are classified according to the number of independent

characters (n), and the zeroes of the Wronksian (ℓ) on the torus moduli space [1]. These

two non-negative integers determine the modular invariant differential equation satisfied by

the characters up to a finite set of constants. The resulting differential equation can then

be solved as a function of these parameters using a power series expansion. Demanding

that the coefficients of the power series be non-negative integers (since they correspond to

degeneracies of states) one obtains constraints on the possible values of the parameters. In

some cases, these are sufficient to determine the central charge and the conformal dimen-

sions of the primaries. This method turns out to be particularly useful for the classification

of theories with a small number of characters. In the case ℓ = 0 one can show that there

are finitely many 2-character theories [1], almost all of which turn out to be affine theories

at level 1. For three character theories there are infinitely many candidates, and several in-

finite subsets have been identified. Using differential equations one can also deduce several

generic properties of such CFTs [2].

Much less is known about the ℓ > 0 case. Indeed, essentially the only concrete result

until recently was the identification of a set of candidate two-character theories with ℓ = 2

together with their modular transformation properties [3]. In a recent study [4] two of the

present authors analysed differential equations for two-character CFTs with ℓ > 0. This
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work successfully reproduced the above list of ℓ = 2 examples and verified the integrality

of the expansion coefficients to high orders. It also proposed potential affine symmetry

algebras for these ℓ = 2 theories, but it was already clear from the analysis of [4] that none of

these chiral algebras is generated just by the affine currents. As a consequence, the existence

of these theories remained somewhat conjectural. It was also noted in [4] that these theories

exhibit intriguing parallels to the ℓ = 0 examples of [1] that call for an explanation.

In this paper we explain these parallels, and in the process give a construction of the

family of ℓ = 2 theories. In particular, we show that the observed relations between the

ℓ = 0 and ℓ = 2 two-character theories have a natural origin in that each ℓ = 2 two-

character theory can be described as a (generalised) coset where we divide a meromorphic

(self-dual) conformal field theory at central charge c = 24 by the corresponding ℓ = 0 affine

subtheory (with two characters). This coset construction is somewhat novel in the sense

that the numerator is not an affine theory. Our proposal not only confirms the existence

of the ℓ = 2 two-character CFTs, but also provides a definition for them, and explains the

relations between their properties. A similar construction (this time involving the self-dual

e8 theory at level one with c = 8) also explains some pairwise regularities between different

ℓ = 0 theories, and the cosets of c = 24 self-dual theories by three- and four-character

affine theories lead to new ℓ = 0 CFTs (with three and four characters, respectively). For

these new theories we verify, using differential equations, that the proposed characters have

indeed non-negative integer coefficients in their power series expansion.

The paper is organised as follows. In the following section we explain carefully the gen-

eralised coset construction where only the denominator theory is an affine theory (but the

numerator theory is in general not). In section 3 we review briefly the modular differential

equation approach to the classification of RCFTs, and work out the relation between the

parameters (n, ℓ) of the denominator and the coset theory (assuming that the numerator

theory is a self-dual theory, i.e., has a single character). In section 4 we then apply this

construction to interesting examples: in section 4.1 we explain some intriguing relation

between pairs of ℓ = 0 two-character theories, while section 4.2 deals with the main topic,

the relation between the ℓ = 0 and ℓ = 2 family of two-character theories. We also use

this method in section 4.3 to construct apparently new classes of three- and four-character

theories. Finally, there are some brief conclusions in section 5.

2 A family of generalised coset constructions

Let us begin by explaining the coset construction of two-dimensional conformal field theo-

ries in some generality, slightly extending the familiar analysis of [5]; generalisations of this

kind have also been considered before in [6, 7]. Suppose H is a meromorphic conformal field

theory, for example a self-dual (lattice) theory, that contains an affine symmetry algebra,

but whose chiral algebra may not be generated just by the currents. Let us denote by D
an affine subtheory of H, associated with a semi-simple Lie algebra h at positive integer

level k. Then we can construct the coset theory

C = H/D , (2.1)
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whose chiral algebra contains all chiral fields of the numerator theory H that have a trivial

OPE with any of the chiral fields of the denominator theory. In the more familiar con-

struction of say [5], the numerator theory will also be an affine theory, but as will become

apparent momentarily, this is not essential for the construction to work.

In order to show that this generalised coset leads to a consistent conformal field theory,

we need to show that it possesses a stress-energy tensor of the appropriate central charge

cC = cH − cD. In order to see this we note that since the denominator theory is an affine

theory, its stress-energy tensor is given by the Sugawara construction, involving only the

currents Ja from h. On the other hand, since the affine theory is a subtheory of the

numerator theory, we have that both

[LH
n , J

a
m] = −mJa

n+m , and [LD
n , J

a
m] = −mJa

n+m , (2.2)

where LH
n and LD

n are the Virasoro modes of the numerator and denominator theory,

respectively. It thus follows that

[LC
n, J

a
m] = 0 , where LC

n = LH
n − LD

n . (2.3)

Thus the modes LC
n are part of the coset chiral algebra. Furthermore, since the Virasoro

generators of the denominator LD
m are bilinears in the currents Ja

l , we can furthermore

conclude that

[LC
n, L

D
m] = 0 . (2.4)

This is then sufficient to prove that the coset modes LC
n form a Virasoro algebra of the

appropriate central charge. Indeed, we have

[LC
m, LC

n] = [LC
m, LH

n ]− [LC
m, LD

n ]

= [LH
m − LD

m, LH
n ]

= (m− n)LH
m+n + cHm(m2 − 1)δm,−n − [LD

m, LC
n]− [LD

m, LD
n ]

= (m− n)LC
m+n + (cH − cD)m(m2 − 1)δm,−n ,

(2.5)

where we have used (2.4), as well as LH
n = LC

n + LD
n (in the penultimate line). This is the

desired Virasoro algebra of the coset theory.

In the following we shall always take H to be a self-dual theory, i.e., one that has

only a single representation (namely the vacuum representation itself). If we demand

modular invariance, such self-dual theories exist at c = 24N with N integer;1 for N = 1

corresponding to c = 24, it is believed that there are precisely 71 such theories [8], of which

all but one have been constructed by now [9, 10]. With the exception of the so-called e38
theory, none of them are affine theories. At c = 24 all self-dual theories have the character

χH
0 (τ) = J(τ) +N , with J(τ) = j(τ)− 744 = q−1 + 196884q + · · · , (2.6)

where q = e2πiτ , and j(τ) is the famous modular invariant j-function. The integer N
denotes the number of states with h = 1, i.e., describes the dimension of the Lie algebra g

whose affine Kac-Moody algebra is contained in H.

1If we only demand modular invariance up to a phase then N need not be an integer, but only an integer

multiple of 1

3
. The simplest example of such a theory is the e8 theory at level 1 with c = 8.
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Since the numerator theory H contains the denominator chiral algebra, we can decom-

pose H in terms of the irreducible representations of the denominator algebra; on the level

of characters, this then leads to the identity

χH
0 (τ) = χD

0 (τ) · χC
0(τ) +

p−1
∑

i=1

di χ
D
i (τ) · χC

i (τ) , (2.7)

where χD
0 and χC

0 are the vacuum characters of D and C, respectively, while χD
i with

i = 1, . . . , p − 1 are the remaining p − 1 irreducible characters of D. The corresponding

branching functions χC
i describe then the characters of the irreducible representations of the

coset algebra. The parameter di ∈ N denote the multiplicities with which these characters

appear; since we are only considering specialised characters, two inequivalent representa-

tions may have the same character — for example, this will be the case for two representa-

tions that are conjugate to one another — and hence non-trivial multiplicities may appear.

The leading q−1 coefficient of (2.6) is reproduced by the first term in (2.7) since we

have cD + cC = cH = 24. Furthermore, since apart from this term, the left-hand-side only

involves non-negative integer powers of q, we also need that hDi + hCi ≡ ni ∈ N. (Here hDi
and hCi are the conformal dimension of the i’th character of D and C, respectively.)

If the Lie algebra h of D is a direct summand of the Lie algebra g of H, g = h ⊕ k,

then the coset algebra will contain the affine algebra based on k, and the q0 term of (2.7)

will also arise from the first summand on the right-hand-side; in that case we therefore

have that hDi + hCi = ni ≥ 2. On the other hand, if h is not a direct summand of g, then

hDi + hCi = ni = 1 for at least one i ∈ {1, . . . , p− 1}.

3 The modular differential equation

In the following we will be interested in the modular differential equation that is associated

to the coset theory. Let us begin by briefly reviewing the salient features of this approach

to the classification of conformal field theories, see [1–3] for more details. The characters

of a rational conformal field theory satisfy a common modular differential equation. For

example, for the case of 2-character theories this differential equation is typically of second

order, and is then of the form

(

D2 + φ1(τ)D + φ0(τ)
)

χ = 0 , (3.1)

where D is the covariant derivative defined, for example, in [1]. Since D carries modular

weight 2, φ1 must have modular weight 2 while φ0 has modular weight 4.

The modular differential equation is further characterised by the number of zeros ℓ ≥ 0

of the associated Wronskian, which determines the number of poles of the functions φ1 and

φ0. If ℓ = 0, both φ0 and φ1 are non-singular, and it follows immediately that φ1 = 0,

while φ0 ∼ E4(τ), the familiar Eisenstein series of modular weight 4. The second order

equation with ℓ = 0 is then
(

D̃2 + µE4(τ)
)

χ = 0 , (3.2)
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where µ is a constant. For convenience we have defined D̃ ≡ D
2πi

which simplifies all

the expressions. The above equation can be written more explicitly in terms of ordinary

derivatives as
(

∂̃2 − 1

6
E2(τ) ∂̃ + µE4(τ)

)

χ = 0 , (3.3)

where ∂̃ ≡ ∂τ
2πi

, and E2 is the second Eisenstein series (which has a modular anomaly).

Next consider ℓ = 2. In this case φ0 and φ1 can have a pole of maximum degree 1

3
(the

fractional degree means that the pole, if it occurs, must be located at τ = e
iπ

3 and counts as

a 1

6
-order pole). Now E4 has a double zero at this point, while E6 is non-vanishing. (E6 is

the weight-six Eisenstein series, and E4 and E6 generate the ring of holomorphic modular

forms.) Thus we find φ1 ∼ E6

E4
. On the other hand, there is no weight-4 expression that

can be made from E4 and E6 that has a single power of E4 in the denominator. Hence we

must have φ0 ∼ E4, and the ℓ = 2 equation is therefore
(

D̃2 + µ1

E6

E4

D̃ + µ2E4

)

χ = 0 , (3.4)

where µ1 and µ2 are again constants.

For the case of a second order modular differential equation, the situation where ℓ = 0

has been analysed in some detail in [1–3], while ℓ = 2 has been studied in [3, 4]. In both

cases, seven pairs of characters potentially corresponding to unitary CFTs were found.

The first set is well-understood and consists of the affine theories corresponding to the

Lie algebras a1, a2, d4, g2, f4, e6, and e7, all at level 1. These exhaust all the affine

theories for which there are just two characters. The second set of characters has not been

completely understood in terms of specific CFTs, although in [4] some combinations of

level-1 affine algebras have been identified that can explain the given central charge and

first-level degeneracy of the identity character. In section 4.2 we shall give an interpretation

of these theories in terms of the above coset construction.

3.1 Modular differential equation from cosets

Before we can explain the details of this interpretation, let us understand in some generality

how the ℓ parameters of the denominator and coset theories are related to one another.

Recall from [1, 2] that the ℓ parameter of the modular differential equation is determined

from the central charge and the conformal dimensions of the p inequivalent characters via

− c

24
+

p−1
∑

i=1

(

− c

24
+ hi

)

=
p(p− 1)

12
− ℓ

6
. (3.5)

Both the denominator theory D, as well as the coset theory C have p inequivalent characters;

using that their central charges add up to 24N , and that their conformal dimensions add

up pairwise to ni ∈ N, we find that the ℓ parameter of the coset theory, ℓ C , is determined

from the ℓ parameter of D as

ℓ C = p2 + (6N − 1) p− 6

p−1
∑

i=1

ni − ℓ . (3.6)
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This relation now allows us to extract some useful information for theories with a small

numbers of characters. Suppose that N = 1 and that all the ni = 2. Then the above

relation specialises to

ℓ C = (p− 3)(p− 4)− ℓ . (3.7)

So if p = 3 or p = 4 the only solutions are ℓ = ℓ C = 0 (given that both ℓ and ℓ C have to

be non-negative). If, on the other hand p = 2, then ℓ C = 2− ℓ, and ℓ = 2 leads to ℓ C = 0.

Below we will find several interesting examples of this kind.

More generally, since both ℓ and ℓ C have to be non-negative, we get interesting con-

straints on the ni. For example, if N = 1 and ℓ = 0 with p = 3, 4 and all ni ≥ 2 (as is the

case provided that h is a direct summand of g) then in fact we must have ni = 2 for all i.

4 Interesting examples

We are now in the position to explain some of the classification results based on the

modular differential equation in terms of suitable coset constructions. We begin with the

numerological observation about two-character theories with ℓ = 0 that is evident from

the table in [1] and the more detailed analysis of [2], and then return to the case of main

interest here, the two-character theories with ℓ = 2.

4.1 Two character theories with ℓ = 0

The two-character theories with ℓ = 0 were classified in [1, 2]. Excluding the non-unitary

cases as well as e8 level 1 (a single-character theory) we find that the remaining 7 theories

fall into pairs related by c̃ = 8 − c and h̃ = 1 − h. It was shown that for each pair, the

fusion rules for the two theories are the same and the modular transformation matrices are

hermitian conjugates of each other. We can now offer an explanation for this phenomenon.

We take H to be the e8 level 1 theory, i.e., the only one-character theory with c = 8. As

the denominator theory we take D to be any of the affine two-character theories that are

contained in e8 level 1, namely h = a1, a2, g2, d4, f4, e6 or e7, all at level 1. The commutant

of a1 in e8 is e7, and similarly for the pairs (a2, e6) and (g2, f4), while the commutant of

d4 in e8 is again d4. Since each of these theories has ℓ = 0, it follows from eq. (3.6) with

N = 1

3
, p = 2 and ℓ = 0 that n1 = 1 and that ℓ C = 0. In particular, the coset construction

therefore relates the ℓ = 0 theories pairwise to one another. Since the modular S matrix

of e8 level 1 is trivial, the S matrix of the coset is just the hermitian conjugate of that of

the denominator theory. This therefore explains the above numerological observations.

We should note that n1 = 1 is required in each of these cases since none of the

subalgebras is a direct summand of e8 (given that e8 is simple). In particular, the remaining

currents of e8 that do not come from the two commuting subalgebras must arise from the

i = 1 term in (2.7). We have checked that this works out in each case. Furthermore, since

all of these affine subtheories are already 2-character theories, the coset must actually agree

with the affine theory. (If the coset was an extension of the affine theory, its number of

characters would have to be smaller than that of the affine theory, but this is not possible.)
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ℓ = 0 ℓ̃ = 2

No. c h m1 Algebra c̃ h̃ m̃1 m1 + m̃1 Schellekens No.

1 1 1

4
3 a1 23 7

4
69 72 15− 21

2 2 1

3
8 a2 22 5

3
88 96 24, 26− 28

3 14

5

2

5
14 g2

106

5

8

5
106 120 32, 34

4 4 1

2
28 d4 20 3

2
140 168 42, 43

5 26

5

3

5
52 f4

94

5

7

5
188 240 52, 53

6 6 2

3
78 e6 18 4

3
234 312 58, 59

7 7 3

4
133 e7 17 5

4
323 456 64, 65

Table 1. Characters with ℓ = 0 and ℓ = 2. Here c, c̃ are the central charges, h, h̃ the conformal

dimensions of the primary and m1, m̃1 the degeneracy of the first excited state in the identity

character. All the Lie algebras of the ℓ = 0 theories are at level 1.

We should also mention in passing that if we consider p = 3 affine theories D, then

eq. (3.6) with N = 1

3
becomes

ℓ C = 12− 6(n1 + n2)− ℓ , (4.1)

i.e., the only solution with ℓ, ℓ C ≥ 0 is ℓ C = ℓ = 0 and n1 = n2 = 1. It would be interesting

to see whether such solutions also exist. (The obvious candidate would be to take D the

affine theory based on a3 at level 1.)

4.2 Two-character cosets of meromorphic c = 24 theories

Next we want to explain the relation between the 2-character theories with ℓ = 0 and

ℓ = 2 that was noted in [4], see table 1 below for a summary of the salient features. To

understand the relation we start with one of the self-dual Schellekens theories at c = 24,

and consider the coset with an affine two-character theory D with ℓ = 0. (Recall that each

of the ℓ = 0 two-character theories corresponds to an affine theory based on a Lie algebra at

level 1.) We consider the case where the denominator current algebra is a direct summand

of the numerator current algebra, so that n1 ≥ 2. It then follows from eq. (3.6) that n1 = 2

and ℓ C = 2 − ℓ. Thus this construction will associate to each ℓ = 0 affine two-character

theory (whose Lie algebra appears as a direct summand in one of the Schellekens self-dual

theories) a two-character theory with ℓ = 2.

In table 1 we have listed for each ℓ = 0 theory the Schellekens theories that contain the

corresponding Lie algebra as a direct sumand, see the last column. It is straightforward to

work out the central charge and the non-trivial conformal dimension of the corresponding

coset theory, and this is given in the middle section of the table. These entries then

reproduce precisely the findings of [3, 4]. The chiral algebra of the coset theory contains

the affine algebra that is obtained from the direct sum of affine algebras of the numerator

by deleting the affine algebra of the denominator. However, the full chiral algebra of the

coset is not just generated by these currents. Given that there are different self-dual c = 24
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theories from which we may start (that differ by the affine symmetry algebra they contain),

it is clear that there are also different ℓ = 2 coset theories (that differ again by their affine

subalgebra) with the same pair of characters.

On the level of the chararacters, the construction implies that we have the relation

J(τ) +N = χ0(τ)χ̃0(τ) + χ1(τ)χ̃1(τ) , (4.2)

where N = m1 + m̃1 (since n1 = 2). The characters of the theories in the table are known

exactly as hypergeometric functions [3],

χ0 = j
c

24 2F1

(

−1

2

(

h− 1

6

)

,−1

2

(

h− 5

6

)

; 1− h;
1728

j

)

χ1 =
√
m j

c

24
−h

2F1

(

1

2

(

h+
1

6

)

,
1

2

(

h+
5

6

)

; 1 + h;
1728

j

)

χ̃0 = j
c̃

24 2F1

(

−1

2

(

h̃+
1

6

)

,−1

2

(

h̃− 7

6

)

; 1− h̃;
1728

j

)

χ̃1 =
√
m̃ j

c̃

24
−h̃

2F1

(

1

2

(

h̃− 1

6

)

,
1

2

(

h̃+
7

6

)

; 1 + h̃;
1728

j

)

,

(4.3)

where

√
m = (1728)h

(

sin π
2

(

1

6
−h

)

sin π
2

(

5

6
−h

)

sin π
2

(

1

6
+h

)

sin π
2

(

5

6
+h

)

) 1

2 Γ(1−h)Γ
(

1

2

(

11

6
+h

)

)

Γ
(

1

2

(

7

6
+h

)

)

Γ(1+h)Γ
(

1

2

(

11

6
−h

)

)

Γ
(

1

2

(

7

6
−h

)

) (4.4)

√
m̃ = (1728)h̃





sin π
2

(

1

6
+ h̃

)

sin π
2

(

7

6
− h̃

)

sin π
2

(

1

6
− h̃

)

sin π
2

(

7

6
+ h̃

)





1

2

Γ(1− h̃)Γ
(

1

2

(

13

6
+ h̃

)

)

Γ
(

1

2

(

5

6
+ h̃

)

)

Γ(1 + h̃)Γ
(

1

2

(

13

6
− h̃

)

)

Γ
(

1

2

(

5

6
− h̃

)

) .

For the specific values of h corresponding to the known ℓ = 0 CFTs (the left half of

the table), one can easily calculate m and m̃. These correspond to the degeneracies of

the ground state of the nontrivial primary, along with a factor to account for the possible

multiplicity of primaries with the same character. When such multiplicities are absent, both

m and m̃ are integers. Otherwise, they differ from an integer by a factor of
√
2 or

√
3 (these

are the only possible multiplicities encountered, the first coming from complex conjugation

and the second from triality of d4). The relevant results can be found in table 1 of [1] and

table 2 of [3], respectively. One sees that the product
√
mm′ is in any case an integer.

We have checked that the relevant character identities (4.2) indeed work out in every

case. In fact, this is a consequence of a relation of hypergeometric functions,

2F1

(

r, r +
1

3
; 2r +

5

6
;x

)

2F1

(

−r − 1,−r − 1

3
;−2r − 5

6
;x

)

(4.5)

+Mx2 2F1

(

−r+
1

6
,−r+

1

2
;−2r+

7

6
;x

)

2F1

(

r+
5

6
, r+

3

2
; 2r+

17

6
;x

)

=1− 2(3r+1)

(12r+5)
x ,

where

M =
216(2r + 1)(r + 1)(3r + 1)r

(12r + 11)(12r + 5)2(12r − 1)
= (1728)−2

√
mm̃ . (4.6)
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This in turn is a special case of the hypergeometric identity

2F1(a, b; c;x) 2F1(−a− 1,−b,−c;x)

+
ab(a+ 1)(b− c)x2

c2(1− c2)
2F1(a− c+ 1, b− c+ 1; 2− c;x) 2F1(−a+ c, 1− b+ c; 2 + c;x)

+
b

c
x = 1 . (4.7)

This can be proven by noting that the hypergeometric functions are meromorphic in the

parameter c, with simple poles at all non-positive integers; at the poles the behaviour is

lim
c→−n

2F1(a, b; c;x)

Γ(c)
=

(a)n+1(b)n+1x
n+1

(n+ 1)!
2F1(a+ n+ 1, b+ n+ 1;n+ 2;x) . (4.8)

Now each of the first two terms in eq. (4.7) has a single pole for all c ∈ Z, c 6= 0. Using

the above identity, it is easily verified that the residues at these poles cancel between the

two terms. As c → 0 one has both double and simple poles from the first two terms, and a

simple pole from the third term. Again one can check that the residues cancel. From the

cancellation of all poles, it follows that the l.h.s. is constant in c. Next, choosing c = b one

finds that this constant is equal to 1, independent of a, b and x.

Eq. (4.7) implies eq. (4.5) via the substitution a = r, b = r + 1

3
, c = 2r + 5

6
. In turn,

this implies the character identities of eq. (4.2) upon writing

x =
1728

j
, r = −1

2

(

h− 1

6

)

. (4.9)

Furthermore, the constant term equals

N = 744− 1728
2(3r + 1)

(12r + 5)
; (4.10)

this will obviously only be an integer if r is correctly chosen (such as is the case for the

entries of the table).

4.3 Three-character and four-character cosets of c = 24

The above observations provide a practical way to generate many conformal field theories

with a small number of characters, starting from affine theories with the same number of

characters. In order to exhibit this, let us consider affine 3-character or 4-character theories

D with ℓ = 0 whose algebra is a direct summand of any of the 71 self-dual c = 24 theories

H of [8]. Because of the discussion at the end of section 3.1, we know that the coset theory

will then also have ℓ C = 0. As we shall see, this will give rise to interesting solutions of

the modular differential equation of [2] that satisfy all the required integrality conditions.

In this subsection we shall describe all the examples that arise in this manner.

As a first example, let us take D the a3 theory at level 1. This theory has three char-

acters and leads to a modular differential equation with ℓ = 0. Its central charge is c = 3,

and the conformal dimensions are (h1, h2) = (3
8
, 1
2
). This D theory is contained, as a direct

summand, in the self-dual theory number 30 of Schellekens’ list [8]; the latter theory has
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N = 120 since its current algebra is a⊕8
3

. (The dimension of a3 is 15.) Given the discussion

above, the coset theory will have c̃ = 21, and possess the current algebra a⊕7
3

of dimension

105. From the analysis of section 3.1 we also know that the ni = 2, so its conformal di-

mensions must be (h̃1, h̃2) = (13
8
, 3
2
). Furthermore, it will have ℓ C = 0. This data is then

sufficient to fix the differential equation satisfied by the coset theory completely, and as a

consequence allows one to calculate the characters (as solutions of the modular differential

equation). We have checked that the degeneracy at the first level in the identity character

comes out to be 105. We have also computed the Fourier coefficients of the three characters

to very high orders and verified that they are indeed positive integers for the identity char-

acter, and rational numbers (when normalised so the ground state is unity) for the other

characters. Among other things this demonstrates that the modular differential equation

approach is a useful method for the determination of the branching functions of the coset.

All the remaining cases work out equally nicely, and our results for the three-character

examples are summarised in table 2. Our coset theories all contain an affine algebra —

the algebra generated by the remaining summands of the numerator theory that are not

divided out by taking the coset. In two cases, corresponding to lines 12 and 13 of the

table, the coset theory turns out to be equivalent to an affine theory, namely e8,2 and

b8,1, respectively. (Thus the roles of the affine algebra by which we divide, and the coset

algebra are reversed between these two cases.) The remaining theories, however, are not

just generated by the affine currents, and thus seem to be new.

The situation for the four-character examples is essentially identical, but provides a

much smaller list of examples that are summarised in table 3. Again, the resulting four-

character theories are not just generated by the affine currents and seem to be new.

5 Conclusions

In this paper we have constructed interesting examples of conformal field theories by taking

cosets of the self-dual c = 24 meromorphic theories (that only have a single character)

by some affine subtheory with a small number of characters. The situation is particularly

simple if the affine algebra of the denominator is a direct summand of that of the numerator,

and we have in this way constructed the two-character RCFTs with ℓ = 2 that were

previously predicted on the level of the modular differential equation. We have also used

the same idea to provide new interesting examples of ℓ = 0 RCFTs with three and four

characters.

Many generalisations of our construction are possible, for example one can consider

cosets of general meromorphic CFTs with central charge c = 24k where k > 1. Although

the number of examples rapidly becomes enormous, it would be interesting to investigate

whether this provides some insight into the classification problem for RCFTs.
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D C
No. c h1 h2 m1 Algebra c̃ h̃1 h̃2 m̃1 m1 + m̃1 Schellekens No.

1 3

2

3

16

1

2
3 a1,2

45

2

29

16

3

2
45 48 5, 7, 8, 10

2 5

2

5

16

1

2
10 c2,1

43

2

27

16

3

2
86 96 25, 26, 28

3 3 3

8

1

2
15 a3,1 21 13

8

3

2
105 120 30, 31, 33− 35

4 7

2

7

16

1

2
21 b3,1

41

2

25

16

3

2
123 144 39, 40

5 4 2

5

3

5
24 a4,1 20 8

5

7

5
120 144 37, 40

6 9

2

9

16

1

2
36 b4,1

39

2

23

16

3

2
156 192 47, 48

7 5 5

8

1

2
45 d5,1 19 11

8

3

2
171 216 49

8 11

2

11

16

1

2
55 b5,1

37

2

21

16

3

2
185 240 53

9 6 3

4

1

2
66 d6,1 18 5

4

3

2
198 264 54, 55

10 13

2

13

16

1

2
78 b6,1

35

2

19

16

3

2
210 288 56

11 7 7

8

1

2
91 d7,1 17 9

8

3

2
221 312 59

12 17

2

17

16

1

2
136 b8,1

31

2

15

16

3

2
248 384 62

13 31

2

15

16

3

2
248 e8,2

17

2

17

16

1

2
136 384 62

14 9 9

8

1

2
153 d9,1 15 7

8

3

2
255 408 63

15 10 5

4

1

2
190 d10,1 14 3

4

3

2
266 456 64

Table 2. Three-character theories with ℓ = 0. Here c, c̃ are the central charges, h1, h2, h̃1, h̃2 the

conformal dimensions of the primaries and m1, m̃1 the degeneracy of the first excited state in the

identity character.

D C
No. c h1 h2 h3 m1 Algebra c̃ h̃1 h̃2 h̃3 m̃1 m1 + m̃1 Schellekens No.

1 16

5

4

15

2

3

3

5
8 a2,2

104

5

26

15

4

3

7

5
52 60 13, 14

2 14

3

1

3

2

3

7

9
14 g2,2

58

3

5

3

4

3

11

9
58 72 21

3 21

5

7

20

3

5

3

4
21 c3,1

99

5

33

20

7

5

5

4
99 120 33

4 5 5

12

2

3

3

4
35 a5,1 19 19

12

4

3

5

4
133 168 43− 45

Table 3. Four-character theories with ℓ = 0. Here c, c̃ are the central charges, h1, h2, h3, h̃1, h̃2, h̃3

the conformal dimensions of the primaries and m1, m̃1 the degeneracy of the first excited state in

the identity character.
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