On the complexity of recognizing tough graphs

Douglas Bauer*
Stevens Institute of Technology, Hoboken, NJ 07030, USA

Aurora Morgana
University of Rome, Rome, Italy

Edward Schmeichel**
San Jose State University, San Jose, CA 95192, USA

Received 2 June 1990
Revised 24 December 1991

Abstract
We consider the relationship between the minimum degree \(\delta \) of a graph and the complexity of recognizing if a graph is \(t \)-tough. Let \(t \geq 1 \) be a rational number. We first show that if \(\delta(G) \geq \frac{tn}{t+1} \), then \(G \) is \(t \)-tough. On the other hand, for any fixed \(\varepsilon > 0 \), we show that it is NP-hard to determine if \(G \) is \(t \)-tough, even for the class of graphs with \(\delta(G) \geq \frac{t}{t+1} n + \varepsilon n \). In particular, for any fixed \(\varepsilon < 1/2 \), it is NP-hard to recognize \(t \)-tough graphs within the class of graphs \(G \) with \(\delta(G) \geq cn \).

1. Introduction
We consider only graphs without loops or multiple edges. Our terminology will be standard except as indicated; a good reference for any undefined terms is [3]. We use \(V(G), \alpha(G) \) and \(\omega(G) \) to denote the vertex set, independence number and the number of components in a graph \(G \), respectively.

Chvátal [4] introduced the notion of tough graphs. Let \(t \) be any positive real number. A graph \(G \) is \(t \)-tough if \(t \alpha(G - X) \leq |X| \) for all \(X \subseteq V(G) \) with \(\alpha(G - X) > 1 \). The interest in tough graphs stems primarily from the fact that all hamiltonian graphs are \(1 \)-tough. It is still an open problem to determine if there exists a positive constant \(t_0 \) such that all \(t_0 \)-tough graphs are hamiltonian [4]. It is now known [8] that for any

Correspondence to: Douglas Bauer, Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
*Supported in part by the National Security Agency under Grant MDA 904-89-H-2008.
**Supported in part by the National Science Foundation under Grant DMS8904520.
fixed $\epsilon > 0$ there exists an infinite family of $(2 - \epsilon)$-tough nonhamiltonian graphs having no 2-factor. It is also known [2] that if G is a 2-tough graph on n vertices and the degree sum of any three independent vertices is at least n, then G is hamiltonian.

Recently it was shown [1] that the following problem is NP-hard, thus answering a question that had been open for some time [5, 6, 10]. Let t be any positive rational number.

**NOT **t-TOUGH

INSTANCE: An undirected graph G.

QUESTION: Does there exist $X \subseteq V(G)$ with $\omega(G - X) > 1$ such that $t\omega(G - X) > |X|$?

Theorem 1.1. NOT t-TOUGH is NP-hard.

The proof for $t = 1$ is accomplished by reducing the following problem, which is known [9] to be NP-complete for any fixed β, $0 < \beta < 1$:

INDEPENDENT β-MAJORITY

INSTANCE: An undirected graph G on n vertices.

QUESTION: Is $\alpha(G) \geq \beta n$?

Define $\omega(r)$ to be the class of all graphs G with $\delta(G) \geq rn$, where $n = |V(G)|$. It was noted in [1] that for $t = 1$ the proof of Theorem 1.1 could be modified to show that for any fixed $\epsilon > 0$, it is NP-hard to recognize 1-tough graphs in the restricted class $\omega(1/3 - \epsilon)$. In this note we improve this result by showing that for any fixed $\epsilon > 0$, it is NP-hard to recognize 1-tough graphs in the restricted class $\omega(1/2 - \epsilon)$. In fact, we prove the following two results for any rational number $t > 1$.

Theorem 1.2. Let G be a graph in $\omega(t/(t + 1))$. Then G is t-tough.

Theorem 1.3. For any fixed $\epsilon > 0$ it is NP-hard to recognize t-tough graphs in $\omega(t/(t + 1) - \epsilon)$.

Note that if $t = 1$, then Theorem 1.2 is an easy consequence of the following well-known theorem of Dirac [7].

Theorem 1.4. Let G be a graph on $n \geq 3$ vertices with $\delta \geq n/2$. Then G is hamiltonian.

2. Proofs

Proof of Theorem 1.2. If $t = 1$ the result follows from Theorem 1.4, and hence we assume $t > 1$. Let G be a graph on n vertices for which the theorem fails. Hence
δ ≥ tn/(t + 1) and there exists $X \subseteq V(G)$ such that $tw(G-X) > |X|$. Let $Z \subseteq V(G)$ be the vertex set of a component of $G-X$ having the fewest number of vertices. Let $x=|X|$ and $z=|Z|$. Then $n > x + xz/t$ or $z < t(n-x)/x$. Hence if $w \in V(Z)$, $d(w) < x - 1 + t(n-x)/x = x - (t+1)/x$. Thus, to derive the contradiction that $δ < tn/(t + 1)$, it suffices to show

$$\frac{tn}{x + (x - (t + 1))} \leq \frac{tn}{t + 1}.$$ (1)

To do this we first establish

$$x \geq t + 1. \tag{2}$$

Suppose otherwise, i.e. $x < t + 1$. Since $ω(G-X) > 1$, $z < (n-x)/2$. Thus if $w \in V(Z)$, $d(w) \leq -1 + x + (n-x)/2 = -1 + (n+x)/2$. Hence, $-1 + (n+t+1)/2 > -1 + (n+x)/2 \geq d(w) \geq tn/(t + 1)$. This leads to $t^2 - 1 > n(t-1)$ and since $t > 1$ we conclude $t+1 > n$. But then $δ \geq tn/(t+1) > (n-1)n/n = n-1$, which is impossible. This proves (2).

To establish (1) note that (1) is equivalent to $tn/(t+1) - tn/x \geq x -(t+1)$ or

$$\frac{tn(x - (t + 1))}{x(t + 1)} \geq x(t + 1). \tag{3}$$

If $x - (t + 1) = 0$, then (3) follows immediately. Otherwise, (2) implies $x -(t + 1) > 0$ and now (3) is equivalent to

$$tn \geq x(t + 1). \tag{4}$$

However (4) follows easily since $t(n-x) > tw(G-X) > x$. This completes the proof. \(\square \)

To prove Theorem 1.3 we first require a proof of Theorem 1.1 for $t \geq 1$ that differs from the proof given in [1]. We again reduce INDEPENDENT $β$-MAJORITY to NOT t-TOUGH.

Alternate proof of Theorem 1.1 for $t \geq 1$. Let $t = a/b \geq 1$ for positive integers a and b, and fix $β$, where $0 < β < 1$. Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$ and let $k = \lfloor β n \rfloor$. Construct G' from G as follows. First add to G a set $A = \{w_1, \ldots, w_n\}$ of independent vertices, and join v_i to w_i for $i = 1, 2, \ldots, n$. Then add another set T of br independent vertices to G, where $r \geq 1$ is an integer. Now add a set B of $\lceil (t-1)n \rceil + k-1+ar$ vertices which induces a complete graph, and join each vertex of B to every vertex of $V(G) \cup A \cup T$. It suffices to show that $x(G) \geq k$ if and only if G' is not t-tough.

First suppose that G contains an independent set I with $|I| = k$. Define $X = V(G') \setminus (V(G) \setminus I) \cup B$. Then $ω(G'-X') = n + br$ and $|X'| = n - k + \lceil (t-1)n \rceil + k - 1 + ar = \lceil tn \rceil + 1 + ar$. Thus $tw(G'-X') = an/b + ar > \lceil an/b \rceil + 1 + ar = |X'|$ and G' is not t-tough.

Conversely, suppose G' is not t-tough. Then there exists $X' \subseteq V(G')$ with $ω(G'-X') > 1$ such that $tw(G'-X') > |X'|$. Clearly $B \subseteq X'$. We may also assume
$X' \cap (A \cup T) = \emptyset$; otherwise, $tw(G' - (X' - (A \cup T))) \geq tw(G' - X') > |X'| > |X' - (A \cup T)|$
and we could use $X' - (A \cup T)$ instead of X'. Let $X = X' \cap V(G)$, $x = |X|$ and $x' = |X'|$.

Claim 2.1. $n \geq x + k$.

Suppose $x > n - k$. Then $x' = x + |B| > n - k + \left\lceil (t - 1)n \right\rceil + k - 1 + ar = \left\lceil tn \right\rceil - 1 + ar$. Clearly $tw(G' - X') \leq t(n + br)$. Thus $tw(G' - X') \leq tn + ar \leq x'$. This contradiction establishes Claim 2.1.

Claim 2.2. $\omega(G - X) \geq k$.

Clearly $x' = x + \left\lceil (t - 1)n \right\rceil + k - 1 + ar$ and $\omega(G' - X') = \omega(G - X) + x + br$. Since $tw(G' - X') > x'$, we have

$$t(\omega(G - X) + x + br) > x + (t - 1)n + k - 1 + ar.$$

Since $n \geq x + k$ by Claim 2.2, we conclude

$$tw(G - X) > (t - 1)(n - x) + k - 1 + ar$$

$$= (t - 1)(n - x) + k - 1$$

$$= tk + (t - 1)(n - x - k) - 1$$

$$\geq tk - 1.$$

So $\omega(G - X) > k - 1/t$, and thus $\omega(G - X) \geq k$. This proves Claim 2.2.

Since it is possible to form an independent set in G by choosing one vertex from each component of $G - X$, we conclude $\omega(G) \geq k$. □

Proof of Theorem 1.3. Given $\varepsilon > 0$ and $t = a/b \geq 1$, choose γ such that $0 < \gamma < 1$, and then choose r sufficiently large such that

$$\frac{(t - \gamma)n + ar}{(t + 2 - \gamma)n + 1 + (a + b)r} > \frac{t}{t + 1} - \varepsilon.$$

(5)

Let $\beta = 1 - \gamma$. The reduction described in the alternate proof of Theorem 1.1 yields a graph G' with $|V(G')| = 2n + br + \left\lceil (t - 1)n \right\rceil + \left\lceil \beta n \right\rceil - 1 + ar \leq (t + \gamma)n + 1 + (a + b)r$ and $\delta(G') = \left\lceil (t - 1)n \right\rceil + \left\lceil \beta n \right\rceil + ar \geq (t - \gamma)n + ar$. By (5) it follows that $G' \in \Omega(t/(t + 1) - \varepsilon)$. This establishes that it is NP-hard to recognize t-tough graphs in this class. □

References

Complexity of recognizing tough graphs