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Array comparative genomic hybridization (CGH) has been popularly used for an-
alyzing DNA copy number variations in diseases like cancer. In this study, we
investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb reso-
lution bacterial artif icial chromosome CGH arrays. A number of highly frequent
genomic aberrations were discovered, which may act as “drivers” of tumor pro-
gression. Meanwhile, the genomic profiles of four “normal” breast tissue samples
taken at least 2 cm away from the primary tumor sites were also found to have
some genomic aberrations that recurred with high frequency in the primary tu-
mors, which may have important implications for clinical therapy. Additionally, we
performed class comparison and class prediction for various clinicopathological pa-
rameters, and a list of characteristic genomic aberrations associated with different
clinicopathological phenotypes was compiled. Our study provides clues for further
investigations of the underlying mechanisms of breast carcinogenesis.
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Introduction

Breast cancer is the most common cancer in women,
comprising 23% of all female cancers, and it ranks sec-
ond in overall cancer incidence when both sexes are
considered. There were an estimated 1.15 million pa-
tients diagnosed with breast cancer worldwide in 2002
(1 ). Like other solid cancers, breast cancer presents
genomic instability. The current concept is that fre-
quently occurring regions of DNA amplification com-
monly harbor oncogenes, whereas regions of recurrent
deletion harbor tumor suppressor genes. Classical cy-
togenetic methods have been used to detect such copy
number changes in tumors (2 ), which have deepened
our understanding of the genomic hallmarks of breast
cancer. In recent years, array comparative genomic
hybridization (CGH) has proven its value for ana-
lyzing DNA copy number variations in diseases like
cancer (3 ). In this study, we analyzed a total of 82
sporadic samples from 49 breast cancer patients us-
ing bacterial artificial chromosome (BAC) CGH ar-
rays with a resolution of 1 Mb on average, revealing a

number of frequently recurring genomic aberrations.
Morphologically normal regions adjacent to pri-

mary tumor site might harbor genomic aberrations
and these genetically altered cells, if they exist, might
represent early precursors of breast cancer and/or
markers of increased risk. In this study, we analyzed
four “normal” tissues that were adjacent but at least 2
cm away from the primary tumor sites. Notably, some
recurrent aberrations were present in these samples,
which might have important clinical implications.

In breast cancer, axillary lymph node (ALN)
metastases are the most common metastastic form
and usually have poor prognosis (4 ). Compar-
isons of matched pairs of primary tumors and lymph
node metastases show similar phenotypes in histol-
ogy, proliferation activity, and gene expression (5–
10 ). Our previous study based on array CGH, 2D-
PAGE, and immunohistological approaches revealed
that the main characteristics of the primary tumors
are maintained in the ALN metastases (11 ). In the
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present study, we performed class comparison and
class prediction to see whether there are some clones
in the CGH profile that can distinguish the primary
tumors from lymph node metastases.

At present, the classification and prognosis of
breast cancer patients are based on clinicopathological
parameters, such as tumor type, malignancy grade,
and regional lymph node status. The selection crite-
ria for adjuvant therapy are based on the presence or
absence of the ALN metastases (12 ), steroid receptor
status [estrogen receptor (ER) and progesterone re-
ceptor (PgR)], and whether the gene for human epi-
dermal growth factor receptor 2 (HER2/neu) is am-
plified or not (13 , 14 ). Despite recent developments,
the present clinicopathological parameters are gener-
ally considered to be not sufficient for the optimum
management of patients (12 ). Therefore, there is a
need for more accurate prognostic parameters. With
the development of gene expression microarray analy-
ses and CGH, a new molecular classification of breast
cancer is being established (15 ). In the present study,
class comparison and class prediction according to a
variety of traditional parameters were performed, and
the relationships between these parameters and the
genomic aberration profiles obtained by array CGH
were assessed. Our findings provide clues to deepen
the understanding of breast cancer tumorigenesis.

Results

Genomic aberrations in primary tumors

In our previous study, 29 pairs of breast cancer pri-
mary tumors and their matched ALN metastases (58
samples in total) were analyzed (11 ). In this study,
we extended the total sample size to 82 samples from

49 patients, including 49 primary tumors, 29 ALN
metastases, and 4 “normal” breast tissues. The re-
curring aberration regions observed in the 49 primary
tumor samples are shown in Figure 1 and those fre-
quently occurred in over 30% of the 49 samples are
shown in Table S1 (see Materials and Methods for
details). The frequent aberration regions were as fol-
lows: gains in 2p25.3–q37.3, 3q11.2–13.13, 3q21.1–
29, 4p16.2–q35.1, and 8q11.21–q24.3, whereas losses
in 1p36.31–33, 3p21.31–21.1, 9q33.3–q34.3, 14q23.2–
32.33, 15q11.2–26.3, 16p11.2–q12.1, 17p13.3–q21.32,
17q25.1–25.3, 19p13.3–q13.43, 22q11.23–13.33, and
Xp22.2–q21.1 (Figure 1 and Table S1). Known onco-
genes and tumor suppressor genes located in the above
aberration regions were listed: MYC locates in the
amplified region 8q11.21–24.3 that is aberrant in 91%
of the 49 primary samples. RAS family genes, such
as RASA2 (3q21.1–29, aberrant in 68% samples),
and other genes involved in cell proliferation, such as
MAPK10, EGF, and FGF2 (4p16.2–q35.1, aberrant
in 70% samples), were also found to anchor frequent
regions of gain. The region of 17p13.3–q21.32, con-
taining TP53 and BRCA1, showed a DNA copy num-
ber loss in 88% samples. Genes related to growth ar-
rest and cell proliferation checkpoints, such as DDIT3
(12q13.11–13.3, aberrant in 67% samples), were also
found to anchor frequently deleted regions.

Genomic aberrations in “normal”

breast tissues

Notably, the four “normal” tissue samples obtained
more than 2 cm away from the primary site of the
breast tumors were also found to contain aberrant ge-
nomic regions. These regions were largely consistent
with the regions having a high frequency of aberra-

Figure 1 Recurrent genomic abnormalities in 49 primary breast tumor samples revealed by array CGH. Frequencies

of genome copy number gains and losses are plotted as a function of genome location with chromosome 1pter to the

left and chromosomes 22 and X to the right. Vertical lines indicate chromosome boundaries and vertical dashed lines

indicate centromere locations. Green and red columns indicate frequencies of tumors showing copy number increases

and decreases, respectively.
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tions found in over 30% of the 49 primary tu-
mor samples. The shared aberrant regions, includ-
ing 1p36.32–34.1, 3p22.1–21.1, 9q33.3–34.3, 11q12.2–
13.1, 16p13.3, 16q11.2–12.1, 16q21–24.3, 17p13.3–
q25.3, 19p13.3–q13.43, and 22q11.23–13.33, are pre-
sented in Table S2, together with the cancer-related
genes harbored in these regions.

Unsupervised cluster analysis

Unsupervised cluster analysis focuses on the iden-
tification of novel subtypes of samples that are bi-
ologically homogeneous and whose genomic profiles
may reflect differences in tumorigenesis (16 ). This
objective is based on the idea that important biolog-
ical differences among specimens that are clinically
and morphologically similar may be discernible at the
molecular level (16 ). In this study, the overview of
the distribution of various clinicopathological param-
eters based on the whole genomic profiles of the 49
primary tumor samples is presented in Figure 2. Fur-
thermore, we used class comparison analysis to iden-
tify the clones that can distinguish the different clin-
icopathological parameters.

Class comparison

Class comparison is mainly applied for determining
whether genomic profiles differ among samples se-
lected from predefined classes and for identifying
which clones are differentially presented among the
classes (16 ). To delineate the genomic aberration pat-

terns between primary breast carcinomas and their
ALN metastases, we used the signal-to-noise method
to select the 50 clones with the biggest DNA copy
number changes in each group. As a result, no
clone related DNA copy number changes were statis-
tically different between primary breast carcinomas
and their ALN metastases (compared with 5% level
permutations), which is in agreement with our previ-
ous analysis (11 ).

Similarly, we selected the 50 clones that revealed
the greatest differences in DNA copy number changes
between the following phenotypic classes: invasive
ductal carcinoma (IDC) vs invasive lobular carcinoma
(ILC), ER+ vs ER−, IDC ER− vs IDC ER+ vs ILC
ER+, PgR+ vs PgR−, ER−PgR− vs ER+PgR− vs
ER+PgR+, HER2/neu+ vs HER2/neu−, size (small
vs moderate vs large), size (small vs large), grade 1 vs
2 vs 3, grade (1+2) vs 3, grade 1 vs (2+3), and high
grade vs low grade. The numbers of selected clones
are presented in Table 1. Cancer-related genes of the
selected clones are also noted.

Class prediction

Class prediction is similar to class comparison ex-
cept that the emphasis is on developing a statistical
model that can predict to which class a new sample
belongs based on its genomic profile (16 ). In this
study, we constructed classifiers that should distin-
guish between different tumor genotypes in relation
to clinicopathological phenotypes and thereby reveal

Table 1 Summary of class comparison (marker selection) in relation to clinicopathological parameters

Class Marker selection* Related genes

ALN metastases vs primary tumors none in both groups

ALN+ vs ALN− none in both groups

Ductal vs Lobular 9 in ductal, 0 in lobular NF-AT5

ER+ vs ER− 49 in ER+, 0 in ER− GDF-2, GDF-10, JNK-46,

CHN1, RCK, JNKK, FSH-R

IDC ER− vs IDC ER+ vs ILC ER+ 50 in IDC ER−, none in the other two groups GDF-2, GDF-10, JNK-46,

CHN1, Sts-1, JNKK

PgR+ vs PgR− 38 in PgR+, 0 in PgR−

ER−PgR− vs ER+PgR− vs ER+PgR+ 50 in ER−PgR−, 41 in ER+PgR+

HER2/neu+ vs HER2/neu− 2 in HER2/neu+, 0 in HER2/neu− CK-12, CK-20, CK-23

Size (small vs moderate vs large) none in the three groups

Size (small vs large) none in both groups

Grade 1 vs 2 vs 3 50 in Grade 3, none in the other two groups

Grade (1+2) vs 3 50 in Grade 3, none in Grade (1+2)

Grade 1 vs (2+3) 24 in Grade (2+3), none in Grade 1

High grade vs Low grade 50 in high grade, none in low grade

*T-testing was used for marker selection (class comparison). The number of markers with scores higher than the 5%

level in 500 permutations (of the selected 50 markers in each group) was counted.
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Figure 2 Unsupervised hierarchical clustering of genome copy number profiles measured for 49 primary breast tumor

samples. Green indicates increased genome copy number, and red indicates decreased genome copy number. The bar

to the right indicates chromosome locations with chromosome 1pter at the top and 22 and X at the bottom. The

locations of the odd-numbered chromosomes are indicated. The upper color bars indicate biological and clinical aspects

of the tumors. Color codes are indicated at the bottom of the figure. Dark blue indicates positive status, and light

blue indicates negative status for ALN, ER, PgR, and HER2. For tumor type, dark blue indicates lobular, and light

blue indicates ductal. For age, dark blue indicates old (≥50 years), and light blue indicates young (<50 years). Color

codes for grade are as follows: light blue, grade 1; middle blue, grade 2; dark blue, grade 3. For tumor size, light blue

indicates size ≤30 mm; middle blue indicates >30 mm ≤49 mm; dark blue indicates >50 mm. Yellow color indicates

the high level amplification (log based 2 ratio higher than 3×0.1815).

the underlying relationships between the genotypes
and phenotypes. We used the leave-one-out cross val-
idation (LOOCV) method to evaluate the overall per-
formance of classifiers, and classifiers related to the
different phenotypes were built and estimated. Clas-
sifiers were chosen if the clones give contributions for
prediction in at least 70% samples. The clone lists

of the final classifiers as well as the overall perfor-
mance of the final classifiers and the significance of
statistical tests (accuracy, sensitivity, and specificity)
are summarized in Table S3. Poor classification per-
formance was seen for ALN metastases vs primary
tumors, ALN status, tumor size, IDC ER− vs IDC
ER+ vs ILC ER+, and PgR status, indicating that
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these phenotypes present a large variety of genomic
aberration profiles not directly correlated to some
specific genotypes. Moderate classification perfor-
mance (73.9% accuracy) was observed for high-grade
vs low-grade tumors. Notably, relatively good clas-
sification performance was achieved for tumor type
(IDC vs ILC) (94.4% accuracy), HER2/neu status
(90% accuracy), and ER status (85.7% accuracy).

Discussion

In our study, gains in 3q21.1–29, 4p16.2–q35.1, and
8q11.22–24.3 while losses in 1p36.31–33, 16q12.2–
24.3, 17p13.3–q21.32, 19p13.3–q13.43, and 22q11.23–
13.33 were the most frequent alterations; this result
is consistent with previous findings (17 , 18 ). Some
tumor suppressor genes and oncogenes are located in
the loss and gain regions, respectively. For example,
the TP53 gene located in 17p13.3–q21.32 deletion re-
gion and the MYC proto-oncogene (c-MYC ) (tran-
scription factor p64) anchored in 8q11.21–24.3 am-
plification region are obviously important for sporadic
breast cancer carcinogenesis. The frequent genomic
aberration regions are expected to have more impor-
tant biological meanings than the randomly occurring
aberrations do, because the recurring abnormalities
indicate the presence of “drivers” of the tumor pro-
gression, rather than the random “passengers” else-
where.

Notably, four “normal” tissues far from the pri-
mary site shared recurrent aberration regions with
the primary tumors. Many genes in these regions
are related to tumor development, indicating that
these genes are important at the beginning of tu-
morigenesis. These genes include tumor necrosis fac-
tor receptor superfamily members TNFRSF1B, TN-
FRSF8, TNFRSF9, TNFRSF12A, TNFRSF17, TN-
FRSF25, ligand members 7, 9, 13, 14, tumor sup-
pressor candidates TUSC2, TUSC4, TUSC5, natural
killer-tumor recognition sequence NKTR, and breast
cancer metastasis-suppressor 1. Genes related to cell
proliferation, DNA repair, cell cycle, and apoptosis
regulation, such as TP53 and the genes for cell divi-
sion protein kinase 9, programmed cell death protein 5
(TFAR19 ), DNA-repair protein (XRCC1 ), and apop-
tosis regulator BAX, also seem to be involved. The ge-
nomic aberrations involved with these genes are dele-
tions, suggesting that losses of the genes related to
proliferation and apoptosis may play an important
role in tumor initiation, giving a selective advantage

to the aberrant cells. Notably, Beckmann et al sug-
gested that the second event in multistep carcinogen-
esis is usually chromosome loss, mitotic recombina-
tion, or partial chromosome deletion after oncogene
amplifications and tumor suppressor gene mutations
(19 ). They also mentioned that chromosome loci 16q
and 17p seem to be pathognomonic for the develop-
ment or progression of a specific histological subtype
(19 ). The losses in 16q and 17p were highly consistent
with aberrations in “normal” tissues, primary breast
carcinomas, and their matched ALN metastases in the
present study. Our finding that “normal” cells har-
bor such alterations suggests that the aberrations in
question might be important in relation to tumor ini-
tiation and development and also be responsible for
breast cancer relapse after surgery.

Decisions regarding postoperative treatment of
primary breast cancer are based on clinical (age),
histopathological (lymph node status, tumor size, and
malignancy grade), and cell biological (ER and PgR)
parameters (20 ). Markers from gene expression mi-
corarray analyses have also shown some promise as a
prognostic tool in breast cancer (21 , 22 ). Thus, novel
molecular profiling and classification of breast can-
cers should eventually give stronger correlation with
clinical outcome and patient survival.

The most widely used prognostic factor in breast
cancer is ALN status. In one study, node-negative pa-
tients had a longer 5-year survival than node-positive
patients (23 ), but no mention was made in that study
of either selected markers or a classifier showing sta-
tistically significant differences between ALN+ and
ALN−. No classifier was constructed that could make
a correct prediction of ALN status through analysis
of expression profiles of 151 ALN− and 144 ALN+

patients using cDNA expression microarray analysis
(10 ). Similarly, results from array CGH analysis of
prostate cancer show genomic profile similarity be-
tween the primary prostate cancers and their matched
lymph node metastases (24 ). In this study, we tried
to build a CGH-based classifier for primary tumors vs
ALN metastases, but no classifier was able to distin-
guish ALN metastases from the primary tumors, since
in general the ALN metastases shared the genomic
profiles with their primary carcinomas. The strong
similarity of ALN metastases and their primary tu-
mors is obvious at both genomic and proteomic levels
as documented and discussed in our previous study
(11 ). This implies that important biological charac-
teristics are already present in the primary breast tu-
mors and maintained in their lymph node metastases.
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Detailed analyses of the primary tumors should thus
be prognostically informative.

Tumor size is one of the common prognostic fac-
tors for breast cancer in the clinic (25 ). Quiet et al re-
ported that patients with negative ALNs and tumors
less than 2 cm, not receiving adjuvant therapy, had
a higher disease-free survival rate and longer median
survival time than patients with a tumor larger than
2 cm in a 20-year follow-up study (26 ). In our study,
we compared three groups based on tumor size. How-
ever, the performance of our classifier was poor, sug-
gesting that there was no significant difference among
the three groups related to gross genomic aberrations.
Thus, there was no significant correlation between our
genomic profiles and tumor size.

For breast cancers, amplification and/or over-
expression of HER2/neu occurs in up to 30% of
the cases and is associated with aggressive biolog-
ical behavior that reduces relapse-free and survival
time (27 ). HER2/neu is therefore used for the selec-
tion of patients for adjuvant therapy in breast can-
cer (12 ). The differential gene expression patterns in
HER2/neu amplified and non-amplified breast can-
cer cell lines and tumors have been investigated pre-
viously (28 ). In our present study, a set of 19
clones were included as a final classifier for HER2/neu
(Table S3). Genes located in the classifier clones
code for proteins such as tumor endothelial marker
7 (PLXDC1 ), metastatic lymph node protein 64
(STARD3 ), epidermal growth factor receptor GRB-
7 (GRB7 ), suppression of tumorigenicity protein
13 (FAM10A6 ), proliferation-associated nuclear ele-
ment protein 1 (CENPM ), cytokeratin-12 (CK12 ),
cytokeratin-20 (CK20 ), and cytokeratin-23 (CK23 ).
More importantly, the HER2/neu gene is also lo-
cated in these clones, the amplification and expression
level of which are regarded as criteria for determining
HER2/neu status. In the present study, the classifier
of HER2/neu showed good performance on cross vali-
dation (90% accuracy), suggesting that the difference
in HER2/neu status is associated with different ge-
nomic aberrations in carcinogenesis.

ER status was reported to be a fundamental
differentiating characteristic of breast cancer in gene
expression micorarray (9 ) and CGH studies (29 ).
ER-negative tumors are more aggressive than ER-
positive tumors, and the loss of ERs in tumor
cells is associated with poor prognosis and poor
response to hormonal therapy (30 ). In previous
studies, ER-negative tumors predominantly had am-
plifications in 17q12, whereas ER-positive tumors had

amplifications in 8q, gains in 1q, and losses in 1p and
16q (31 ). In this study, 25 clones were chosen as the
final classifier to predict the ER status (Table S3).
Genes related to cell growth and differentiation reg-
ulation, including GDF-2 and GDF-10 (coding for
growth/differentiation factor 2 and 10 precursors),
and genes related to cell proliferation, such as MAPK8
(coding for mitogen-activated protein kinase 8), are
located in these clones of this final classifier.

PgR is reported to be another important clini-
cal prognostic parameter in breast cancers. Genes
related to tumorigenesis, such as RASAL2 (coding
Ras GTPase-activating protein nGAP), PIK3C2B,
MDM4 (p53-binding protein Mdm4), RASSF5 (cod-
ing Ras association domain-containing family protein
5), IL24 (coding suppression of tumorigenicity 16
protein), FAIM3 (Fas apoptotic inhibitory molecule
3), and PIGR (coding hepatocellular carcinoma-
associated protein TB6), are harbored in the 24 clones
of the final classifier (Table S3). However, the per-
formance of the classifier for PgR is poor (45.8% ac-
curacy).

ER and PgR are mainly used to select patients
for endocrine therapy (32 ). Ma et al reported
in their epidemiological study that ER+PgR+ and
ER−PgR− tumors show different association with
risk factors, suggesting that these two types of breast
cancers have etiologically different hormonal mech-
anisms (33 ). In the present study, there were two
shared clones (bA534N5 and bA432I13) between ER
status and the combination of ER and PgR clas-
sifiers, and the performance level of the classifier for
ER+PgR+, ER+PgR−, and ER−PgR− (66.7% accu-
racy) was in the middle of the performance levels of
the ER classifier (85.7% accuracy) and the PgR clas-
sifier (45.8% accuracy), suggesting that the difference
of the three classes of ER+PgR+, ER+PgR−, and
ER−PgR− is actually derived from the difference of
ER+ and ER−, instead of PgR status. Only one po-
tentially important oncogene RHOT1 (Ras homolog
gene family member T1) was located in the six clones
of the combined classifier (Table S3).

IDC and ILC are the major histological types of
breast cancer. IDC is more predominant, ranging
from 47% to 79%, whereas ILC accounts for 2% to
15% (34 ). Although histologically disparate, these
tumor types show similarities in the clinic. In fact,
IDC and ILC patients receive similar treatment. How-
ever, women with ILC have a risk of mortality that
is 11% lower than women with IDC, and the mag-
nitude of this difference has increased over the past

18 Genomics Proteomics Bioinformatics Vol. 7 No. 1–2 June 2009



Li et al.

10 years (35 ). In addition, in previous chromosomal
CGH studies, gains of 8q and 20q were often seen in
IDC, whereas losses of 16q and 22q were found in ILC
(35–37 ). In array CGH studies, Loo et al reported
that 1q and 11q aberrations showed different frequen-
cies between these two types; however, this difference
was not statistically significant (18 ). Stange et al
identified 1q and 16p aberrations as significant clas-
sifiers of the two subtypes (38 ). In this study, we
used a marker selection method and found frequent
gains in 12q23.3–24.21 and 16q12.1–23.2 for IDC and
even more frequent gains in 2q36.3–37.1, 9q13–22.32,
11p13–12, and 11q13.1 for ILC. Additionally, we built
a classifier achieving 94.4% accuracy, 100% sensitiv-
ity, and 30% specificity (Table S3). The classifier
presented more frequent gains in 16q12.1–24.1 in IDC
than in ILC, which is consistent with previous studies
(36 , 37 ). The gene CDH1, coding for the epithelial-
cadherin precursor (E-cadherin), is included in the
final classifier for the discrimination of IDC and ILC.
Notably, the difference of E-cadherin copy number be-
tween IDC and ILC in our study was consistent with a
previous expression profile study of Korkola et al who
reported that lobular tumors showed low expression
levels of E-cadherin (39 , 40 ).

In addition to the genomic aberration difference,
IDC and ILC differ in hormone receptor statuses:
55%–72% of IDCs present ER+ compared with 70%–
92% of ILCs, and 33%–70% of IDCs are PgR+, in con-
trast to 63%–67% of ILCs (41 ). Zhao et al reported
some genes whose expressions distinguished between
IDC ER+, IDC ER−, and ILC ER+ (41 ). In our
study, we tried to find classifiers that were able to
classify the three groups, but the performance of the
chosen classifier was not good (data not shown), and
the classifier of the three groups has no clones in com-
mon with either the classifier of ER or the classifier
of IDC vs ILC. Our results imply that there was no
consistent difference in DNA copy number changes
among IDC ER+, IDC ER−, and ILC ER+.

The malignancy grade has also been considered to
have an independent prognostic value (42 ). Patients
classified as grade 1 were reported to have a 95% 9-
year survival (43 ). In the present study, we built
classifiers based on grade 1 vs 2 vs 3, grade (1+2) vs
3, and grade 1 vs (2+3). The latter two classifiers
did not perform well, whereas the performance of the
classifier of grade 1 vs 2 vs 3 was better, but still
unsatisfactory (Table S3).

Recently, Simpson et al mentioned that low- and
high-grade invasive breast cancers might represent

distinct major pathways of tumor evolution (15 ),
whereas the boundaries between the evolutionary
pathways of well-differentiated/low-grade ductal and
lobular carcinomas have been blurred (15 ). In this
study, we compared the two groups (high- and low-
grade) and performed class prediction. Our result
showed that 16 clones (mainly located on chromo-
somes 1 and 22) composed a classifier achieving a rela-
tively good prediction for high- and low-grade invasive
breast cancers (Table S3). Indeed, we observed that
6/8 grade 1 samples present 16q loss in contrast to
3/15 grade 3 samples, which is consistent with Simp-
son’s report (15 ).

Breast cancer is a heterogeneous disease encom-
passing a wide variety of cell subpopulations. Thus
a comprehensive and clear delineation of the rela-
tionship between clinicopathological parameters and
DNA copy number aberrations will depend on new
knowledge of tumor heterogeneity. In a continu-
ing study, we are building tumor heterogeneity mod-
els based on array CGH data. Integration of many
different types of data should deepen our understand-
ing of breast cancer tumorigenesis.

Conclusion

In the present breast cancer study, frequently recur-
ring genomic aberration regions were revealed, and
oncogenes and tumor suppressor genes located in the
corresponding regions were listed. Importantly, simi-
lar recurrent aberrations were found between primary
breast carcinomas, their matched ALN metastases,
and “normal” tissue samples. We screened the com-
mon clinicopathological prognostic parameters, such
as ALN, HER2/neu, malignancy grade, tumor size,
histological type, ER, PgR and their corresponding
combinations, and built up a series of classifiers for
the above parameters. The genomic aberration pat-
terns relative to different clinicopathological param-
eters are presented, providing genetic clues for the
study of the underlying mechanisms of tumor devel-
opment.

Materials and Methods

Sample collection and handling

We collected 82 samples from 49 breast cancer pa-
tients, including 49 primary tumors, 29 ALN metas-
tases, and 4 “normal” breast tissues. A summary of
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the clinicopathological information for the 49 cases
is shown in Table 2. All samples were provided
by Rigshospitalet (Copenhagen)/Danish Center for
Translational Breast Cancer Research and were eval-
uated using consistent pathological criteria by an ex-
perienced pathologist (44 ). None of the patients re-
ceived any treatment prior to the sample collection.

The project was approved by the Scientific and Ethi-
cal Committee of the Copenhagen and Frederiksberg
Municipalities (KF 01-069/03).

Immunohistochemistry

Following surgery, fresh tissue blocks were immedi-

Table 2 Summary of the clinicopathological information for the 49 primary tumor samples

No. of cases Percentage

Total patients 49

Mean age (range) 61 (27–99) years

Histological Type*1

Ductal, grade 1 4 8.2%

Ductal, grade 2/3 34 69.4%

Lobular, classic type, grade 1 3 6.1%

Lobular, grade 2/3 7 14.3%

Size (mm)*2

<30 mm 19 38.8%

30–49 mm 23 46.9%

>50 mm 7 14.3%

Grade

1 8 16.3%

2 26 53.1%

3 15 30.6%

HER2/neu*3

0 6 12.2%

1+ 15 30.6%

2+, not amplified 13 26.5%

2+, amplified 3 6.1%

3+ 12 24.5%

Positive 15 30.6%

Negative 34 69.4%

Axillary lymph node

Positive 40 81.6%

Negative 9 18.4%

Estrogen receptor

Positive (10% or more) 13 26.5%

Negative 36 73.5%

Progesterone receptor*4

Positive (10% or more) 22 44.9%

Negative 26 53.1%

*1One sample’s histological type is Tu/Kr (tubular/cribriform), a sort of well differentiated ductal variant. The rest

are ductal or lobular. *2In the clinic, 20 mm is the most common criterion for tumor size. However, in our study, we

use 30 and 50 mm thresholds as class criteria, because 20 mm will assign 6 patients in one group and 43 patients in

the other group, which will lead to sampling problem for statistic analysis. *3HER2/neu positive and negative statuses

were determined by both immunohistochemical tests and fluorescence in situ hybridization (FISH) following DAKO

criteria [that is, 0, 1+, and 2+ (not amplified) are considered negative, whereas 2+ (amplified) and 3+ are considered

positive]. *4One sample presents a PgR positive phenotype in some staining sections, whereas it is negative in the

others.
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ately placed in formalin fixative and paraffin em-
bedded for archival use. Antigen was detected with
a relevant primary antibody followed by a suit-
able secondary antibody conjugated to a peroxidase
complex (HRP conjugated goat anti-rabbit or anti-
mouse antibody; DakoCytomation, Glostrup, Den-
mark). Finally, color development was done with 3,3′-
diaminobenzidine (Pierce Biotechnology, Inc., Rock-
ford, USA) as a chromogen to detect bound anti-
body complex. Slides were counterstained with hema-
toxylin. Standardization of the dilution, incubation,
and development times appropriate for each antibody
allowed an accurate comparison of expression levels
in all cases. At least three independent stainings
of the samples were performed for each antibody.
Sections were imaged using either a standard bright
field microscope (Leica DMRB) equipped with a high-
resolution digital camera (Leica DC500), or a motor-
ized digital microscope (Leica DM6000B) controlled
by Objective Imaging’s Surveyor Software (Objective
Imaging Ltd., UK) for automated scanning and imag-
ing, which enables tiled mosaic image creation. Orig-
inal magnification for all images was 200x.

Array CGH

The process of array CGH was followed as described
previously (11 , 45 ). Briefly, all the tumor and ALN
metastasis samples collected for the study were his-
tologically analyzed and found to contain less than
40% of non-tumor cells. Total genomic DNA was iso-
lated with a DNA isolation kit (NucleoSpin r© Tissue,
MACHEREY-NAGEL, France) following the manu-
facturer’s instructions. Reference DNA was derived
from a healthy male’s peripheral blood. Arrays for
1-Mb resolution coverage of the whole genome con-
tained elements produced from BAC clones that were
obtained from Wellcome Trust Sanger Institute (45 ).
Tumor and reference DNA was labeled by a ran-
dom priming method with the BioPrime r© DNA label-
ing system (Invitrogen). Cy3-dCTP and Cy5-dCTP
(Amersham Biosciences) were used for labeling of the
tumor samples and reference DNA, respectively. An
amount of 40 uL (1 mg/mL) of Cot-1 DNA (Invitro-
gen) was used for the suppression of hybridization to
repetitive sequences. Tumor and reference DNA was
mixed and co-hybridized to the denatured target DNA
of the array. The array was placed on a slowly rock-
ing table at 37◦C for 48–60 h (45 ). Some arrays were
also hybridized in a TECAN HS 4800 Pro hybridiza-
tion station. After hybridization, arrays were washed

with a series of washing solutions and dried out with
nitrogen. The arrays were imaged in a charge-coupled
device arrayWorxe scanner (Applied Precision Com-
pany) with the Cy3 and Cy5 channels. Two single-
channel 16-bit images were combined for analysis us-
ing the image analysis software Tracker (Applied Pre-
cision Company). After filtering, clones representing
the same DNA sequence were averaged and subjected
to base 2 log transformation. Data were then sent
to the “DNAcopy” R/Bioconductor package, which
uses the circular binary segmentation (CBS) method
(46 ). The output clone segments from “DNAcopy”
were merged using a MergeLevel procedure (47 ). In
this process, segmental values across the genome were
merged to create a common set of copy number levels
for each individual tumor sample. The segments cor-
responding to the copy number level with the smallest
absolute median value were declared unchanged. All
the segments for each sample were then normalized
by subtracting their corresponding normal level val-
ues. In this way, the normal level value would be 0
(log transformation base 2 scale).

Unsupervised clustering

An unsupervised hierarchical clustering method was
applied to analyze genomic aberration similarities
across the 49 primary tumor samples by using Clus-
ter software v3.0 (48 ). The correlation algorithm was
employed for similarity metric calculation. Complete
linkage clustering was chosen to organize samples in
a tree structure. TreeView software was utilized for
visualization of the results of the cluster analysis (48 ).

Marker selection and permutation test

The Whitehead’s GeneCluster software package v2.0
(49 ) was used for the supervised selection of markers
and permutation testing. We used t-test statistics to
select a certain number of significant marker clones
in each group. Permutation of the sample profiles
for 500 times was used to test whether the clones in
different groups were significantly different or more
likely found by chance. All of the t-test scores of
markers were compared with the corresponding scores
at the 5% level from the 500 random datasets. The
markers that were significant at a 5% confidence level
(higher than 5% level from the permutation of the
class labels) were selected.
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KNN and LOOCV

The “build predictor” analysis in the Whitehead’s
GeneCluster software (49 ) was applied to build a clas-
sifier for each clinicopathological parameter. Class
prediction usually requires identifying which genes are
informative for distinguishing the predefined classes,
using these clones to develop a statistical prediction
model, and estimating the accuracy of the predic-
tor (16 ). In the present study, a number of features
(clones) that were informative for distinguishing the
predefined classes were identified using the signal-to-
noise method. The setting of the number of features
was tested from 1 to 40. Then the k-nearest neighbor
(KNN) algorithm (neighbor number set to 3 by de-
fault) was applied to develop a statistical prediction
model according to the clinicopathological parame-
ters, and the LOOCV method was used to estimate
the performance of the prediction. The optimal num-
ber of features that had the lowest prediction error
rate (the lowest absolute errors) was chosen. The clas-
sifiers (a set of clones) with the best performance for
individual clinicopathological parameters were deter-
mined (49 ). In order to choose the most important
clones in the classifiers, we picked the clones that
gave contributions for prediction in at least 70% of
the samples. The chosen clones were used to predict
all samples again, and the performance of these final
classifiers was estimated by absolute error rate using
LOOCV. The statistical significance of the prediction
results was analyzed by Fisher exact (for two classes)
and Chi squire (for three classes) tests.

Information collection of relative clones

and genes

All information on the clones and the genes lo-
cated in the corresponding genomic regions of this
study is based on the Snap database established
by our group (50 ). The main site in Denmark is
http://snap.humgen.au.dk.
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