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In this paper, an easily verifiable necessary and sufficient condition for the existence of
positive periodic solutions of generalized n-species Lotka–Volterra type and Gilpin–Ayala
type competition systems is obtained. It improves a series of the well-known sufficiency
theorems in the literature about the problems mentioned above. The method is based on a
well-known fixed point theorem in a cone of Banach space. This approach can be applied
to more general competition systems.
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1. Introduction

For the last decades, the ecological competition systems of Lotka–Volterra type have been investigated extensively. Many
interesting results concern with the global existence and attractivity of periodic solution, persistence and extinction of the
population, etc., we refer to [1–13] and the references therein. However, the Lotka–Volterra type models have often been
severely criticized. One of the criticisms is that in such a model, the per capita rate of change of the density of each species
is a linear function of densities of the interacting species. In 1973, Gilpin, Ayala et al. [14,15] claimed that more complicated
competition system are needed to study qualitative properties of the systems. To this aim, they proposed several competition
models. One of the models is the following competition system,

Ṅi(t) = ri Ni

(
1 −

(
Ni

Ki

)θi

−
n∑

j=1, j �=i

αi j
N j

K j

)
, i = 1,2, . . . ,n, (1.1)

where Ni is the population density of the ith species, ri is the intrinsic exponential growth rate of the ith species, Ki is the
environmental carrying capacity of species i in the absence of competition, θi provides a nonlinear measure of interspecific
interference, and αi j provides a measure of interspecific interference. Fan and Wang [16] further proposed delay Gilpin–Ayala
type competition model,

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
θi j

j

(
t − τi j(t)

)]
, i = 1,2, . . . ,n. (1.2)

By applying the coincidence degree theory, they obtained a set of easily verifiable sufficient conditions for the existence of
at least one positive periodic solution of (1.2).
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Recently, Chen [17] and Xia, Han, Huang [18] investigated respectively the following n-species Gilpin–Ayala type compe-
tition systems

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
αi j

j (t) −
n∑

j=1

bij(t)y
βi j

j

(
t − τi j(t)

) −
n∑

j=1

0∫
−σi j

ci j(t, s)y
γi j

j (t + s)ds

]
, i = 1,2, . . . ,n, (1.3)

and

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
αi j

j (t) −
n∑

j=1

bij(t)y
αi j

j

(
t − τi j(t)

) −
n∑

j=1

ci j(t)yαii
i (t)y

αi j

j (t)

]
, i = 1,2, . . . ,n. (1.4)

They obtained respectively several interesting results on the permanence and extinction, the existence and global attractivity
of almost periodic solution of (1.3) and (1.4).

Nevertheless, to the best of the author’s knowledge, so far, no work has concerned the periodic systems (1.2)–(1.4) to
establish sufficient and necessary conditions for the existence of positive periodic solutions of the systems.

In this paper, we investigate the following generalized periodic n-species Gilpin–Ayala type competition models in peri-
odic environments with deviating arguments of the form

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
αi j

j (t) −
n∑

j=1

bij(t)y
βi j

j

(
t − τi j(t)

)

−
n∑

j=1

ci j(t)

0∫
−σi j

Ki j(ξ)y
γi j

i (t + ξ)y
δi j

j (t + ξ)dξ

]
, i = 1,2, . . . ,n. (S)

The purpose of this paper is to obtain a necessary and sufficient condition for the existence of positive periodic solutions
(with strictly positive components) of the system (S). The method is based on the use of a fixed point theorem and the
proof by contradiction. This approach in this paper may be used to more general Lotka–Volterra type competition systems
and Gilpin–Ayala type competition systems.

Throughout this paper, we use i, j = 1,2, . . . ,n, unless otherwise stated. For an ω-periodic (ω > 0) function u(t) ∈
C(R, R), let ū = 1

ω

∫ ω
0 u(t)dt; a vector u = (u1, u2, . . . , un)T is positive if ui > 0.

Let R = (−∞,∞). We make the assumptions:

(H1) ri,aij,bij, ci j, τi j ∈ C(R, R) are ω-periodic functions and r̄i > 0, aij,bij, ci j � 0;

(H2) Kij ∈ C([−σi j,0], R), Kij � 0, σi j � 0 is a constant and
∫ 0
−σi j

Ki j(t)dt = 1;

(H3) αi j, βi j, δi j � 1 are constants. γi j is a nonnegative constant.

Our main result is

Theorem 1.1. Assume that (H1)–(H3) hold. Then condition

m0 = min
1�i�n

{
n∑

j=1

(āi j + b̄i j + c̄i j)

}
> 0 (C)

is necessary and sufficient for system (S) to have at least one positive ω-periodic solution.

For some particular Lotka–Volterra type and Gilpin–Ayala type competition system, the existence results of positive
periodic solutions have been established respectively in [4–6,8,9,11–13]. Clearly, Theorem 1.1 is an improvement and gener-
alization of these results, which shall be stated in the last section of this paper.

The remainder of this paper is organized as follows. In Section 2, we introduce some notations and preliminaries. In
Section 3 we prove the main theorem by using a well-known fixed point theorem in cones due to Krasnoselskii [19–21] and
a simple proof by contradiction. As applications in Section 4, we study some particular cases of system (S) which have been
investigated extensively in the references mentioned above.

2. Preliminaries

The following fixed point theorem is crucial in the arguments of our main results.

Lemma 2.1. (See Krasnoselskii [19], Deimling [20], Guo and Lakshmikantham [21].) Let E be a Banach space and P be a cone in E.
Assume that Ω1,Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2 . Let

T : P ∩ (Ω2\Ω1) → P
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be a continuous and completely continuous operator satisfying

(i) ‖T y‖ � ‖y‖ for y ∈ P ∩ ∂Ω1;
(ii) There exists ψ ∈ P\{0} such that y �= T y + λψ for y ∈ P ∩ ∂Ω2 and λ > 0.

Then T has a fixed point in P ∩ (Ω2\Ω1). The same conclusion remains valid if (i) holds for y ∈ P ∩ ∂Ω2 and (ii) holds for
y ∈ P ∩ ∂Ω1 and λ > 0.

We introduce a function space:

E = {
y(t) = (

y1(t), y2(t), . . . , yn(t)
)T ∈ C

(
R, Rn)

: yi(t) = yi(t + ω)
}

and let ‖y‖ = ∑n
i=1 |yi|0, where |yi|0 = maxt∈[0,ω] |yi(t)|. Then E is a Banach space endowed with the above norm.

Define an operator T : E → E by

(T y)(t) = (
(T y)1(t), (T y)2(t), . . . , (T y)n(t)

)
,

where

(T y)i(t) =
t+ω∫
t

Gi(t, s)yi(s)

[
n∑

j=1

aij(s)y
αi j

j (s) +
n∑

j=1

bij(s)y
βi j

j

(
s − τi j(s)

)

+
n∑

j=1

ci j(s)

0∫
−σi j

K (ξ)y
γi j

i (t + ξ)y
δi j

j (t + ξ)dξ ds

]
, i = 1,2, . . . ,n, (2.1)

where

Gi(t, s) = exp(− ∫ s
t ri(τ )dτ )

1 − exp(−ωr̄i)
, t � s � t + ω.

Obviously, there exist two positive constants A and B such that

A � Gi(t, s) � B, t � s � t + ω. (2.2)

Let σ = A
B . Now, we choose a set defined by

P = {
y(t) = (

y1(t), y2(t), . . . , yn(t)
)T ∈ E: yi(t) � σ |yi|0

}
.

Clearly, P is a cone in E . For convenience of expressions, we define an operator F : P → E by

(F y)i(t) = yi(t)

[
n∑

j=1

aij(t)y
αi j

j (t) +
n∑

j=1

bij(t)y
βi j

j

(
t − τi j(t)

) +
n∑

j=1

ci j(t)

0∫
−σi j

K (ξ)y
γi j

i (t + ξ)y
δi j

j (t + ξ)dξ

]
.

Lemma 2.2. The operator T maps P into P , that is, T (P ) ⊂ P .

Proof. In view of the definitions of P and F , for any y ∈ P ,

(T y)i(t) =
t+ω∫
t

Gi(t, s)(F y)i(s)ds. (2.3)

Thus,

(T y)i(t + ω) =
t+2ω∫

t+ω

Gi(t + ω, s)(F y)i(s)ds =
t+ω∫
t

Gi(t + ω, s + ω)(F y)i(s + ω)ds =
t+ω∫
t

Gi(t, s)(F y)i(s)ds = (T y)i(t).

Furthermore, for any y ∈ P , it follows from (2.1) and (2.2) that

∣∣(T y)i
∣∣
0 � B

ω∫
0

(F y)i(s)ds and (T y)i(t) � A

ω∫
0

(F y)i(s)ds.

Hence
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(T y)i(t) � A

B

∣∣(T y)i
∣∣
0 = σ

∣∣(T y)i
∣∣
0.

Thus T (P ) ⊂ P and the proof of Lemma 2.2 is completed. �
Lemma 2.3. The operator T : P → P is continuous and completely continuous.

Proof. By using a standard argument one can show that T is continuous on P . Now, we show that T is completely contin-
uous. Let d be any positive constant and Sd = {y ∈ E: |yi|0 � d} be a bounded set. For any y ∈ Sd , from (2.1) and (2.2) we
have

∣∣(T y)i
∣∣
0 � B

ω∫
0

(F y)i(s)ds � ωBd
n∑

j=1

(
dαi j āi j + dβi j b̄i j + dγi j+δi j c̄i j

) =: Di .

Therefore, for any y ∈ Sd ,

‖T y‖ =
n∑

i=1

∣∣(T y)i
∣∣
0 �

n∑
i=1

Di =: D,

which implies that T (Sd) is a uniformly bounded set. On the other hand, in view of the definitions of T and F ,

d

dt

[
(T y)i(t)

] = ri(t)(T y)i(t) − (F y)i(t).

Again, from (2.1) and (2.2) we obtain∣∣∣∣ d

dt

[
(T y)i(t)

]∣∣∣∣ � ru
i D + d

n∑
j=1

(
āi jd

αi j + b̄i jd
βi j + c̄i jd

γi j+δi j
) =: D̃i � D̃,

where ru
i = max0�t�ω{ri(t)} and D̃ = max1�i�n{D̃i}, which implies d

dt [(T y)(t)], for y ∈ Sd , is also uniformly bounded. Hence
T (Sd) ⊂ E is a family of uniformly bounded and equi-continuous functions. By the well-known Ascoli–Arzela theorem the
operator T is completely continuous. The proof of Lemma 2.3 is completed. �
Lemma 2.4. The system (S) has at least one positive ω-periodic solution provided T has a fixed point in P .

Proof. Let y ∈ P and T y = y. Hence (T y)i(t) = yi(t). From (2.3),

ẏi(t) = d

dt

( t+ω∫
t

Gi(t, s)(F y)i(s)ds

)

= ri(t)(T y)i(t) − Gi(t, t + ω)(F y)i(t + ω) − Gi(t, t)(F y)i(t)

= ri(t)yi(t) − (F y)i(t)

= yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
αi j

j (t) −
n∑

j=1

bij(t)y
βi j

j

(
t − τi j(t)

) −
n∑

j=1

ci j(t)

0∫
−σi j

Ki j(ξ)y
γi j

i (t + ξ)y
δi j

j (t + ξ)dξ

]
,

which implies that y(t) is a positive ω-periodic solution of (S). The proof is completed. �
3. The proof of main result

Proof of Theorem 1.1. (Sufficiency) Let

M0 = max
1�i�n

{
n∑

j=1

(āi j + b̄i j + c̄i j)

}
.

From condition (C) we conclude M0 � m0 > 0. Choose a constant M � M0 so that 1
ωBM < 1. Let r = 1

ωBM and

Ω1 = {(
y1(t), y2(t), . . . , yn(t)

)T ∈ E: |yi|0 < r, i = 1,2, . . . ,n
}
.

For any y = y(t) ∈ P ∩ ∂Ω1, σ |yi|0 � yi(t) � |yi|0. From (2.1) and (2.2), we have
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∣∣(T y)i
∣∣
0 < B

t+ω∫
t

(F y)i(s)ds � ωB|yi|0
n∑

j=1

(
āi jr

αi j + b̄i jr
βi j + c̄i jr

γi j+δi j
)

� ωB|yi|0
n∑

j=1

(āi j + b̄i j + c̄i j)r � ωB|yi|0M0r � |yi |0.

Hence for any y(t) ∈ P ∩ ∂Ω1,

‖T y‖ =
n∑

i=1

∣∣(T y)i
∣∣
0 �

n∑
i=1

|yi|0 = ‖y‖,

which implies condition (i) in Lemma 2.1 is satisfied.
On the other hand, choose 0 < m � m0 so that 1

ωσ Am > 1. Let R = 1
ωσ Am and

Ω2 = {(
y1(t), y2(t), . . . , yn(t)

)T ∈ E: |yi|0 < R, i = 1,2, . . . ,n
}
.

Suppose ψ = (ψ1,ψ2, . . . ,ψn)T ∈ P\{0}. We show that for any y = y(t) ∈ P ∩ ∂Ω2 and λ > 0, y �= T y +λψ . Otherwise, there
exist y0 ∈ P ∩ ∂Ω2 and λ0 > 0 such that y0 = T y0 + λ0ψ . Let ψi0 �= 0 (1 � i0 � n). Since yi0(t) � σ |yi0 |0, it follows that

yi0(t) = (T y)i0 (t) + λ0ψi0 =
t+ω∫
t

Gi0 (t, s)(F y)i0(s)ds + λ0ψi0

� ωσ A|yi0 |0
n∑

j=1

(
āi j Rαi j + b̄i j Rβi j + c̄i j Rγi j+δi j

) + λ0ψi0

� ωσ A|yi0 |0
n∑

j=1

(āi j + b̄i j + c̄i j)R + λ0ψi0

� ωσ A|yi0 |0m0 R + λ0ψi0 � |yi0 |0 + λ0ψi0 > |yi0 |0,
which is a contradiction. This proves condition (ii) in Lemma 2.1 is also satisfied. By Lemmas 2.1 and 2.4, system (S) has at
least one positive ω-periodic solution.

(Necessity) Suppose that (C) does not hold. Then there exists at least an i0 (1 � i0 � n) such that

āi0 j = b̄i0 j = c̄i0 j = 0, j = 1,2, . . . ,n.

If (S) has a positive ω-periodic solution y(t) = (y1(t), y2(t), . . . , yn(t))T , then we have

ẏi0(t) = ri0(t)yi0 (t).

Therefore 0 = ln
yi0 (t+ω)

yi0 (t) = ∫ t+ω
t ri0 (s)ds = ωr̄i0 > 0, which is a contradiction. The proof of Theorem 1.1 is completed. �

4. Applications

In this section, to illustrate the generality of our result, we apply Theorem 1.1 to some particular Lotka–Volterra type and
Gilpin–Ayala type competition systems with (or without) deviating arguments which have been studied in the literature.

Consider the periodic n-species competition systems

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y j
(
t − τi j(t)

)]
, i = 1,2, . . . ,n, (4.1)

ẏi(t) = yi(t)

[
ri(t) − aii(t)yi(t) −

n∑
j=1, j �=i

ai j(t)

0∫
−σi j

Ki j(ξ)y j(t + ξ)dξ

]
, (4.2)

ẏi(t) = yi(t)

[
ri(t) −

n∑
j=1

aij(t)y
αi j

j

(
t − τi j(t)

)]
, (4.3)

where ri , aij , τi j , Kij , σi j and αi j are the same as in (H1)–(H3). Thus from Theorem 1.1 we have
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Corollary 4.1. Assume that ri,aij, τi j, Kij, σi j and αi j are the same as in (H1)–(H3). Then condition

min
1�i�n

{
n∑

j=1

āi j

}
> 0

is a necessary and sufficient condition for (4.1) ((4.2) or (4.3)) to have at least one positive ω-periodic solution.

In [5] and [11], for (4.1) to have at least one positive ω-periodic solution, sufficient conditions are respectively

ri(t) > 0 and
n∑

j=1

āi j y j = r̄i has a positive solution
(
see Theorem 2.5 in [5]

)
and

āii > 0 and r̄i >

n∑
j=1, j �=i

āi j r̄ j

āii
exp

{
(r̄ j + R̄ j)ω

} (
see Theorem 2.1 in [11]

)
.

In [13], for (4.2) to have at least one positive ω-periodic solution, the sufficient conditions are āii > 0, r̄i = ∑n
j=1 āi je ȳ j

has a unique solution and

r̄i >

n∑
j=1, j �=i

āi j

∣∣∣∣ r j

a j j

∣∣∣∣
0

(
see Theorem 1 in [13]

)
.

In [16], for (4.3) to have at least one positive ω-periodic solution, the sufficient conditions are āii > 0,

r̄i −
n∑

j=1

āi j y
αi j

j = 0 has positive solution

and

r̄i >

n∑
j=1, j �=i

āi j

(
r̄ j

ā j j

)αi j/α j j

exp
(
αi j(r̄ j + R̄ j)ω

) (
see Theorem 2.1 in [16]

)
.

It is easy to see that Theorem 1.1 improves and generalizes the results mentioned above.
Consider the unsymmetrical May–Leonard model with periodic coefficients [4],

ẏ1(t) = p1(t)y1(t)
(
1 − y1(t) − α1(t)y2(t) − β1(t)y3(t)

)
,

ẏ2(t) = p2(t)y2(t)
(
1 − β2(t)y1(t) − y2(t) − α2(t)y3(t)

)
,

ẏ3(t) = p3(t)y3(t)
(
1 − α3(t)y1(t) − β3(t)y2(t) − y3(t)

)
, (4.4)

where pi,αi, βi ∈ C(R, R) are ω-periodic functions and pi > 0, αi, βi � 0. In [4], for (4.4) to have at least one positive
ω-periodic solution, the sufficient conditions are

α1(t) � p̄1 p2(t)

p1(t)p̄2
, α2(t) � p̄2 p3(t)

p2(t)p̄3
, α3(t) � p̄3 p1(t)

p3(t)p̄1
(4.5)

and

p1(t)p̄2

p̄1 p2(t)
� β2(t),

p2(t)p̄3

p̄2 p3(t)
� β3(t),

p3(t)p̄1

p̄3 p1(t)
� β1(t), (4.6)

where each of the inequalities for βi is strict on some set Ii ⊂ [0,ω] of positive measure (see Corollary 1 in [4]).
But, since pi(t) > 0, i = 1,2,3, from Theorem 1.1 we have the following result.

Corollary 4.2. The system (4.4) has at least one positive ω-periodic solution.

Corollary 4.2 implies that conditions (4.5) and (4.6) are not necessary for (4.4) to have at least one positive ω-periodic
solution.

Consider the following two species periodic competition model [22],

ẋ(t) = x(t)
(
a(t) − b(t)x(t) − c(t)y(t)

)
,

ẏ(t) = y(t)
(
d(t) − e(t)x(t) − f (t)y(t)

)
, (4.7)

where a,b, c,d, e, f ∈ C(R, R) are ω-periodic functions with ā, d̄ > 0, b, c, e, f are nonnegative. From Theorem 1.1 we have
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Corollary 4.3. For (4.7) to have at least one positive ω-periodic solution a necessary and sufficient condition is

b̄ + ē > 0 and c̄ + f̄ > 0.

In [22], for (4.7) to have at least one positive ω-periodic solution the following hypotheses are assumed

ā > 0, d̄ > 0 and b, c, e, f > 0

and
ω∫

0

(
a(s) − c(s)y0(s)

)
ds > 0,

ω∫
0

(
d(s) − e(s)x0(s)

)
ds > 0,

where x0(t) and y0(t) are respectively positive ω-periodic solution of ẋ = x(a(t) − b(t)x) and ẏ = y(d(t) − f (t)y) (see
Theorem 2.1 in [22]).

For more general applications of the method in this paper, we may further consider some epidemic models in a periodic
environment. For example, in [23] the authors studied the existence and stability of positive periodic solutions of the com-
partmental epidemic models in the periodic environments and established several interesting results by using the Poincaré
map and the theory of the basic reproduction ratio. Under some appropriate conditions the method in this paper may be
extended to study existence of positive periodic solutions of these models. For this subject, further investigations are still
needed in the future.
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