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digraph of order n into directed cycles of length m, where 2<m<n.
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1. Introduction

Throughout this paper, K,, will denote the complete graph of order n, K, — I will
denote the complete graph of even order n with a 1-factor removed, and K will
denote the complete symmetric digraph of order n, the digraph with all possible arcs.

It is natural to ask when K, admits a decomposition into cycles of some fixed
length. Since the existence of such a decomposition requires the degrees of the
vertices to be even, it follows that » must be odd. However, this question can be
extended to complete graphs with an even number of vertices by removing a 1-factor.
The two necessary conditions are that 3<m<n and that m must divide the number
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of edges in either K, or K,, — I. In [1], it is shown that such a decomposition exists
when m and n have the same parity and in [7], a decomposition is given when m and n
have opposite parity thereby completing the solution for K, and K, — 1.

A natural extension of this question is to ask when K admits a decomposition
into directed cycles of length m. The necessary conditions then become 2<m<n and
m|n(n—1). Bermond and Faber [4] have conjectured that the necessary conditions
are sufficient as long as (n,m)#(6,3), (4,4),(6,6). Bermond [2] showed that the
necessary conditions are sufficient if me {10, 12, 14}. Bermond and Faber [4] further
showed that the necessary conditions are sufficient if me{4,6,8,16} and
(n,m)+#(4,4),(6,6). They further resolved the problem for m even and a divisor
of n — 1. Tillson [9] has shown that K can be decomposed into directed Hamilton
cycles if nis even and n#4, 6. Bermond [3] has also completely settled the case when
m = 3 and has given some results for other odd lengths.

The goal of this paper is to completely settle the directed cycle decomposition
problem for K, that is, to prove the following theorem.

1.1. Theorem. For positive integers m and n, with 2<m<n, the digraph K can be

decomposed into directed cycles of length m if and only if m divides the number of arcs
in K and (n,m)#(4,4),(6,3),(6,6).

An immediate consequence of Theorem 1.1 is the following result. The multigraph
AK, has / edges between every pair of distinct vertices.

1.2. Corollary. For positive integers m and n with 3<m<n, the multigraph 2K,, can be
decomposed into cycles of length m if and only if m divides the number of edges in 2K,,.

Proof. Let m and n be positive integers with 3<m<n. Clearly, if 2K, decomposes
into cycles of length m, then m | n(n — 1). On the other hand, suppose m | n(n — 1). If,
(n,m)#(4,4),(6,3),(6,6), then K can be decomposed into directed cycles of length
m by Theorem 1.1. Ignoring direction provides a decomposition of 2K, into cycles of
length m. For the remaining three cases, let V(2K,) = {vi,va, ..., v,}. If (n,m) =
(4,4), then {(vi,va,v3,04), (v1,02,04,03), (V1,04,02,03)} is @ decomposition of 2Ky
into 4-cycles. If (n,m)=(6,6), then {(vy,v2,vs,vs,0s,06),(v1, 02,03, Vs, Vs, Vs),
(v1,v3, 05,02, 06, 04), (v1, U3, Vg, U2, Ua, Us), (U1, Us, U2, 04, 03,06)} is a decomposition of
2K into 6-cycles. Finally, if (n,m) = (6,3), then {(v, v2,v4), (v2,v3,0s), (v3,04,06),
(v4,vs,01), (05,06,02), (V6,01,03), (v1,02,03), (v3,04,05), (Us,V6,01), (02,V4,06)} is @
decomposition of 2Kj into 3-cycles. [

The following lemma, sometimes called the “doubling” lemma, provides a useful
tool for directed cycle decompositions.

1.3. Lemma. If K, can be decomposed into cycles of length m, then K can be
decomposed into directed cycles of length m.



B. Alspach et al. | Journal of Combinatorial Theory, Series A 103 (2003) 165-208 167

Proof. For each m-cycle C in a decomposition of K, obtain two directed cycles
of length m by giving C the two possible orientations in each direction. The
resulting collection of directed cycles of length m clearly forms a decomposition
of K;. O

The proof of Theorem 1.1 for m and n both odd is an immediate corollary of [1].
To see this, note that if m and n are both odd with m dividing n(n — 1), the number of
arcs in K, then clearly m divides n(n — 1)/2, the number of edges in K,,. Hence, we
apply the doubling lemma to a decomposition of K, into cycles of length m to obtain
a decomposition of K into directed cycles of length m.

Thus, we complete the proof of Theorem 1.1 in the rest of this paper by showing
the necessary conditions are sufficient when n and m have opposite parity and
(n,m)#(6,3), or n and m are both even with (n,m)#(4,4), (6,6).

2. Definitions and preliminaries

Let us begin this section with a few definitions.

2.1. Definition. The directed cycle on m vertices is denoted by Fm)

2.2. Definition. For vertices x and y in a digraph D, we will use the notation xy to
denote the arc from x to y.

2.3. Definition. For a graph G, the notation G* denotes the digraph obtained from G
by replacing each edge xy of G with arcs xy and yx.

2.4, Definition. For a graph G, we write G = H; @ H; if G is the edge-disjoint union
of the subgraphs H, and H,. If G=H ®@H,® --- ® Hy, where Hil~H,=~ -
~ Hy, = H, then the graph G can be decomposed into subgraphs isomorphic to H and
we say that G is H-decomposable. We shall also write H | G.

Similarly, a digraph D can be decomposed into copies of a digraph H if the arc set
of D can be partitioned into sets, each inducing a copy of H. We will also say that D
is H-decomposable and write H | D.

We shall use Cayley graphs and circulant graphs for several proofs. Accordingly,
we define them now.

2.5. Definition. Let S be a subset of a finite group I satisfying

1. 1¢ S where 1 denotes the identity of I', and
2. §=S"' thatis, seS implies that s~'€S.

A subset S satisfying the above conditions is called a Cayley subset. The Cayley
graph X (I'; S) is defined to be the graph whose vertices are the elements of I' and
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there is an edge between vertices g and /4 if and only if # = gs for some se S. We call
S the connection set and say that X (I';S) is a Cayley graph on the group I.

2.6. Definition. A Cayley graph X (I'; S) is called a circulant graph when I is a cyclic
group. For a cyclic group I' of order n, we will write X (n; S) for X (I'; S).

For a circulant graph X (n; S) whose underlying group is Z,, we have S is a subset
of {1,2,...,n — 1} satisfying se S if and only if n — se.S. We will often write —s for
n — s when n is understood. Denoting the vertices of X (n; S) by ug,uy, ..., u,_1, then
there is an edge between u; and u; if and only if j — i€ S.

The circulant digraph is defined similarly except that the connection set S need not
be a Cayley subset.

2.7. Definition. Let n be a positive integer and S<={1,2,...,n— 1}. The circulant

- . . . . .
digraph X (n; S) with connection set S is the digraph whose vertices are ug, vy, ..., U,
with an arc from u; to ; if and only if j — i€ S. Again, we will often write —s forn — s
when # is understood.

Many of our decompositions arise from the action of a permutation on a fixed
subdigraph. The next definition makes this precise.

2.8. Definition. Let p be a permutation of the vertex set V' of a digraph D. For any
subset U of V', p acts as a function from U to V' by considering the restriction of p to
U. If H is a subdigraph of D with vertex set U and if for each xye E(H), we have
p(x)p(y)e E(D), then p(H) is the subdigraph of D with vertex set p(U) and arc set

{p(x)p(y): xye E(H)}.

Note that p(H) may not be defined for all subdigraphs H of D since p is not
necessarily an automorphism.

2.9. Definition. If G| and G, are vertex-disjoint graphs, then the join of G| and G,
denoted G; < Gy, is the graph obtained by taking the union of G| and G, together
with all possible edges between G| and G,. If D| and D, are vertex-disjoint digraphs,
then D, <D, is the digraph obtained by taking the union of D and D, together with
all possible arcs from D, to D, and from D, to Dj.

2.10. Definition. For a subset 4 of Z,, the notation +A4 will denote the set
{taeZ,|acA}, and for an integer x, the notation 4+ x will denote the set
{a+xeZ,|acA}.

3. The case when m is even and 7 is odd

In this section, we prove the following theorem.
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3.1. Theorem. For positive integers m and n with m even, n odd, and 2<m<n,
the digraph K, can be decomposed into directed cycles of length m if and only

ifm|nn—1).

Since every complete directed graph of order at least 2 may be decomposed
trivially into directed cycles of length 2, we may assume m >4 for the remainder of
this section. Our first goal towards proving Theorem 3.1 is to determine bounds on
the value of n in terms of m.

3.2. Lemma. Let m=4 be an even positive integer. If K, is Fm)-decomposable for all

odd n satisfying m<n<2m with m|n(n — 1), then K} is a-decomposable for all odd
n>m satisfying m|n(n — 1).

Proof. We begin by showing that K, ; can be decomposed into directed cycles of

* _
m+1 =

X (m;S)s<{u}, where S=+{1,2,...,(m—2)/2}u{m/2}. Let p denote the
permutation (ug u;...u,1)(u). Observe that if L is any subdigraph of K, ,, then
p(L) is well-defined since pe Aut(K;, ). Let C be the directed m-cycle

length m. Let the vertices of K}, | be labelled with u, ug, uy, ..., u,_; and let

C: U, Ug, U—1, UL, U2, U2y ooy Uy /2415 U215 U,y

where all subscripts are taken modulo m. Note that C uses an arc of each length in S
except length 1. Thus it follows that {C, p(C), p*(C), ..., p" '(C)} together with
the directed cycle ug, uy, ..., u,_1,uo is a partition of the arc set of Kj;,, | into directed
m-cycles.

Suppose that K; can be decomposed into directed m-cycles whenever m is
even, n is odd, m |n(n — 1), and m<n<2m. Let m and n be positive integers with m
even and n odd such that 4<m<n and m|n(n—1). Write n=gm+r+1 for
integers ¢ and r with 0<r<m — 1. Observe that m|n(n — 1) implies m | r(r + 1) as
well. Label one vertex of K with x and partition the remaining vertices of K into
q — 1 sets of m vertices and one set of m + r vertices. Each set of m vertices together
with vertex x induces a subdigraph isomorphic to K ., and the arcs between any

two of these sets of m vertices induce a subdigraph isomorphic to K. The
remaining set of m 4 r vertices together with vertex x induces a subdigraph
isomorphic to Ky, ..., and the arcs between the set of m + r vertices and any one of

the sets of m vertices induce a subdigraph isomorphic to Ky, ... By a result of
Sotteau [8], we have C,, | K., and Cn | Koynyr Since m | (m+r+1)(m+r), we
have F,,”K;;l +r by hypothesis. Above it was shown that ?,,”K;; 41 and thus

—
Cn |K:. O

Observe that if m divides n(n — 1) evenly, then m divides n(n — 1)/2. Hence a
decomposition of the complete graph K, into m-cycles exists by [7]. The doubling
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lemma then gives a decomposition of K into directed m-cycles. Therefore, we may
assume that n(n — 1) is an odd multiple of m. This leads to the following lemma.

3.3. Lemma. If'm, n, and r are positive integers such that n = m + r + 1, with m even, n
odd, and n(n — 1) = m (mod 2m), then r = 0 (mod 4).

Proof. First, n(n — 1) = m (mod 2m) implies that n(n — 1) = mk for some positive
odd integer k. Observe that n = m + r + 1, with n odd, m even and n(n — 1) an odd
multiple of m, implies that r is even and that r(r + 1) = mt with ¢ even. Suppose,
contrary to the conclusion of the lemma, that r =2 (mod 4). Then r =4/ + 2 for
some positive integer 7. So, r(r+ 1) = (47 + 2)(4/ + 3) = 2(8/*> + 10/ + 3). There-
fore, r(r+1)/2 =mt/2 = 8/> + 10/ + 3, and since ¢ is even, we have a contra-
diction. Hence, r = 0 (mod 4). O

The next lemma will be very useful in proving Theorem 3.1.

3.4. Lemma. Let m and n be positive integers satisfying m even, n odd, 4<m<n<2m,
and n(n—1)=m(mod2m). If A={a,a,...,ay;}, where ai,as, ...,ay,;, are

— =
positive integers satisfying ay<ay<--- <@y, <n/2, then C, | X (n; £ A4).

Proof. Label the vertices of the circulant digraph X’)(n, +A4) with ug, uy, ..., u,—1. We
have uiu_,-eE(X;(n; +4)) if and only if j —ie + 4. Let p denote the permutation
(up uy -+ uy—1). If L is any subdigraph of X’)(n, +A), then p(L) is well-defined since
peAut(X (n; +4)).

Suppose first that m = 2k with k odd. To describe a directed walk in ?(n; +4),
we will specify the starting vertex and the lengths of the arcs and the order in which
they are encountered. Let P be the directed trail of length m — 1 starting at uy, where
the lengths of the m — 1 arcs of P are ay, —ay, az, ..., —ap_1, — Ay Aj—_1, —Qjc—2, ..., —d|
and these arcs are encountered in this order. Note that P uses precisely one arc of
each length in + A, except for an arc of length a;. Also note that alternate vertices
starting with u, on P will have strictly increasing subscripts, while alternating
vertices starting with uy on P will have strictly decreasing subscripts. Thus, the
vertices of P are distinct so that P is a path. Also, we have that

ay—a) +az — - —ag_y — g + a1 — g + -+ —a; = —a; (mod n)

and thus P followed by the arc of length a; gives a directed m-cycle C. Hence, it

follows that {C, p(C), p*(C), ..., p"V(C)} is a decomposition of X (n; +A4) into
directed m-cycles.

When m = 2k with k even, we let P be the directed trail of length m — 1 starting
at ug where the lengths of the arcs of P are

ayp, —dx,az, ..., A1,y —Ak—1,Af—-2, ..., —d]
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and these arcs are encountered in this order. As before, clearly P is a directed path
and

a—atay— -+ ap1+ar —ag—1 + a2+ -+ —a) = a; (mod n).
Thus P followed by the arc of length —ay, gives a directed m-cycle C. Then
{C,p(C),p*(C), ..., p"V(C)}

is a decomposition of X’)(n; + A) into directed m-cycles. [

We now present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let m and n be integers with n odd, m even, 3<m<n, and
n(n—1) = 0 (mod m). As mentioned earlier, we may assume that n(n — 1) is an odd
multiple of m. In addition, by Lemma 3.2, we also may assume that n<2m, say
n=m+r+ 1 for some even integer r with 0<r<m — 1. Now if r = 0, we are done
by a construction given in the proof of Lemma 3.2. Thus, we assume that 0 <r<m —
1. We have seen that when n(n — 1) is an odd multiple of m, we have that r(r + 1) is
an even multiple of m.

Let A={1,2,...,(n—1)/2}. We think of the digraph K as the circulant

X’)(n; +A). Label the vertices of the circulant digraph Y(n; +A) with ug, uy, ..., 1.
The length of the arc from u; to u; is j —i. The proof of Theorem 3.1 proceeds
as follows. Suppose that B is a subset of A4 such that |B|=r/2, and that
we can decompose the circulant digraph X’}(n, +B) into directed m-cycles.
Then since Y(n, +4) = Y(n, +(4\B)) (—BX’)(n; +B) and the circulant digraph
X’)(n; +(A\B)) can be decomposed into directed m-cycles by Lemma 3.4, it
follows that we have a decomposition of X’)(n; +A) into directed m-cycles.
Thus, the rest of the proof consists of determining a convenient set B of r/2
lengths such that the circulant digraph H = X’)(n; +B) can be decomposed into
directed m-cycles.

By Lemma 3.3, we know that r = 0 (mod 4). Let r = 2°a where « is odd and e>2.
Thus r(r + 1) = 2%a(2°a + 1). Since r(r + 1) is an even multiple of m, we have that
m = 2%, where d |a, b' | (2°a+ 1), and 1<d <e. Then

2%+ 1
n=m+r+1=2%b +2+1 :b’(zda/+%).
Partition the vertices of the circulant H into »’ segments, each with / =294 +
(2°a+1)/b’ vertices. Each segment will contribute 2¢a’ arcs to a directed m-cycle.

We proceed by cases, depending on the value of d.
Case 1. Suppose first that d>2: Define the directed path Py by

PO,O TUQ, U U1, U3 U)oy Und=2gy U_pd=2g1 4 1, Ud=2gr 05 U_2d=21,4

Upd—2q 43, U_pd=24_ 1y ooy Upd—tg 1, U_pd—1 gy 1, Ury1, Uy
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The definition of Pyo does not make sense when 29-24 — 1, that is, d = 2 and
a = 1. In this case let

Poo :ug,uz,u_y,uspy,uy.

Let Py; = p’(Poo), where p is the permutation from the proof of Lemma 3.4.
Since />29d" implies that 297 'a’ + 1</ — 2971’ + 1, the vertices of Py are distinct
from the vertices of Py except for u,, which is the last vertex of Py and the first
vertex of Py ;. Similarly, the paths

Poo, Poi = p' (Poo), Pos = p* (Poo), s Poy—1 = p V" (Poy)

are vertex-disjoint except that the path Pj; begins at the last vertex of Py, for
1<i<d —1 and Py ends at ug. Thus Cy = PyouPyru---UPyy_g is a directed
m-cycle and the lengths of the arcs of Cy are —1,2,-3,...,— (297 'd —1),297'd’ +
4,297 +1,-(297'd 4+ 2)...,-24d'. Let C) denote the directed m-cycle obtained by
reversing the orientation of all the arcs of Cy. The family %, of directed m-cycles
defined by

©o = {p'(Co), p'(Cp) | 0<i</ — 1}

is a decomposition of X’)(n; By) into directed m-cycles where
Bo=+{1,2,3,....297d — 1,27 % + 7,297 +1,2971d + 2, ...,29d'}.

Let b =r/(29"d’) = 2¢="1a/d'. 1If b> 1, then obtain the path P;( by adding i/ to
the subscripts of every other vertex of Py starting with u,, that is,

Pio g, Ungis, U1, Uspify U2y ooy Und-2gry i U_nd241 1,
Upd=2g 124ty U—2d=2q7 y UDd=2) 1 3 i) U—2d=2g1— 15 -+, UDd=1 14t 5
U_pd-1441, u(i+1)/+1 yUg,s

for 1<i<b — 1. Next, obtain the paths P;1, P;», ..., Py by letting powers of p’ act
on P; in the same way they acted on Pyo. Furthermore, the path P; ; begins at the
last vertex of P; j_; for 1<j <}’ — 1 and the last vertex of P;_; is uy. Thus, for each
i with 1<i<b—1, we have that C; = P;gUP;UP;U--- UP;py_ is an m-cycle,
where the lengths of the arcs of C; are —(1 +it),2 + i/, —(3+it),...,— (2" 'd' —
1+i),297 0 + (i + 1),297 d + 1 +it, — (297 Yd + 2+ it), ..., — (2% + i/). As be-
fore, let C! denote the directed m-cycle obtained by reversing the orientation of all
the arcs of C;.

Let B=+{1+i/,2+it,3+it,....2¢7d —1+i,277'a + (i +1)/,27'd +
1+it,...,2% +i/|0<i<b — 1}. Now the longest arc in B has length b/ 4 27"'a
in absolute value. Since 2°a<2¢d'b’ implies that 2°~%a/a’ + 1<¥/, it follows that

2e=d=lgy 20-d=lqr ¢ 2a+1
bt 424 == qpodly 2 Tt 2t

a a 2 2b
Y _dav) bl o

SO T Tw 27w
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Therefore, the lengths of B are distinct and hence |B|=r/2. Let 4; =
{0'(C)),p'(C}) | 0<i</ — 1} for j=0,1,...,b — 1. Thus, the collection

{%Oa%h ~~~7(gb—l}

is a partition of the arc set of the circulant digraph H = )?(n;B) into directed m-
cycles.

Case 2. Suppose that d = 1: In this case, note that / = 24’ + (2°a + 1) /b’ and each
segment will contribute 24’ arcs toward a directed m-cycle. Define the directed path
Py by

PO,O U UL U U2 U2y s U (g —1) )2 W(a'+1) /25 U—(a'+3) /25 U(a'+3) /25 -+ -5

Ug -1, U—q Uy Uy

Let Py; = [)/(P()‘()), Pyr = pZK(PO’()),..., Pyy_1 = p(b/fl)/(Po‘()), where p is the
permutation from the proof of Lemma 3.4. Since />2d, the internal vertices of
these directed paths are distinct. Therefore, Cy = PoouPyiU---UPyy_1 is a
directed cycle of length m. Let C denote the directed m-cycle obtained by reversing
the orientation of all the arcs of Cy. The family % of directed m-cycles defined by

%o = {p'(Co),p'(CGy) |0<i</ — 1}

is a decomposition of the circulant ?(n; By) into directed m-cycles, where
By=+{1,2,....d,d +2,d +3,...,2d ,/ + d'}.

The family %, uses 4d’ lengths. If r>4d’, then we must obtain another family of
directed m-cycles as in Case 1. However, we cannot add / to the subscripts of every
other vertex of Py starting with u; as was done in Case 1 since both lengths ¢’ and
/ +d are used in Pyo. However, we can add 2/ to the subscripts of every other
vertex of Py without duplicating lengths. We can then add 4/, 6/ and so on as long
as we do not exceed n/2. Unfortunately, this may not use r lengths. This suggests
trying to find a second family of directed cycles arising from another initial path and
then modifying them by adding even multiples of / to the subscripts of every other
vertex. This is precisely what we do.

Define the directed path Qo by

Q0,0 & UY, Ug 115 Ug— £, U 125 Ug—1—£, U 13 v Wa43) 215 Wd/ —(a' 1) /25
u(a’fl)/th u2a’7(a’73)/27 sy W21, ULy Ug s Uy
Let QOJ = p/(Q()’()), Q072 = p”(Qoﬁo),..., QO.b’—I = p(bl_l)/(Q070). The internal
vertices of these directed paths are distinct because />2d’. Therefore, C| =
Qoo Qo1 -+ U Qo1 is a directed cycle of length m. Let C} denote the directed m-

cycle obtained by reversing the orientation of all the arcs of C;. The family &, of
directed m-cycles defined by

€ = {p'(C1).p'(C) | 0<i</ — 1)
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. .. - . .
is a decomposition of X (n; By) into directed m-cycles where

B =+{d+1,/+1,/+2,....0+d -1,/ +d +1,
(+d+2,....0+2d}.

Note that length + (£ + ') appears in %, but not in 4. Similarly, length +(a’ + 1)
appears in % but not in %).

Now we must show that we can modify the preceding two families of directed
m-cycles often enough to use r arc lengths. Recall that r=0(mod4), that
is, e=2.

As previously noted, the family % uses 4a’ lengths. If r = 44’, then we may stop. If
r>4d, then the families %y and %, use a total of 84 lengths. If r = 84/, then we
may stop. If »>8d', then let P,y be the directed path obtained from Py, by
adding 2/ to the subscripts of every other vertex of Py starting with u;. We obtain a
family of directed m-cycles, denoted %, from P, in the same way %) is obtained
from Pgyy. If necessary, we obtain a family %4 from Py by adding 4/ and so on.
We call these é(-based families. We can perform similar operations on P to get
%, -based families.

To show that r arc lengths can be used, we must calculate the maximum number of
times the preceding extensions can be carried out. Since ¢’ <//2 and the longest arc
length used in € is / + &' (in absolute value), if ¥ = 1 (mod 4), we can use %,- based
families (o' — 1)/4 times. If »’ = 3 (mod 4), we can use %(-based families (b’ + 1)/4
times. The longest arc length used in & is £ + 24’ so that if ¥’ = 1 (mod 4), we can
use %;-based families (»' — 1)/4 times, and if 5 = 3 (mod 4), we can use %,-based
families (' — 3)/4 times.

Thus, if » =1 (mod 4), we have (b’ — 1)/2 families of directed cycles. Similarly,
if ¥ =3 (mod4), we also have (' —1)/2 families of directed cycles. Therefore,
we always can use as many as 4d'(b —1)/2=2d'b —2d =m—2d arc
lengths. Since both m and r even multiples of &, and since m>r, it follows that
m-—2d>r.

The preceding argument means we can find a set of arc lengths of the form + A4,
where |+ A| = r, such that X’)(n7 +A) decomposes into directed m-cycles. We use
Lemma 3.4 to complete the proof.

When o = 1, the directed paths Pyy and Qo collapse to Pyo = ug,u;,u_, and
Qo0 = to, tr, u_s. Everything else is done the same. [

4. The case when m is even and 7 is even

When the order of the complete digraph K is even, we no longer are able to use
corresponding results from the undirected case because there the graph involved is
K,, — I instead of K,,. Nevertheless, the methods are similar. In this section, we will
prove the following.
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4.1. Theorem. For positive even integers m and n, with 2<m<n, the digraph K can be
decomposed into directed cycles of length m if and only if m|n(n—1) and
(n,m)+#(4,4) or (6,6).

The result is trivially true for directed cycles of length 2. The result for m = 4 and
m = 6 is proved in [4]. Hence, for the rest of the proof, we assume m>8. Our first
goal towards proving Theorem 4.1 is to determine bounds on the value of n in
terms of m.

4.2. Lemma. Let m=8 be an even integer. If K is a}-decomposable for all even n

satisfying m<n<2m with m|n(n — 1), then K is Fm)—decomposablefor all even nzm
satisfying m|n(n — 1).

Proof. Suppose that K can be decomposed into directed m-cycles whenever m and n
are even, 8<m<n<2m, and m|n(n — 1). Let m and n be even positive integers such

that 8<m<n and m|n(n —1). Recall that Cp | K, for m>8 from [9]. Write n =
gm + r, where 0 <r <m. Partition the vertex set of K into ¢ — 1 sets of m vertices and
one set of m +r vertices. Each subdigraph induced by a set of m vertices is
isomorphic to K, and can be decomposed into directed m-cycles by Tillson [9]. The
subdigraph induced by the set of m + r vertices can be partitioned into directed m-
cycles by assumption since m|n(n—1) implies m|(m+r)(m+r—1). The
subdigraph induced by the arcs between any two of the parts is isomorphic to
K, or K., ., both of which are decomposable into directed m-cycles by Sotteau

[8]. This completes the proof. [

In proving Theorem 4.1, we will always use a central vertex, that is, we will think
of K as the digraph X(n — 1;.8)><{u} where S = +{1,2, ..., (n —2)/2}. Through-

out the rest of this section, the vertices of K will be labelled with ug, uy, ..., u,—2,u
where the vertices of the subcirculant are wug,uq,...,u,_» and u is the central
vertex.

The following lemma is used extensively throughout this section but before stating
and proving it, we would like to introduce some useful notation.

4.3. Definition. Let u,uy, ...,u,_1 be the vertices of a circulant digraph ?(n; A) and
picture them cyclically ordered according to increasing subscript. We then use [u;, u)]
to denote the closed interval of vertices {u;, tiy1, ..., u;}. Similarly, [u;,u;) and (u;, u;]
denote intervals containing only one of the endpoints, while (u;, ;) denotes the open
interval. For example, (u,_>,us] contains the vertices u,_1, uy, Uy, Ua.

4.4. Lemma. Let n be a positive even integer and let ay,ax, ...,a; be positive integers
with 1<aj<ay<--<a,<(n—2)/2. Let A= +{a1,az,...,a,}. Then the circulant

digraph Y(n —1;A0{n/2}) has a directed path of length 2t + 1 from ug to u,, using
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one arc of each of the lengths in A v {n/2} such that none of the vertices in the intervals
(1o, ua,) oF (Upj2,Up/24a,) are used.

Proof. Let P be the directed trail of length 2¢ + 1 starting at uy where the lengths of
the 2¢+ 1 arcs of P are a;,—ap, a3, ...,a,n/2,—a; a;, ...,ay,—ay if t is odd,
or aj,—a,asz, ...,—a;,n/2,a;,—a,1,...,ay,—a; if t is even, and these arcs are
encountered in precisely this order. Since alternating vertices on P starting
with u, will have strictly increasing subscripts while alternating vertices
starting on P with uy will have strictly decreasing subscripts, it follows that
P is a path. Also, since the sum of the arc lengths is 7/2, it must be that the terminal
vertex of P is u,,. Finally, since the first arc of P has length a; while the last arc
has length —ay, it is clear that none vertices in the intervals (uo, ta, ) (U2, Unj24a,)
are used on P. [

Using the same techniques as in Lemma 4.4 and replacing the length /2 with
(n—2)/2, another directed path of length 2+ 1 is created from uy to w2

in Y(n —1;4u{(n—2)/2}) such that none of vertices in the intervals
(o, tta)) O (U(n—2) /2, U(n—2)/2+a,) are used. Similarly, by using the negatives of the arc
lengths encountered on the path P in Lemma 4.4 in the same order and starting at uy,

another directed path is created from ug to u(,_)» in X’)(n —1;,4u{(n—2)/2}) of
length 2¢41 such that none of the vertices in the intervals (u_g4,u)u
(U(n—2)/2—a; > U(n—2)/2) are used.

We now present the proof of Theorem 4.1.

Proof of Theorem 4.1. Let m and n be positive even integers with 8 <m<n<2m and
n(n—1) =0 (modm). Let n =2, a odd, so that n — 1 = 2°a — 1. Let m = 2%a'p’,
where d<e, d' | a,and b'| (2°a — 1). Note that ged(d',b") = 1 since ged(n,n — 1) = 1,
d |n,and b’ | (n — 1). Next, if & = 1, then m | n. Thus either m = n or m<n/2, and
our assumption that n<2m implies m = n. The case m = n is handled by Tillson [9],
and hence we assume throughout this section that 4’ > 3.

As was mentioned earlier, we will use a central vertex, that is, let K =
X’)(n —1;8)e<{u} where S={+1,+2,..., +(n—2)/2} and let the vertices of K
be denoted by ug,up,...u, »,u. The proof proceeds as follows. We create one
directed m-cycle by taking a directed (m — 2)-path, formed from m — 2 arcs of
distinct length, together with arcs through the central vertex u. This directed m-cycle
is rotated through all n — 1 positions, using the permutation p = (uou; - t,—2)(u),
thereby using all arcs incident with u and all arcs of the m — 2 distinct arc lengths.
The number of unused arc lengths is then

m=2)—(m—=2)=n—m=2°02%—db).
Next, we partition the n — 1 vertices {ug,uy, ...,u,_2} into b’ segments, each of

which has / = (2¢a — 1) /b’ vertices. Each segment will contribute 2?¢’ arcs toward a
directed m-cycle. Therefore, the number of distinct families of directed m-cycles we
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need to construct is given by

pon-—m 24(2¢7dg —d'b') 2% —d'b

2dg T 24dq a ’

and observe that F<b' since n — m<m.

The overall strategy is to choose the latter families first and then show the m — 2
lengths remaining can be ordered to form a directed path. Using this directed
(m — 2)-path and the central vertex completes the decomposition.

Since 29a'p' = m<n — 1 =2°a — 1, dividing both sides by #' yields 27¢' < (2¢a —
1)/b’ = ¢. Thus, the number of arcs a segment must contribute is strictly less than the
number of vertices in the segment. Case 1. Suppose that F = 1: First we want to
show that 2%¢' =2 is impossible. If 27%¢’ =2, then d =1 and &’ = 1. From the
assumption F = 1, we have

e—d /1!
1 :#: 2 g~}
Thus, b’ =2¢"'a— 1. Sincen — 1 = 2°a — 1 and ged(2°a — 1,27 'a — 1) = 1, we have
that gcd(n — 1,b') = 1. However, since ' | (n — 1), this implies that 5’ = 1. We have
already seen that b’ = 1 gives m = n and that we are done in this case. Hence, we
assume that 27’ >4 when F = 1.
Define the directed path Py as follows:

P() U, UL U U UDy M?(zd—laril), Upd—14, u(b«+1)//2.
Then

Co=Pyup’(Po)u--wp? V()

is a directed m-cycle since ged(d’, (b’ +1)/2) = 1. This is the only directed m-cycle
required as F = 1.

The family {Cp, p(Cy), ..., p"~'(Co)} is a decomposition of the circulant X (n —
1; B) into directed m-cycles where

'
B= {1,—2,3,—4,5, o —(2%d = 2),24d — 1,@-26’—‘5/}.

Thus what remains is to find a directed m-cycle decomposition of the digraph
Y(n — 1; S\B) ><{u} where

2

— /_
U+ ({2da’,2da’ +1, ...,n 5 2}\{(b 3 1){+2d_1a’}>.

Note that |S\B| = m — 2 and that the sum of the lengths in S\B is (' — 1)¢/2.

b —1)
S\B = {—1,2, —3,4,-5,....2% — 2, —(2%d — 1),4( ) +zd1a/}
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From Lemma 4.4, there is a directed path P from ug to u,_»)/> such that P has

exactly one arc of each length

2

-1 '~
i(u—i—Zd1a'+1),i((b%+2d1a'+2>7...,

b -1/
+29d, + (2% + 1), ..., + (¥+2d1a' - 1>,

2
t(n—4)/2,(n-2)/2

and uses none of the vertices in (u_yiy, to) U (U(y-2) /2244, Un—2)/2). We now wish to
augment P so that each of the remaining lengths is used. Consider the trail P’ where

>
PPt ) o adqrg 1 Un—ay)2, U—1, U_(2d g2y, U—2, U_(2d_3),

U3, ooy U_d-tg 1), U_pd-1g, U(p'—1)7 /2,

where the last 29’ + 1 lengths encountered on P’ are

— (24 —1),29d' — 2, —(n—2)/2,— (2% — 3),2%' — 4, ..

' — 1)/
—

)

— 1,27 +

To show that P’ is indeed a path, we need only show that the vertex ug_yy//» lies in
the interval (u(,_2)/2 2dg+1; U(u—4)/2)- Thus, it suffices to show that

n—

2 W -1 n—4
B RV (P LA .
a+1< 3 < >
Since 4<2%a’' </, we have that />5. Hence (n — 1) —/ = bt — ¢/ = (b' — 1)/ <n—4
or (B — 1)//2< (n — 4)/2.
Next we show that

n— ¥ — 1)/

2
_2d / 1
a+1< 5

n-2 (-1 /-1
2 2 o2
and thus the proof of Case 1 is finished provided we show that (¢ — 1)/2<2%’ — 1.
We know that n—1<2m—1, or /b <2%1d'b' — 1. Thus /<2¢"'d —1/b, or
{—1<2¥ — (B 4+ 1)/b'. Hence
(=1 ., b4l
— <2% — o
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and since (/ — 1)/2 is an integer, we have

/-1
Tszda'—l.

From the last inequality, we need only show (£ — 1)/2%#2%a’ — 1. Suppose, to the
contrary, that (/ —1)/2 = 2%a’ — 1. Since F = 1, we have that n — m = 2%@’. Using
the fact that m = 294’ , we obtain n = 29a’ + 2¢d'b'. Since (¢ — 1)/2 = 29d’ — 1 and
n=>0¢+1, we have that n = b'(2"'a’ — 1) + 1. Thus

2da/ + zda/b/ _ 2d+1a/b/ _ b/ + 17
or
294 — b =244 — 1,
or
b (2% —1) =2 —1.
Since 29a’' >4, it must be that »’ = 1, producing a contradiction.

Therefore, P’ is indeed a path of length m — 2 and can be completed to a directed

m-cycle C:u,P',u. Thus {C,p(C),p*(C),...,p" 2(C)} is a decomposition of

?(n — 1; S\B) ><{u} into directed m-cycles.
Case 2. Suppose F is odd and F>3: First, since F is odd, we have that n =
0 (mod 4) and e>d. Suppose first that d> 1. Let Py be defined as follows:

Po 1o, iy 2 U1, U240 42) /25 -5 U220 1),
Un—2d=1g'=2) /2, U_(24-2g' 1) U(n—24-14") 2, U—(24-24'12) 5
Up—2d-1g/42) /25 ===y U_2d=1415 U(n—2) /2, U(br +-1)/ /2"
In the case that d = 1 and d' > 1, let
Py FUO, Un—2a') 2y U—15 U(n—2a'42) /2, U—25 v vy Un—a'=3) /2y U—(a'~1)/25
Un—a'—1)/2) U—(a'+3) /2> U(n—a'+1) /2> U—(a'+5) /2>
Un—a'+3)/25 +++y U—a's U(n—=2) /2, Uy +-1)£ /25
and in the case that d = 1 and @' = 1, let Py = uo, t(y—2) /2, U(pr41)¢)2-
The last arc in Py has length (/4 1)/2 and the preceding arc has length —(n —

27a) /2. As long as (£ +1)/2<(n—27d')/2, the vertices are distinct. To verify this
inequality holds, recall that 294’ </. Thus,

n—290>n—t=0 -1 +1>(+1,

since ' =3 and n = b'/ + 1. So Py is indeed a directed path.
Since Py starts at up and terminates at ugy1)//2, we have that

CO = POUP/(P())U Up(bl—l)/(PO)

is a directed m-cycle. Note here that the internal vertices of the paths p’(Py)
are pairwise disjoint since (V' +1)//2—2"'d'>(n—2)/2 and (n—2%d)/2>



180 B. Alspach et al. | Journal of Combinatorial Theory, Series A 103 (2003) 165-208

(' — 1)¢/2. Thus {Cy, p(Co), ..., p" "' (Co)} is a decomposition of X (n — 1; 4) into
directed m-cycles where

A={+n-2%)/2,+(n—-2% +2)/2, ..., +(n—4)/2,(n —2)/2,(/ + 1)/2}.

Fori=1,2,...,(F —1)/2, let Py;_; be the directed path of length 2?¢’ defined as
follows:

P2i71 U, Uip 41, U1, Ujp 42, U2y ooy Ujpypd-1g 1,
U_(d-1g -1 Ujr420d-1a, U/ +1)2 /2
Then Cy 1 = Py 1Up’(Pyi1)U--up® =D/ (Py_1) is a directed m-cycle. Let t be
the permutation fixing uy and mapping u; to u_; for 1<i<(n—2)/2. Let Cy =

(Cyi—y) fori=1,2, ..., (F — 1)/2, and let B denote the set of arc lengths used in the
directed m-cycles Ci, C,, ..., Cp_1; thus

B:i{i/+1,i/+2,...,i/+2da’—1,

(b —2i+ 1)/

3 2d‘a’|1<i<(F1)/2}.

We now show that all of the arc lengths used in the directed m-cycles
Cy, Cy, ..., Cp_; are distinct. It suffices to show that
(b — Z(FT_I) + 1)/
2
for any j and o with 1<j<(F —1)/2 and 1<a<2%’ — 1. Thus, suppose to the
contrary, that
(b — F)¢
2
for some j (1<j<(F —1)/2) and « (1<a<2?d’ —1). Then, clearly, / —2%"'d' =
« (mod /), and since <29’ — 1</, it follows that / — 2¢7'd’ = . Therefore, (b’ —
F)/2 =j. This implies that / —29"'a’<2%’ — 1 and (b’ — F)/2<(F —1)/2. Now
the second inequality implies that (b’ 4 1)/2<F, and the first gives /<3 -2¢71d’ — 1,
or '/ <347'a'b) — b, or n<3(297'a'b) — b + 1, or 2n<3 - 294’ — 4 since b’ > 3.
Dividing both sides by 2%’ yields

2e—d
2( ~ “) <3 -1

since 2(2¢"“a/d’) is an integer. Thus 2(F + b')<3b' — 1 which implies F< (V' — 1)/2,
contradicting the fact that (b’ + 1)/2<F. Hence, all lengths used in Cy, Cs, ..., Cr_;
are distinct.

We still must show that 4 " B = (), that is, we must show that none of the lengths
used in Cj are used in Cj, Gy, ..., Cr_;. The undirected lengths of C, start with
(n—2)/2 and decrease successively by one until reaching n/2 —29"'d’ and also
include the isolated length (/+1)/2. The longest undirected length in

27 il + o

+/ =27 =j/ +a
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Ci,Cs, ..., Cr_y is either (F—1)//2+2% —1 or (b —1)//2 —29"'d'. The latter
quantity certainly is less than n/2 —297'a’. The former quantity is less than
n/2 — 29714 as well since 2?a' </ and n — m<m = 2¢a'b’ implies b’ > F, that is, since
Fis odd, F<b' — 2. As far as the isolated length (£ + 1)/2 is concerned, the shortest
length in Cj,Cy,...,Cry is £+ 1 since (b —F+2)//2—29"1d>3//2, which
certainly is greater than (£ +1)/2.

Then, the collection {C;, p(G;), ..., p" "1 (C;) | 0<i<F — 1} is a decomposition of
)_(>(n —1;AUB) into /F directed m-cycles. To complete the proof of this case,
we must show the remaining m — 2 arc lengths can be used to form a directed
path P’ of length m —2. Then, letting C:u, P',u gives the decomposition
{C,p(C),...,p"2(C)} of X’)(n — 1;8\(AuB))><{u} into directed m-cycles. There
are two subcases to consider.

Case 2.1. Assume / = 3 (mod 4): Start a directed path Q; as follows:

O UL U 1) )25 U 43) )20 U(r—1) )25 W(£45) /25 -+ U(3/—1) /45
U(/45) /4, U(3r43) /4 U(r—3) /4, U(B/+7) /45 -5 UL, Ury U
Note that Q; uses all vertices of the interval [ug, u/,1], except u(,1y/4, and uses arcs of
lengths

l/=3¢0—-1 (4+1 (43045 (47

17_2737_41“" P ) P ) 2 ) P ) P ) P y ..

=1,

In the special case that / = 3, let Oy : ug, ua, us, up.
The sum of the lengths not used in Cy, Cy, ..., Cp_y is (b’ — 1)//2. Let

B {—=1/44+30+5 (/+1)
T_J_r{l,z,..., SRR ,...,/}u{— 7 }

and let & = S\(AuBuUT). The sum of the lengths in ¥ is —(n — 2)/2 = n/2 and the
shortest length in % is at least / + 2¢a’ >/ 4 1 since F > 3. Using Lemma 4.4, we can
find a directed path P from ug to u,/, such that P has exactly one arc of each length
in Z and uses none of the vertices in the intervals (uo, ty42iy) and (U2, Uy /24 r1240)-

Now, we must use the small lengths of 7 not used in Q;. The completion is the
directed path

Q2 U2y Un oy £y Unj2 s Unjas /1 +oos WQnt£—3) /s U(2nt3043) /4>
UQntr+5) /4 UQnt30—1) /45 <+ U +1)2 /242 U(b'+1)/ /241 -

Letting P’ : Oy, P, O, gives the desired directed path of length m — 2.
Case 2.2. Assume Z = 1 (mod 4): Since / = 1 is impossible, we may assume ¢ >5.
In this case we define Q) to be the following directed path:

01 tupq, Ur1) 2, U(=3) /2, U(£+3) )25 U(r—5) /25 -+ U(3/-3) /4>

Ur—1)/4, U(30+5) /4, U(r=5) /45 - UL, Uy, U
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Note that Q; uses all vertices of the interval [ug,u/ 1], except u_1)> and u,y1))4,
and uses arcs of lengths

/-1 (417043 (+5

-2,3,—4, ... ..
737 ) ) 2 ) 2 ) 2 ) 2 )

=1,

Let ¥ and T denote the same sets of lengths as in Case 2.1 and again let P be a
directed path from uy to u,/, such that P has exactly one arc of each length in ¢ and
uses none of the vertices in the intervals (o, t/,2iy) and (U2, U241 244)- To use the
remaining lengths in 7, consider the directed path

Q2 SUnj2s Un ot s Unf241s Unjos—15 o Un/2)+(30+5) /4 Un/2)+(£—1) /4>
Un/2)4(£43) /4 Un/2)+(B0+1) /45 - s Ud (b +1)2 /25 Ul (b +1)2 )2+

Letting P’ : Qy, P, O, gives a directed path of length m — 2.

Case 3. Assume F is even: We have to make certain the sum of the arc lengths not
used in the construction of the directed paths for the F families of directed m-cycles
is not zero modulo n — 1. It was easy to do for odd F by using a single directed path
and taking the rest of the directed paths in pairs which used all the plus—minus
lengths in some set of lengths. We cannot do this for even F. Instead, we define two
directed m-cycles such that the union of the arc lengths in these two directed cycles
does not sum to zero modulo n — 1. When F >2, we obtain the remaining directed
cycles in pairs as before.

Another unfortunate aspect of the even F case is the existence of more cases to
consider. The first division into two main cases arises from the relationship between
/and 3-2971d — 1.

Case 3.1. Assume /<3 -29"'ad’ — 1: Earlier we saw that this assumption implies
F< (b —1)/2. Since F>2, we know b’ =5 and F<b' — 3. We now consider several
subcases depending on F.

Subcase 3.1.1. Assume that F = 2: If d = 1, let Py and P; be the directed walks of
length 24’ defined as follows:

Po cutg, uy, Uy, Un, Uy s Ui —2) 25 U (/—ai—2) )25
Up—a'42) )2, U= (/=) )2y U/ —a+4) )2y ++ s U—(a'—1), Ua'+1, Ut
and
Pyocug, vy, uy, un, o U (g 2) )25 U —2) )25 U (0 —at) )2
Uf—a'+2) )2y U—(/—a'+2) /25« s Ua' s U—a' s U 1)/ /25

while if d>2, let Py and P; be directed walks of length 2?¢’ defined as follows:
Po sug, up,u_y,u, U, oo Ui g1y 2, U (f—2d-1 1) )25
Up—24-1013) )20 U— (1201014 1) )25 (/=241 +5) /25 -+ + s U— (2= 11— 1)»

Upd-1g141, Uz,
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and

Pyocug, vy, uy, un, e Ui a1 g3y 2, U (f 20112

u(/,zzma/ﬂ)/z, M?(/72(1—1a1+1)/2, ceey Upd-1y, U_nd-14, u(b/_l)//z.

Both Py and P; are directed paths because the condition / <3(2d‘1a’) -1
implies / —29'ad' <2%4’. Let Cy= Pyup’(Py)u---up? -V (Py) and C; =P,y
p/(P1)u---up®=V(P)). Let A4 denote the set of arc lengths used in Cy and C,
that is,

A=+{1,2, .../ % + 1),/ — 2% - 1),...,2%"

/_
U {/ - 2d’1a',w + 2d1a'}.

Thus {Ci,p(C)), ...,p"(C;)|i=0,1} is a decomposition of X (n— 1;4) into
directed m-cycles.

The sum of the unused arc lengths is (»" — 1)£/2 so that finding a directed path P’
of length m — 2 using the remaining arc lengths is feasible. Then letting C : u, P',u
gives the decomposition {C, p(C), ..., p"2(C)} of X’)(n — 1;8\4) < {u} into directed
m-cycles. Before continuing, note that /=27’ + 1, or 2/ — 29a’>/ + 1, and hence
(+1)/2<t —2071d.

Suppose first that (£ + 1)/2</ —2971d. Let

P = &(Au{—w -1 ! ; 2, —(¢ - 2d—‘a’)}>.

By Lemma 4.4, there is a path P from uy to u,/, such that none of the vertices in the
intervals (ug, trag 1) and (U2, Uy2424041) appear on P and P has exactly one arc of
each length in . Consider the directed path O : u(y1)/2, U 42)/—2004+1) 25 Ur—2d-1ars
up, and note that Q is a path since (£ + 1)/2</ —2971d’. Let P’ denote the directed
trail obtained by appending Q to the beginning of P. Now P’ will be a directed path
as long as u(y 2/ 210 +1)2 € (Un)2, un/2+2‘1u’+1)’ and w(zy1)/2, Uy a1 € (U0, Upig 41 )-
Since (£ +1)/2<¢ —29"1'a' <294, we have U(/11)/2, Uy —2i-1 g € (o, Upag 1) Next

(b +2) —29d + 1 _ (b’+1)/+{+1_2d_,a,
2 2 2 ’

and since

n (B -0 (41 (B 1)

2T 2 TS
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and 294’ </ +1<3-2971d, we have

RS A Sy

257 2 2
NGV ANER! a1
—( 3 + 3 /—2""a
<g+2da’.

Thus, w2y, 240 +1)/2 € (Un/2: Unj2 1200 11)-
When / =29 +1, we have (b —1)//2+29"'d = (n—2)/2 and (/+1)/2 =
¢ —2171d . Let

e
B d . d n—4 _n—2
i{(2a+l),2a+2,..., 3 }u{ 7 }

By Lemma 4.4, we can find a directed path P from ug to u,; such that none of the
vertices in the intervals (uo,u,) and (u,/>, u,/>4,) appear on P and P has exactly one
arc of each length in . Letting P’ be the directed path constructed by placing the
arc from u(,,1)> to ug at the beginning of P gives the required directed path of length
m—2.

Subcase 3.1.2. Assume that F is even and F>4: Fori= 1,2, ..., (F —2)/2, define
Py; by

Poi s thg, Uigp1, Uy, Uigi2, U2y oo s U a1 1), Uit yifs U —1)/ )2

As in Case 2, let Py =1t(Py) for i=1,2,...,(F—2)/2. We again have two
isolated paths whose definitions are given by

Py : U, Uy —3) /241, U—15 U(p—3) 7 /2425 U=25 «- o s U_(2d=1g7 1), Uy —3)/ )24 24~ 0 s U—¢
and

Py ocug, u_y_3)yrp—1, Ut Uiy —3)7j2-2, U2,y -+,

Upd—1g1 1, U_(pr—3)¢/2—24=1 g s U +1)/ )2+

Recall that ' > 5 so that all the preceding constructions produce directed paths. In
the usual way, define C;: P;up/(P;)u---up®=V/(P) for i=0,1,...,F — 1, and
observe that each C; is a directed m-cycle. The sum of the arc lengths used in
Co,C1, ...,Cr_y is (' — 1)//2 so that the sum of the unused arc lengths is (&' +
1)//2. We now show that arc lengths used in constructing Cy, Cy, ..., Cp_; are
distinct. Let 4 denote the set of arc lengths used in Cy and C; and B denote the set of
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arc lengths used in Cy, C3, ..., Cp_1, that is,

/ /I /o
Azi{(b 3)/+17(b 3)/+2,...,7([7 3)/—1—2(]6/—1}

2 2 >
o{=e-2a - (T 20

(b —2i— 1)/
2

and

F-2
B=+ {i/Jr il +2,...,it +2% — 1, — 24714 lgigz}.
Now F< (b — 1)/2 implying that F —2< (b’ — 1) /2. First, consider the set of arc
lengths in B. If two lengths coincide, then, for some i and j with 1 <i,j<(F — 2)/2,
we have

(b —2i— 1) — 2%
2
This implies 1< (0" — 2i — 3)/2<(F —2)/2 which gives ¥ — (F —2) —=3<F -2, or
F>= (¥ +1)/2, producing a contradiction. Thus, all lengths in B are distinct.

Clearly, the arc lengths in A are distinct, and thus it remains to show that An B =
(. The shortest undirected length in Bis either # 4+ 1 or (' — F +1)//2 — 297'd’, but
since F<b — 3, the second value is at least 2/ —29"1'a’>/+1. So / +1 is the
shortest undirected length. The shortest undirected length in 4 is # — 27~'a’, which is
strictly smaller than 7 + 1.

The longest undirected length in B is either (F — 2)//2 +2%a’ — 1 or (b' — 3)//2 —
29-14'. The arcs of A4, other than / —29"'a’, have undirected length at least (b’ —
3)¢/2 + 1, which certainly exceeds (b’ — 3)¢/2 — 297'd. Since F<b' — 3 and 2¢d' </,
we have

(F—2)/
2

Finally, the longest undirected length used is (b’ —1)//2 +29"'d’ which is at
most (n—2)/2. Therefore, all the arc lengths in AuB are distinct and
{Ci,p(C)), oo, p’~1(C)) |0<i<F — 1} is a decomposition of X (n— 1;4UB) into
directed m-cycles.

The rest of Subcase 3.1.2 consists of showing that the remaining arc lengths may
be used to form a directed path P’ of length m — 2. Then, letting C : u, P', u, gives the
decomposition {C, p(C), ..., p"2(C)} of X’)(n — 1;8\(4u B)) < {u} into directed m-
cycles. There are several subcases. First, we consider the case when 24g) < ¢ — 1. Let

T= i—{l,2, ...,/*2‘]7141'7 ]}U{fizdflal}u

e{jt+1,j0+2,...j/+2% —1}.

v —5)¢

/_
—|—2da'—1<T—|—2da/—l<u

+ 1.

+{/ =27 + 1,/ =21 +2,..../ 0

-0 ., n—2
{5 a2
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and let ¥ = S\(AuUBuUT). The sum of the arc lengths in % is n/2. By Lemma 4.4,
there is a directed path P from u to u,/, which uses all the lengths of . and avoids
vertices in the intervals (uo, Uy 24 ) O (Unj2; Uy 2444240 )- The object now is to use the
lengths in T to complete P to the directed path P'.

Suppose first that d = 1. Let Q; be the directed path given by

Ql CUnj2s Unjot—ar s Unj2 420 —a s Un )24/ —a'+15 Un 2420 —a' 15

Unor—a 425 -+ Unt20—a' =1) )25 U(ntdl=3d'+1) )25 U(n+20—a'+3) /25
Untdr—3a'—1)/25 -+ Unt3/-2a'+3) /25 U(n+3/=2d'+1) /25
and note that the lengths of the arcs on Q; are / —d',/,—(/—1),....0 —d +
IL,—((—d -1),/—d —2,...,—1.
Also since

n _d =" _a <" /
2+2/ af2+/+(/ a)<2+/+2a

(because /< 3d’ — 1), all of the vertices of Q lie on the interval [u, 2, Uy /21 /424 ). Next
let O, be the directed path given by

O2 T Ui 37200 +1) )25 Ur 1, ULy Upy Uy ooy Uy (0—3) /25 U £1) /25
Up—(@+1)2) W@ +3) /25 s U(r43) /2, U(r—1) /2, U(£+1) /25 U(b +1)/ )25
and observe that the lengths of the arcs on Q, are (V' —1)//2+4d',—¢,( — 1,
(6 =2~ —d + 1), —d —1,—({ —d —2),...,1,(n— 2)/2. Next,
n (V+1) b0 (¢ n ,

since @' <//2. Thus u1),/» does not appear on Q;. Hence the directed path P :
P, 01, 0> has length m — 2 and contains an arc of each length in S\(4u B).

We now move to the case when d>2 and recall we are assuming 29’ </ — 1. In
this case, much of the directed path P’ is the same as the one constructed when d = 1.
As before, by Lemma 4.4, there is a directed path P from ug to u,/, using all lengths
in % and avoiding vertices of (uo, s riy) and (U,)2,/2474210). We now wish to
augment P so that each length in 7 is used. Let Q; be the directed path given by

O 2y, Upj24r—20=1a s Un /2420201 s Un )24/ =201/ 415 ++ -5
Up 24203242041 Un /242420 s Up )2 42/ ~3.24-2a — 1
Upjopt—24=2a 115+« Ung:30=24a'=3) /2> U(nt-3/-24a'+1) /25

and observe that the lengths encountered on Q; are /—29"'d /,—(/—1),

(=2, .., —( =27 + 1), -2 —1,—(¢/ —29"'d —2),...,-3,2. As before,

since /<3-2971d’ — 1 implies n/2 4+ 2/ — 2971’ <n/2 + ¢ + 29d, all the vertices on

Q) lie on the interval [u,), U, /5. s424,). Next let Oy be the directed path given by
Q2 U3/ 20q41) )2y U1y ULy Upy Uy oy Und2gy Uy a2 41y Uy _2d2g1

Upd—2g 1y Up_2d-2g/_ 15 «+v s U(/43) /25 u(/_1>/2, u(/+1)/2, u<b/+1>,/2.
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The lengths of the arcs on Qs are (b —1)//2+29"\d,~£./ —1,—(£ =2),....,{ —
2171g 41, —1, — (¢ =297 'd — 1),/ — 2971’ — 2, ..., 1. Using the same techniques as
in the case when d = 1, it is easy to verify that P’ : P, O, O is a directed path of
length m — 2 containing an arc of each length in S\(4uU B).

We now move to the special case when 29¢' = / — 1. We have seen previously that
this condition implies / — 2971’ = (/ +1)/2 and ((b' — 1)/ +2¢d")/2 = (n —2)/2.

Let
‘-1 /+1 (+3 7045
T = i{l,z,,T}U{T}Ui{T,T,/},

and let & = S\(AuBuUT). The sum of the arc lengths in ¥ is (n — 2)/2, and note
that the shortest length in % is 2/ — 1. The proof of Lemma 4.4 allows us to
interchange the roles of n/2 and (n — 2)/2, and thus there is a directed path P from
uo to u(,—) /> using all lengths in £ and avoiding vertices of the intervals (uo, u2/ 1)
and (u(,—2)/2, Unt4/-4)/2)- To complete the proof of Case 3.1.2, we need to use the
lengths in T to complete the directed path P to a directed path P’ using all m — 2
lengths.

Suppose first that d = 1, which implies # = 3 (mod 4). Let Q; be the directed path

O : Ur1) /25 U(r43) 20 Wt =1) )25+ s U(+5) /45 U(3043) /4>
Ur=3)/4s UBr47) /4 U(L=T7) /4y -+ U Up-
The lengths of the arcs on Q) are 1, -2, ..., (/= 1)/2,—(/+3)/2,(/ +5)/2, ..., =/,
and the vertices of Q; lie in the interval [ug, ua,—1). Next, let Q> be the directed path
0, Un-2)/2s Urp(n=2)/25 Un/2s Ur g (n—48) /25 -+ s U2n+l—T) /4 U(2n+30-1) /4>
Untr41) /4 U2nt30-5) /4y s Unt0=3) /25 Unt+-0+1) /25 U(nt-0=1) /25 Ur4n)2-
The arcs lengths encountered on Qs are £/, —(/ — 1),/ =2, ..., (£ +3)/2,— (£ = 1)/2,
(¢—=3)/2,—(¢—=95)/2,...,—1,(/+1)/2, and the vertices of Q, lie entirely in the

interval [u(,_») /2, U(s—2) /2+2/_1). Thus, P’ : Oy, P, O, is the required directed path.
Now suppose d>2, which gives / = 1 (mod 4). Let Q; be the following directed
path

01 U2, U(r=3) )25 U(43) /25 -+ U(r43) /4, U(31=3) /45
U(r—1)/4, U(3+5) /4, U(r—5) /45 -+, Uy U
and note that the lengths encountered on Q; are —2,3,...,(/ —3)/2,—(/ —1)/2,
(/+3)/2,...,—¢, and the vertices of Q lie in the interval [ug, us,—1). Next, let Q> be

the directed path
0O Un—-2))2) Ut (n—2)/2> Un/2> Ul (n—d) /25 « -+ s U2nt£-9) /4>
Unt3/+1) /4> UQ2ntt-5) /4 Unts—1) /4> U(2nt-30-3) /45> U(2n+043) /45

Un430=T7)/4s -+ U(ntr=3) )20 Untr+1) /25 Ynrt—1) )25 U2
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Now the arcs lengths encountered on Q, are /,—(¢/ — 1),/ —2,...,({ +5)/2,—({ +
3)/2,1,(/-1)/2,—(£—3)/2,...,—1,(£ + 1)/2, and the vertices of O, lie entirely in
the interval [u(,—2)/2, U(n—2)/2+2/-1)- Thus, P': Q1, P, 0, is the required directed path
thereby completing the proof of Subcase 3.1.2.

Case 3.2. Assume />3 - 27~1¢': This inequality and the fact that F + b’ = 2°"%a/d
imply F>b'/2. Thus, when F = 2 it follows that #’ = 3. This, in turn, implies 2¢a' >4
since we are assuming m>8. The arc lengths used in the construction of the F
directed paths of length 2%¢' appear complicated, but have been chosen so the
absolute values of the lengths are sequential when d = 1 and nearly sequential when
d>=2, and yet still sum to —7.

Subcase 3.2.1. Assume that F = 2: As noted earlier, this implies that 5’ = 3 and
2¢¢/ > 4. Suppose first that d = 1. Then 24’ >4, that is, @’ > 3. Let P, be the directed
path of length 24’ defined by

Po iU, Ui —3042) /25 U—15 U(r—3a44) )25+ s U (1), U(0—ar) 2, U~ -

Recall that 7 is the permutation fixing uy and mapping u; to u_; for all 1<i<
(n —2)/2. Let P; be the directed path of length 24’ obtained from t(Py) by replacing
the last arc from wu_(_4)» to u, with the arc from u_y_uy» to u_,. Let
Co: Pyup’(Po)up*(Py) and Cy:Pyup’(P)up*(P1). The directed cycles C,
and C) have length 64’ = m and arcs with lengths in the set 4 where

A+ {—3d +2 ¢ —-3d +4 {4+d —2 O 3 —d (4+d
T 2 ’ 2 Ty 2 2 2 '

Clearly, the lengths used in constructing C; and C; are distinct, and thus
{Ci, p(Cy), ..., p"1(C;)|i=0,1} is a decomposition of X (n— 1;4) into directed
m-cycles.

The rest of the case when d = 1 consists of showing that the remaining arc lengths
may be used to form a directed path P’ of length m — 2. Then, letting C : u, P', u gives
the decomposition {C,p(C), ...,p" 3(C)} of X’)(n — 1;8\4) < {u} into directed m-
cycles. Now, the sum of the arc lengths in 4 is Z so that the sum of the remaining arc
lengths is 2/ since b’ = 3. Let

/ —3d {+d 3 —d n—2
rein S O Y )

and let ¥ =S\(AuT). Note that (n—2)/2=(3/—1)/2 so that (n—2)/2+#
(3¢ —d')/2 because ¢’ >1. The sum of the arc lengths in ¥ is n/2, and the
shortest length in absolute value is (£ + ¢’ + 2)/2. By Lemma 4.4, there is a directed
path P from ug to u,, using arcs of all the lengths in ¢ and avoiding vertices in the
intervals (uo, t(/+q)2] and (U)o, Unisiay2). We now show that the remaining arc
lengths, the elements of T, can be used to complete P to a directed path P’ of length
m—2.
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First extend the directed path P by appending the directed 2-path
Un)2s Untt+a) )2 Ul +a') )2

using arc lengths (£ +d’)/2 and (n —2)/2. We complete the directed path in two
different ways depending on the parity of (£ — 3d’)/2.

When (¢ —3d')/2 is even, complete the directed path to P’ by appending the
following directed path:

Ura) )2, W2a s U(l+a'=2) )2, U2d'+ 15+ o s U(/15a+4) /45 (/450 —4) /45
Ur45a) /4 Un)24-(/+3d =2) /45 Un/24- (30 —3d' =2) /4 Un)24-(/+3d/+2) /4>

Un /21 (3¢-3d—6) )45+ s Untr=3))2> U(ntl41) /25 U(ntr—1)/2-

When (£ —3d')/2 is odd, complete the directed path to P’ by appending the
following directed path:

U+a) )2, W2a s U(a=2) )25 U2 +-15 o+ U450 —6) /45 U(0+5a/+2) /4>
Ur5a'—2) /4> Un /2 (0 +3a'—4) /4> Un )2+ (30 —3a'—4) /4> Un )2+ (¢ +3a) /4>

Un/2+(3¢-3a'=8) /4> -+ Unt+l+1) /25 U(nt+r-3) /25 U(nt+-1) /2

It is easy to verify that P’ is indeed a directed path of length m — 2 containing an
arc of each length in S\A4.
Now suppose that d>2. Let Py be the directed path of length 2?4’ defined by

Po cuo, iy 300104 1) )2, U=15 U(s 3001043 )25
U2y ooy U_(2d-1g 1), Up—pd-1g—1) /2, U~ -

Let P, be the directed path of length 29¢’ obtained from t(Py) by replacing
the last arc from u__yi14_1)2 to uy with the arc from wu_i_si1y_1), t0 Uy

Let Cy = Pyup’(Py)up¥ (Py) and Cy = Pyup’(Py)up? (Py). Then {C;, p(C)), ...,
p/1(C;)|i=0,1} is a decomposition of X (n—1;4) into directed m-cycles
where

3 , 3 5
30 =211 —1 (42914 + 1
U 3 s 3 .

_ .25171/ 1 _ _2d71/ 25171 !
A:i{/ 3 a+1s-3 a+3 {4+ a 3}

The rest of the case when d >2 consists of showing that the remaining arc lengths
may be used to form a directed path P’ of length m — 2. Then, letting C : u, P, u gives
the decomposition {C,p(C),...,p" *(C)} of )_(>(n —1;8\A4)e<{u} into directed
m-cycles.



190 B. Alspach et al. | Journal of Combinatorial Theory, Series A 103 (2003) 165-208

The sum of the arc lengths in 4 is / so that the sum of the unused arc lengths is 2/
since b’ = 3. Let

(—3.24"1g | f 42471 — 1
T=4+1.2, ...
_{ )~ b 2 b 2 }
g 3 =201y — 1 /424 + 1 n—-2
2 ’ 2 2 [

and let # = S\(AuUT). The sum of the arc lengths in % is n/2, and (£ +2¢7'd’ +
3)/2 is the shortest length in absolute value. From Lemma 4.4, there is a directed
path P from uy to u,; containing an arc of each length in ¢ and using none of the
vertices in the intervals (uo, Uy 42d-1441)2] And (U2, Ugnis 4241041y 2)- We now show
that the remaining arc lengths in 7" can be used to complete P to a directed path P’ of
length m — 2.

First extend the directed path P by appending the directed 4-path

Up)2s Ut /42410 +1) /2 U(nt2) /25 ULy U(r424-10041) /2
using arc-lengths
(4270 1 —(0+ 27 ) n—2 42971 — 1
2 ’ 2 T2 2 '
The continuation now depends on the parity of (#/ —3-29"'a’ — 1)/2. When the
latter value is even, continue with the directed path

U 2d-1011) 25 Wad @415 U(r124-100 1) /2 Udar 425 -+

Ur45.20-101—1) /4 U(/ 45241 13) /4

which uses lengths —(/—3-29"'¢ —1)/2, (/-3-2'd —3)/2, — (/-3
201" —5)/2, ..., 1.

Next, let P’ be the directed path established thus far together with the
continuation:

Uf4+520-10'43)/4s Un)24((+324\a'—1) /4> Un/2+(30—-3-20-1a'=3) /4>

Up 24443241 a'+3) /4> Un )24 (30 =324 a'=7) /45 - -+ U20+1, U/
using arc lengths (3/—2%"'a' —1)/2,(¢/ —3-297'd —1)/2,—(/ - 3-27"1d —
3)/2,(¢ —3-24"'d —5)/2,...,—1. Since n — 1 <2m, it follows that /<29*'¢’. Thus

3¢ —3.2971¢ —3<2/ +2% +2,and d>2 and />3 -2971d gives 3/ — 32914 —
3>4 so that Up/21(3¢-324-10—3)/4 € (u(,1+2)/2, u(n+(+2471ar+1)/2). Next (/+3- 24-1 _
1)/4> 1 since 3- Zd_la/>6. Thus, Up /24 (/4324-1a/—1)/4 € (u<n+2)/2, u<n+/+2d71ar+1)/2).
Hence P’ is a directed path of length m — 2 containing an arc of each length
in S\A.

When (¢ —3-2971¢’ — 1)/2 is 0dd, the continuation of P is close to what was just
done. The first portion terminates at u(,ysyiip41y/4 instead of wuysoi1443)/4,
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and finishes with an arc of length —1 rather than length 1. The arc of length (37 —
29=1g" —1)/2 then terminates at Unj24 (/432010 —3)/4 1nstead of w5 s 3001414
The rest of the completion is just as before except we finish with an arc of length 1
instead of length —1. This completes Subcase 3.2.1.
Subcase 3.2.2. Assume that F is even and F >4: Fori= 1,2, ..., (F —2)/2, define
Py; by

Poi iU, i1, U1 Uig 42, U2y ooy U (2d1q0_1)s Ui 2d-10s Uy 4 1)/ )2

Now define Py = ©(Py) fori=1,2,...,(F —2)/2.
We again have two isolated paths whose definitions are given by

Poug, uy, Uy, Uy oo U (214 1)5 Ud-1 gy U 1) )2
and
P1 TUO U1 UL U2, UDy ey Upd—1gr 1y U_pd-1 g s Uy

In the usual way, for i =0,1,2,3,...,F — 1, let C;: P;up’ (P;)u - up® =D/ (P,
and note that C; is a directed m-cycle. Let 4 denote the set of arc lengths used in C
and C; and let B denote the set of arc lengths used in C;, Cj, ..., Cr_;. Thus

'
A=+{1,2,....2% — l}u{—w-l—fl1a’,—(/—2d1a/)},

and

b +1-2i/
B= i{i/+1,i/+z7...7i/+zdaf_1,%

— 27141 <i<u}.
2
The sum of the arc lengths in AUB is (b’ —1)//2. We must show all the arc
lengths in A U B are distinct. Consider the set B first. If there is any overlap, then for
some i and j (1<i,j<(F —2)/2), we have

(b —2i+ 1)/ — 2
2

But, if this happens, then /<3 - 297!/, producing a contradiction. Thus, all lengths
in B are distinct.

Clearly, the lengths in A are distinct, and thus it remains to show that AnB = .
The shortest undirected length used in B is either / + 1 or (b’ — F 4 3)//2 — 24714,
Now 294’ — 1,/ —2%"'d’ </ + 1, and F <b' as shown in the beginning of the proof.
Thus, (' — F +3)//2 - 2¢71d >2¢ — 297 1d' > 24" — 1 and 2/ — 247 'd >/ — 24714,

We also must examine the long arc lengths in B. The longest undirected length in B
is either (F —2)//2+2% —1 or (b —1)//2 —29"1d. Since F<b', the preceding
two lengths cannot equal any of the lengths in A. Therefore, AnB = () and all
lengths used thus far are distinct.

The rest of the proof consists of showing that the remaining m — 2 arc lengths can
be ordered to form a directed path P’ of length m — 2 using each arc length once. We
first eliminate some special cases.

e{jt+1,j0+2,...j0 +2% —1}.
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If 294’ = ¢ — 1, then />3 - 29" 'd/ implies / = 1 or / = 3. Now, / = 1 is impossible,
and thus suppose # = 3. Then 29¢' = 2. Let & = S\(AuBU{2}), and observe that
the sum of the lengths in % is (n—2)/2 = (30’ — 1)/2. By Lemma 4.4, there is a
directed path P from ug to w3y _1)/2 using neither u(y1)/2 NOT U(3p43)/2. Appending
the arc from w3 _1)> t0 U343 gives a directed path P’ of length m — 2 using each
of the unused arc lengths precisely once.

Thus, we may assume 2%’ </ — 1 and 2@’ >4. (The latter inequality is valid
because 29¢’ = 2 together with the fact that n<2m implies / = 3 which was dealt
with above.) Let

T=+({2%, 2% +1,....(\{/ -2 'd})

_~d-1 (b/_l)/ d—1 /I’l—2
u{/ 2 61,72 +2 a772 )

and let ¥ = S\(AUBUT). The shortest arc length in £ is / +2¢¢’, and the sum
of the lengths in . is n/2. Hence, by Lemma 4.4, there is a directed path P from
up to u,, using all the lengths in £ and not using any vertices of
(11, Uy 20 ) O (U2 Uy 22t 0)-

Suppose first that d>2. We extend P by first appending the directed path

Unj2s Un oty Un o415 Unjo40—1y -y Unjoqr—2d-2004 15 Up 242424
Up /24t =242/~ 15 Up 24242/ 415 « -+ s U(b' 1)/ /2-20- 1 5

U 1) 24241 s Wb +3)2/25 U(30-1) /2

using arcs /,—(£—1),...,—(/=2"'d +1), ¢/-2""d —1, —(/-2"""d —
2),...,2%, ¢ —297'd',(n — 2) /2. Note that the vertices u(y3),/2 and ug,_1)» have
not been used before. To see this, observe (b’ + 3)//2>n/2 + ¢ and since £ <291d/,
we have (b'43)//2<n/2+/+2%". Thus wug 3)//2€ (Unjirtlyprisioig)- In a
similar manner, it is easy to see that u,_y)/2 € [u1, U/ 24y)-

Another important point to note is that the vertex g1,/ has not been used. We
use the rest of the arc lengths and finish the completion to the path P’ by starting at
uis—1)2 and using arcs of length —/,/ —1,....,/ =2"1d +1,—(¢/ = 297'd - 1),
...,—2%4' ending at vertex u, ,i1,. Next, from vertex u, ,.1,, we append the arc of
length (b' — 1)//2 +27"'a’ and thus the last vertex of P’ is ugy1)/)2.

Suppose now that d = 1. Note that we may assume 2a’' > 6 because 24’ = 2 was

done above. The extension of P is a little different in this case. We start by appending
the directed path

Unj2s Un 2445 Un 2415 Unj2+0—15 -+ s Unta =1) /25 Ut (n—a'+1) /25 U(ntd'+3) /2>

Ufp(n—a'=1)/25 == s U 1) )2—a+15 Wb +1) 0 24a +15 W2a'+15 Ul tra+1-
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This extension uses the lengths /,—(/—1),....0 —d +1,—(/—d - 1),/ —d —
2,...,2d' (b’ = 1)//2+d',/ —d. Note that the vertex ug1),/» is not used since
a=3.

We use the rest of the arc lengths in 7" and finish the completion of P’ by starting
at the vertex usy,. and using arcs of length —/, 7/ —1,...,—(/ —d + 1),/ —d —
l,—(/ —d —2)...,—2d" ending at vertex u()/>. Next, we append the arc from
Us+1y/2 tO U i1y,/2 Which has length (n —2)/2 as required.

Hence, letting C:u, P',u, gives the decomposition {C,p(C),...,p" %(C)} of
Y(n — 1;8\(Au B))e<{u} into directed m-cycles.

This completes the proof of Theorem 4.1. [

5. The case when m is odd and 7 is even

We have arrived at the most difficult case. In this section, we will prove the
following theorem.

5.1. Theorem. For positive integers m and n with m odd, n even, and 3<m<n,
the digraph K can be decomposed into directed cycles of length m if and only if
m|n(n—1) and (n,m)+#(6,3).

There are four main pieces to the proof of Theorem 5.1. The first piece is to
establish a sufficiency range for the proof. In particular, we show that Theorem 5.1 is
true for all m and n satisfying the necessary conditions if it is true for all m and n
satisfying the necessary conditions with m<n<3m. The second piece is a proof of
the theorem for the particular case of n = 2m. It is not completely surprising that this
case would require a separate argument as n = 6 and m = 3 is the only case for which
the necessary arithmetic is not sufficient. The third and fourth pieces consist of
separate proofs for n in the range m<n<2m and 2m<n<23m, respectively.

Others have proved Theorem 5.1 for a few specific values of m. Of particular
interest to us is m = 3. This was settled by Bermond [3] and allows us to assume
m=5 for the remainder of this section, thereby simplifying our proof significantly.
We now proceed to tackle the first of the four pieces mentioned above. There are
three preliminary propositions required for the reduction lemma.

Cycle decompositions of undirected graphs are sometimes mentioned below
because we can apply the doubling lemma to cycle decompositions to obtain directed
cycle decompositions. For a graph (digraph) G, the notation G denotes the
complement of G.

5.2. Definition. Let the vertex set of K5, or K3, be partitioned into two sets, U =
{ug,u1, ..., upm—1} and V ={vg,vi, ...,0m—1}. The notation K,,<{S,T,S) will
denote the subgraph of K, such that <U) =X (m;S), where (U) denotes the
subgraph induced by the vertices of U, <V ) =X (m;S’), and all edges of the form
u;v;4, are present, where re T with T<{0, 1, ...,m — 1}. Similarly, K3, <S,T,T',S">
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denotes the subdigraph with (U ;X’)(m;S), KV g?(m;S’), T describing the
arcs from U to V, and T describing the arcs from V to U.

5.3. Proposition. Let m>=3 be an odd integer. Each of the following graphs has a C,,-
decomposition:

(@) Kyn<0,{0,1,....m —2s — 1},0> <K, for s odd with 1 <s<(m —1)/2;

(b) Kop{{+(m—1)/2},{0,1,....m — 25 —2},0> <K for s even with 0<s<
(m—3)/2;

©) Kyn<{{x(m—1)/2},SU(S+1),0> where S={1,3,5,...,m—2}; and

(d) Kym<A,0,BY where each of A and B is either +{1,2,....,(m—1)/2} or
+{1,2,...,(m—=3)/2}.

Proof. Parts (a)—(c) were proved in [6]. To prove part (d), note that the graph
X(m; £{t,t+1}) has a Hamilton decomposition by the main result of [5].
Therefore, we may use pairs of successive lengths to form connected circulant
graphs of degree 4 which can be decomposed into two m-cycles. If the number of
available lengths is even, we are done. If the number of available lengths is odd, we
start the process with length +2 as length +1 forms an m-cycle. O

5.4. Proposition. Let m>=3 be odd. Each of the following digraphs has a Fm)-
decomposition:

(a) K3, <0, {0}, {0}, 0> MK6,7,1)/2§ and

(b) K3, {{£1},0,0,0> o< K[, -

Proof. Let m = 2k + 1 for some integer k. Define the permutation w by

o= (up uy - umfl)(UO [T Um71)7
and note that w fixes all other vertices. Let wg, wy, ..., wi_; denote the vertices of F;
For part (a), define two directed m-cycles by

Cl LUy, Vo, W0, U1y, W1, 02, W2y oo yWhe 2, Uf—1, Wi—1, U
and

C2 0o, Ugy W2, UL, Wi—3, U2y oo y W1y U2, W0, Ujg—1, Wk—1, V0.

Then {C1,w(C)), (1), ..., " 1 (C1), Co, (o), ..., (C2)} is a C-decom-
pOSitiOIl Of Kgm <®7 {0}7 {O}a (b> MK_Z
For part (b), define two directed m-cycles by

C g, uy, wo, 0o, Wi, U1, W2, ..., Wi—2, Ug—2, Wi—1, Uo
and

Co iy, g, Wi, U, Wo, U3,y ey W3, U2, W—2, Uk—1, Wk—1, U0, Wo, U] -
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As before, {Ci,w(C),w*(Cy), ..., 0" (C1), Cr,(Ca), ..., 0" H(C)} is a Cor-
decomposition of K3, {{+1},0,0,0><K;. O

5.5. Proposition. For integers m and t satisfying m =2k + 1 and t = gk + r where
0<r<k—1 and 1<q<m+2r — 1, the digraph Kj, ><K; is Fm)—decomposable. In

. =5 . A 2
particular, K3, < K* is C,,-decomposable whenever (m — 1)/2<t<(m —1)°/2.

Proof. Let m and ¢ be integers with m = 2k 4+ 1 and t = gk +r where 0<r<k — 1
and 1<g<m+ 2r — 1. Suppose first that r odd. Partition the vertex set of K into
sets By, Bi, ..., B, such that |By| =r and |B||=|By| = --- = |By| =k. We then
obtain a decomposition of K5, ><K,, where the vertices of K, are those of By, into
the following graphs:

Ko <0,{0,1,...om —2r — 1},0> <K,
Ky <0, {m —2r, ....om— 1}, {£k}), and

Ko ({1, o k1,0, £{1, ... k= 1} ).

Each of these three graphs has a C,-decomposition by parts (a), (c) and (d),
respectively, of Proposition 5.3. Orienting all cycles in each possible direction gives a
G, -decomposition of K3, ><K*.

Observe that none of the arcs between K, and B, for each i with 1<i<g, have
been used. Counting the number of undirected m-cycles in the C,,-decomposition of
the graphs in parts (c) and (d) above, we find there are m + 2r — 1 m-cycles; that is,
there are at least ¢ undirected m-cycles. Let Ry, R, ..., R; be g such undirected m-
cycles. Then for each i with 1<i<g, orient R; in each possible direction and form a
digraph by adding the vertices of B; and all arcs between B; and vertices of R;. The

_ —_—
resulting digraph is isomorphic to K3, < +{1},0,0,0)><K; which has a C,-
decomposition by Proposition 5.4.
Now assume r is even. The proof in this case is similar to the case for r odd, and we
use the same notation for the vertex partition. The three graphs

K2m<——+_{k}7{07 17 ---7m_2r_2}70>'><lfr,
K2m<®7{m_2r, Y (e 1},{ik}>, and

Ky < £{1, .. k= 13,0, £{1, ...,k —1}>

use all edges of K>, < K, except for a perfect matching corresponding to edge length
m —2r — 1. By parts (b)-(d) of Proposition 5.3, each graph above has a C,-
decomposition. Observe that the number of undirected m-cycles in the C-
decompositions of the graphs for parts (c) and (d) above is m + 2r — 2; that is,
there are at least ¢ — 1 undirected m-cycles. We set aside ¢ — 1 of these undirected
cycles and orient each of the remaining cycles in both possible directions.
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Since ¢>1, there is at least one part of cardinality £ available. Now K—E‘,;(Q),

{m—2r—1},{2r+1},0> ><K; hasa a-decomposition by part (a) of Proposition
5.4, uses the arcs corresponding to the omitted perfect matching, and all those
between B; and the vertices of K3, . The remaining arcs between B, B3, ..., B, and
the vertices of Kj, are partitioned into directed m-cycles using the ¢ — 1 undirected
cycles we have set aside as was done in the previous case. [

5.6. Lemma. Let m=5 be an odd integer. If K} is a-decomposable for all even n

satisfying m<n<3m withm |n(n — 1), then K is a-decomposablefor all even n>m
satisfying m | n(n — 1).

Proof. Let 1’ be an even integer satisfying n' >m and m | n'(n’ — 1). Clearly, we may
write ' = n 4 2mq, where ¢=0, m<n<3m, and m | n(n — 1). Partition the vertex set
of K, into one set with n vertices, and ¢ sets with 2m vertices. We denote the
subdigraphs induced by various sets in the obvious way.

If ¢=3, the complete multipartite graph K, (,,), with ¢ parts each of cardinality

2m, has a decomposition into undirected m-cycles by [6]. Orienting all cycles in both
We have Fm) | K: by supposition. Thus, if

. . M -
directions gives C, |K;(2,n)~

Cn | (K;,,><K), then the ¢>3 case and the ¢ = 1 case will be complete. In the

. . —_ T
g = 2 case, it remains to show that C,, | (K3,,><K; . ).

For m>13, we have 5m< (m — 1)*/2, and both K}, K and K5, >~<K;, ., are

F,,;-decomposable by Proposition 5.5. For m<11, then m|n(n — 1) and m<n<3m

imply n=m+1 or n=2m. Thus we need Fm)-decompositions of K3, >=<Kx. |,

K;,><K;, |, and K3,,><K;, . For m=>9, we have 3m + 1< (m — 1)>/2 so that each
of these digraphs has a Fm)—decomposition by Proposition 5.5. Thus, we may

assume m<7.

For m =7, Proposition 5.5 gives C; | K{,>< K and C7 | K{,p>< K], as 14<(m —
1)2/2 = 18. For K}, > K3,, partition the vertices of Kj, into six sets of three vertices
each and a single vertex u. Take seven digraphs isomorphic to the digraph of part (a)
in Proposition 5.4. This leaves two copies of K¢ having the vertex u in common. By
supposition, E) | K.

For m =5, we have Cs | Kj,><K; by Proposition 5.4. For Kj,><Kj,, take five
isomorphic copies of the digraph from part (a) of Proposition 5.4. This leaves two
vertex-disjoint copies of Ki which are a}-decomposable. Finally, for K ><Kj,
take five isomorphic copies of the digraph from part (a) and three isomorphic copies

of the digraph from part (b) of Proposition 5.4. This leaves two directed 5-cycles in
one part of the bipartition. [

We now handle the special cases of n =m + 1 and n = 2m.
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5.7. Lemma. For each odd integer m=35, the complete directed graph K, , can be
decomposed into directed m-cycles.

Proof. Let m>5 be an integer and let the vertices of K ., be labelled with

N
u,ug, Uy, ..., U1 Let K = X (m;S)><{u} where S= +{1,2,...,(m—1)/2}.
Define the permutation p as before, that is, p = (u)(uo ;- up—1). Let

C g, ur, Uy, Uy oy U 1) /4 U (1) /45 U +T) /45 U (m43) /4
ey U(ng3) /25 Umr1) /25 Uy Uo
if m=1(mod4), and
C g, Un, Uy, Uy o U3 4y U (m—3) /45 Ut 5) /4 U (m+1) /4> U(m+9) /45
cees Um3) /25 Uim1) /25 Uy Uo

if m =3 (mod 4). Note that C uses an arc of each length in S except length (m —
1)/2. Thus {C,p(C),p*(C),...,p" '(C)} together with the directed m-cycle
U0s Um—1)/25 Um—1, U(m—3)/2, --+> Uom4+1)/2, o 18 @ partition of the arc set of K | into
directed m-cycles. [

5.8. Lemma. For each odd integer m=5, the complete directed graph K3, can be
decomposed into directed m-cycles.

Proof. Let m>=5 be an odd integer, say m = 2k + 1 for some integer k. Partition the
vertex set of Kj, into two sets U and V" of m vertices each, say U = {ug, uy, ..., U1}
and V = {vo,v1, ..., Un—1}.

Define the path P; by

Priug, U1, U1, U2y oo, Uk, U

and let P, be obtained from P; by reversing the direction of each arc in P;. Each
directed path has length m — 1. Complete P; to a directed m-cycle C; by inserting the
arc (ug,up), and complete P, to a directed m-cycle C, by inserting the arc (uy, u).

Define the permutation @ = (up u; -+ Upy—1)(vo v1 -+ Vm—1), as in Proposition
5.4. The directed m-cycles Ci,w(Cy), ...,0" 1(C)), Gy, o(Cy), ..., 1(C5) use all
arcs between U and V, except those of the forms (u;,v;) and (v;,u;) for i=
0,1,...,m— 1. In addition, they use the arcs of length +k in U.

If m>=7, following the proof of Lemma 3.4, we can use arc lengths
+2,+3,..., £k to form a directed cycle of length 2k — 2 in V' starting with the
arc (vg, v) so that the vertex v; is not used. Remove the arc (v, v2) and replace it
with the directed path vy, ug, u;, vy, v, giving us a directed cycle C; of length 2k + 1 =
m. The directed m-cycles C3,w(C3), ..., @™ !(C;) use the remaining arcs between U
and V, leave the arcs of length —1 and 2 in V', and use the arcs of length 1 in U.

The arcs of length —1 in V' form a directed m-cycle as do the arcs of length 2,
accounting for all arcs in V. All arc lengths in U are unused except 1 and +k. The
arcs of length —1 form a directed m-cycle. If k£ = 0 (mod 2), then take the undirected
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lengths in pairs 2,3 and 4,5 and so on until reaching k — 2, k — 1. By the main result
of [5], each pair of lengths gives rise to a circulant graph that can be decomposed into
two undirected Hamilton cycles. Orient both undirected cycles in the two possible
directions to obtain four directed m-cycles. If kK = 1 (mod 2), then pair the undirected
lengths 3,4 and 5,6 and so on until reaching k — 2,k — 1. Repeat what was just done
above for these pairs of undirected lengths. The two lengths +2 each produce a
directed m-cycle and hence all arc lengths in U have been used.

The special case of m = 5 is easily done in a similar way because all arc lengths in
U and V generate directed 5-cycles. [J

We now present the proof of Theorem 5.1.

Proof of Theorem 5.1. Let m and n be positive integers with m odd, n even, S<m<n,
and m|n(n—1). By Lemmas 5.6-5.8, we may assume that m +2<n<2m or
2m<n<3m. The proof now breaks into these two cases.

Case 1. Suppose m + 2<n<2m: Let n = 2°a with a odd, and let m = d'b’, where
d|aand b | (2°a—1). Note that ' is odd and &' = 1 is impossible because n<2m.
Hence, »'>3 holds in all cases. Also, @ =1 implies m | (n — 1) and n<2m gives
m = n — 1. Therefore, by Lemma 5.7, we may assume that o' > 3.

We follow the strategy and notation used at the beginning of the proof of Theorem

4.1, that is, let K = )_()(n — 1;8)><{u} where S = +{1,2, ..., (n— 2)/2} and let the
vertices of K be denoted by ug,u, ..., u,—2,u. Also p is the same permutation
defined there and we will create one directed m-cycle by taking a directed (m — 2)-
path, formed from m — 2 arcs of distinct length, together with arcs through the
central vertex u. This directed m-cycle is rotated through all n — 1 positions, using p
and using all arcs incident with u and all arcs of the m — 2 distinct lengths. The
number of unused arc lengths is again

n—=2)—(m-2)=n—m=2—4db.

We partition the vertices ug, u1, ..., u, > into b’ segments, each of which has 7 =
(2°a — 1)/b vertices. Each segment will contribute ¢’ arcs toward a directed m-cycle.
Since n>m + 2, it is easy to see that &' </ — 2 since @’ and / are both odd.

The number of distinct families of directed m-cycles we need to construct is

2¢a —d'b
F="""""

al

which is odd. Since n<2m and since F and b’ are both odd, we have that F<b' — 2.
As before, we construct these families first and show that the remaining m — 2
lengths may be used to form a directed path.

Define the directed path P by

Prug,u gy, Uy, Uy_gy2,U_3, s Uy (@ 41) )2, U—(a=1) )2, U 1)1 )2+
Then
C=Pup/ (P)u--—-up?V (P
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is a directed m-cycle since / — 1< ((0'— 1)/ +d —1)/2<(n—2)/2 as b'>3 and

' <¢. Thus the collection {C, p(C), ..., p’~'(C)} is a decomposition of X (n — 1; B)
into directed m-cycles where

B—1)/+d—1
B:{/—a’+1,—(/—a’+2),...,/—2,—(/—1),( ) +a }

2

If F = 1, then we need only show that the remaining arc lengths and arcs through
the central vertex can be used to form another directed m-cycle. However, if F >3,
we must form more families of directed cycles before using the central vertex. Let
¢=(F—1)/2 so that ¢< (b - 3)/2.

Suppose first that ¢’ = 3 (mod 4). For each i with 1<i<c, let P; be the directed
path defined by

Pig tuo, Uigy 1, U1, Uig 12, U2y oo Uiy (@0 —3) [y U (a1 =3) /45
Uit (a'+5) /4 U—(a'+1) /s - s U—(a=1)/2-

Rather than introducing additional subcases, we explain another feature of the
directed paths just defined. The jump over the vertex u,, (v;1y/4 has been chosen
carefully. Making this jump means we do not use arc length i/ + (¢’ — 1)/2. As the
directed path P;( continues, we may come to an arc of length (i + 1)/ — (¢’ — 1)/2
depending on the size relationship between ¢’ and 7. If we do encounter this length,
we do so on an arc coming into a vertex of the interval (u/,u1),). So we insert
another jump here. This requires at least (¢’ + 3)/2 vertices in the open interval and
d' < ¢ implies this to be the case.

The directed paths Py, Py, ..., P.o have the following two important features:
they all start with up and end with u_(,_;)/> and they use no arcs whose lengths are
congruent to 4 (a’ — 1)/2 modulo /. The only occurrence of arcs with lengths in
these congruence classes are in the cycle C, where lengths —(¢/ — (¢’ — 1)/2) and
() = 1) +d —1)/2 are used.

For each i with 1<i<c and for each j with 1<j</'—1, define P;; to be
the directed path p/(P;y), and define the family 2; to be {P; ;| 0<<b' — 1}. For
each i with 1<i<c, the paths in 2; are vertex-disjoint because

" —1 '+ 3
a2 +a; =d+1</-1.

We are going to use arcs whose lengths are in the congruence classes + (¢’ — 1)/2
modulo 7 to link the families of directed paths into directed cycles. We must be
careful and avoid using either of the two lengths in C that belong to these
congruence classes.

Write F = 8q + r, where 1 <r<7 and r is odd. We now explain the reason § arises
in the expression for F. We use an auxiliary circulant graph of degree 4 to provide
the linking scheme for families of the paths. Consider the circulant graph
X(b'; +£{t,t+ 1}) with vertex set vy, vy, ...,vy_1. It may be decomposed into two
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Hamilton cycles H;, H, by applying the main result of [5]. Orient each cycle in both
directions to obtain four directed cycles H 1 H 2, H 3, Hy of length &'

We use each Hy as a schematic for linking the directed paths of one of the
families 2; into a directed m-cycle in the following manner. If there is an arc from v,

to vj, in Hy, then we connect the terminal vertex of P; ;, to the initial vertex of P; j,

using an arc of length (j, —ji)/ + (¢’ — 1)/2. In this way, each H links the directed
paths in one family forming a directed cycle of length m. Also, when using the
reversal of Hy to link another family 2; of directed paths, we will use an arc of
length (j; —j2)/ + (@’ — 1)/2. Since these two lengths sum to ¢’ — 1, it follows that
neither is the negative of the other. Thus, we can reverse the direction of each
directed m-cycle created from a family of directed paths to create another
directed m-cycle.

We now describe the F directed mi-cycles. If r = 1, then the directed cycle C is the
required directed m-cycle. If r = 3, join the terminal vertex of Py ; to the initial vertex
of Py 11, where the second subscript is evaluated modulo #', to obtain a directed m-
cycle C;. Reverse C) to obtain a third directed m-cycle Cj.

For r =5, join the terminal vertex of P, ; to the initial vertex of P, j;, with the
usual modulo &’ arithmetic on the second coordinate. Call the resulting directed m-
cycle C; and its reversal Cj.

Finally, for r = 7, we obtain two more directed m-cycles by joining the terminal
vertex of P3 ; to the initial vertex of P3 ;_» and taking the reversal of the resulting
directed m-cycle.

If ¢g=>1, we get eight directed m-cycles using the auxiliary circulant graph
X(b'; £{3,4}). We get cight more by using the auxiliary circulant graph
X(b'; +£{5,6}). We continue in this way ¢ times, ending with the circulant
X(b'; £{2g + 1,2¢ + 2}). The longest undirected length used in this linking process
is (2¢9+2)/ + (a’ — 1)/2, which is clearly less than (&' —1)//2+ (@' — 1)/2 since
F<b - 2.

When ¢’ = 1 (mod 4), we do close to what was just done so we need only describe
the differences. One difference is that we use lengths congruent to +(a’' + 3)/2
modulo 7 as the linking arcs for the families of directed paths. The two values are not
equal modulo / because / is odd.

The second difference, using P; to illustrate, is that we insert two jumps in the
interval (u_(y43)/2,u0) and have at most one jump in the interval [u/ 1, t/y(@—1)/2)-
The reason is that the arc with length —(/ + (¢’ + 3)/2) is coming into the interval
(U_(w43)/2,u0). We arbitrarily insert a second jump so that the last arc of Py is
Usi(w—1)/2U—(a+3)/2- If we encounter an arc with length 2/ — (&’ + 3)/2, we insert an
additional jump in the interval [t/ (1, U, (#—1)/2), thus ending the directed path with
the arc uyy (v 1)/2U—(w+3)/2- All the other directed paths have the same modification
with respect to insertion of jumps.

This construction works whenever />d +2. If / = d' + 2, however, we do not
have a sufficient number of vertices in a segment. In this case, we can proceed
as follows. First notice that we may assume ¢ >5 and that F = (2’ — 1)/d’. For
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each i with i =1, ..., (F — 1)/2, define the directed paths P;( as

Pio = g, ur42i, U1, Uai2ir, U2, e U (r41) 45 U(049) J442i0 s U—(£45) /4>
U(r413) /4421ty - s U(r=1))242it » U—(/=3) /2
using arc lengths 1+ 2i/,—(2+2i/),3+2il,....,—(({+1)/2+2i/),({/ +5)/2 +
2it,—((/+7)/2+2il),...,—({/ — 24 2i/). Notice that arcs of length +(+(/ —

3)/2+ (2i + 1)/) have not been used in the directed paths. We can therefore use
auxiliary circulant graphs of order »’ with connection sets +{3,5}, +{7,9},... to
link the families of directed paths into directed cycles, which are then reversed as
before. If F = 8¢ + r, where 1 <r<7, this takes care of 8¢q directed cycles. The upper
bound for F guarantees that the length of the longest undirected edge thus used will
be less than (' — 1)//2 + (@' — 1)/2. The additional r cycles are handled in a way
similar to the case ¢’ =3 (mod4). For example, if r =7, then arc lengths + (£ +
(¢=3)/2), +(2¢—(/—3)/2), and +(4/ — (£ —3)/2) are used to link families
P10, P20, P30, and their reversed copies, while the last remaining directed cycle
is C.

We obtain the collection € of directed m-cycles by taking D, p(D), ..., p’~'(D),
where D runs over all the cycles C;,Cj,Cy, (), ... constructed above for
d =1 (mod4) or d =3 (mod4). The most important feature of the cycles in 4 is
that if length d is used then so is —d, and all lengths used have undirected length in
(¢, (n—2)/2).

We complete Case 1 by showing the remaining m — 2 arc lengths can be used to
form a directed path of length m — 2 using each length once. Let L be the set of
lengths from

+{//+1 b -0)+d -3 W -1)+d+1 n—4}

3 , 3 T

not used in the construction of the directed cycles in 4. Note that the lengths +7
have not been used.

By Lemma 4.4, there is a directed path Q from uy to wu,,, using lengths in
Lu{n/2}, and not using any vertices of (uo,us) U (4,2, ty/>+s). Extend Q by adding
the directed path

Upj2s Un-2) /244, Ur—1, UL, Ur—2, U2y oo s U412, U(r—1)/2-

The extension uses arc lengths £/ — 1, —n/2=(n—-2)/2,—((/-2),/-3,...,2,—1.

Continue from u_y);, to up_y—1)2+, Which has length (/+n—d)/2=
—((0'=1)/+d —1)/2. From up_g_1y/2+s, we finish with arcs having lengths
—((—d),t—d —1,—(/—d —2),...,—2,1. These arcs do not encounter vertices
already used because ¢’ >3. We now use the central vertex u to give us a directed
cycle of length m completing this case.

Case 2. Suppose 2m<n<3m: Let n = 2°a with a odd, and let m = d'b’, where d’ | a
and b'| (2°a — 1). Both & and &' are odd, and n>2m implies that ¢’>3 and »' >3
both hold. The notation remains the same as in Case 1. Note that '/ =n— 1 and 7
odd imply 2¢' </ <3d'. Recall ¢ = (F — 1)/2 where F = (n — m)/d’ is the number of
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families of directed m-cycles that need to be constructed. It is then easy to verify that
c=(¢—d)—d+1)/2d so that c<b' — 1.

Before continuing, it is helpful to consider some specific arithmetic conditions.
Suppose that / = 24’ + 1. Then, n = 2m + b’ + 1 which in turn implies that &’ is an
odd divisor of &’ + 1. Thus, 4’ = 3 and »' = 7 cannot occur when 7 = 24’ + 1. The
case b’ = 5 implies that ¢’ = 3 giving m = 15 and n = 36. This special case is handled
at the end of the proof. Hence, we may assume 5’ > 9. This fact together with the fact
that / = 24’ + 1 imply that ¢<b’' — 3. Therefore, if / = 24’ + 1, we may assume that
c<b —3andif ¢ =& — 1, then />2d" + 1. However, £ odd gives />2d’ + 3 in this
case.

We make a small modification to the directed m-cycle C used in Case 1 to avoid
using the length / — (¢’ — 1)/2. Assume @' = 3 (mod 4). Let P be the directed path

Pug,up g iy, Up g1, U2, s U (@ 1) 2 U—(a'=1) /2, U(b'—1)1/25

where we skip a vertex in the interval (u/_«, s_(441)/2) When we come to the arc
whose length is / — (¢' — 1)/2. The paths

P, p/(P),p* (P), ...,p" " (P)
have no internal vertices in common so that their union forms a directed m-cycle C.

Then the collection {C, p(C), p*(C), ..., p’~'(C)} is a decomposition of X (n — 1; B)
where

r 1] /o
B:{/—a’,—(/—a’+1),...,—<f—a; >,/—a2 3
/_ /_
..,/72,7(/71),(13 1)/2“’ 1}.

For much of what follows, it is a little simpler to construct undirected m-cycles and
obtain two directed m-cycles from each cycle by giving it the two possible cyclic
orientations. Thus, we emphasize that when the word path or cycle is used without
the preceding adjective ‘directed’ in what follows, we are talking about undirected
paths and cycles.

Observe that F =5 so that ¢>2. We now define ¢ families of m-cycles. Let

Po i ug, Uy 211, U1, U212, U2y oo s U (/- 1) /25
let
P iutg, Uipy 1, U1, Uigs 2, U2y s U (g1 3) /4 Uit (d45) /4>
U_(d+1)/45 - U—(a—1)/2
fori=1,2,....[ (¢c—1)/27; and let
O U0, Uiy a a1, U1, Uifra 12, U2s ooy U_ (/1) )2

for i=1,2,...,[ (c—1)/2], where we skip a vertex in the interval (uj/yz1,
Uir4(3a—1y,2) if the edge length (i + 1)/ — (a — 1)/2 is encountered.

There are some features of these paths worth noting. All of them have length
a — 1, all of them have uy and u_(y_y» as end vertices, Py uses edges of lengths
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/ —2d + 1 through ¢/ —a' — 1, and P; uses edges of lengths i/ + 1 through i/ + &
except for omitting length i/ + (¢ — 1)/2. The longest edge length appearing in any
Piis [(c—1)/21/+d. If ¢c=b —1, then />2d +1 so that [(c—1)/2/+
d<(n—2)/2. Otherwise c<b' —1 so that [(c—1)/2]/+d < —1)//2+
a<(n-2)/2.

The lengths used by Q; start with j/ + ¢’ + 1 and go through jZ + 24’ — 1 if we skip
no vertex. Otherwise, the lengths go through j/ + 24" with (j+ 1)/ — (d' —1)/2
omitted. Since c<b' — 1, the largest possible value of j is (5" — 3) /2. Thus, the longest
edge length appearing in any Q; is at most (b’ — 3)//2 + 24’ which is smaller than
(n—2)/2. So all edge lengths are smaller than (n — 2)/2.

Since the paths, other than P and Py, use no edges with lengths congruent to
+(d' — 1)/2 modulo 7, these are the edges we use to link the paths and form m-
cycles. Since the linking scheme has been described in detail earlier and the
mechanics of linking remain the same, we need only verify that there are enough
lengths available to perform the linking. The available lengths are

a—1 a—1 =3 d—-10H-1) d-1
/i2,2/iz,..., 3 iz, 3 -

The b’ — 2 potential linking lengths are distinct and bounded above by (b —
1)¢//2 — (@’ — 1)/2 which is smaller than (n — 2)/2. Since ¢<b' — 1, it is clear we can
form m-cycles using these paths for all values of ¢ other than ¢ = ' — 1. We consider
that case separately.

After linking the paths to form ¢ m-cycles, we obtain 2¢ directed m-cycles by
orienting all the m-cycles in both possible directions. We are left with m — 2 unused
arc lengths. If we can produce a directed path using each arc length once, we have a
decomposition into directed m-cycles.

It is easy to guarantee that the length / — (¢’ — 1)/2 actually is used in the linking
scheme. Since that length is used, the unused arc lengths are

1 3
i{LL_w/—&ﬂu{—w—dxf—d+hnw/—a;,—(/—a )

2
/ _ / _ _
NW—M—2L/—1}uLu{ (b Ué+“ l,i”22}

where L is a subset of +{/,/+1,/+2,...,(n—4)/2}.

By Lemma 4.4, there is a directed path Q from ug to u,; using each arc length in
Lu{n/2} once, and not using any vertices of (u, us) or (1,2, uy/>+s). We extend Q
by adding the directed path

Up 2y Unja4r—1,Ur—15 UL Up—2, U2,y oo s U —3) /4

which uses arc lengths 7/ — 1,—n/2,—(/ —2),/ —3,—(/ —4), ...,—({ — (d — 3)/2).
We continue the extension with the directed path

Ua—3) /4y Ut —(a'45) /4> U(a'+1) /4y -+ s Ur—(a'+1) /2, U@ 1) /2

using arc lengths £/ — (@' +1)/2,—(/ — (@' +3)/2),/ — (@' + 5)/2, ..., — (¢ — d').
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We continue the extension with the directed path
U —1)/2) Ur—(Ba'+1))2, W@ +1) /25 «--s U(r—a'=2) /2, U(t—a') )2
using arc lengths / — 2d',—(/ —2d' — 1),/ —2d' — 2, ..., 1.
We add the arc from w2 t0 u,,,_ o Which has length
b -1r+d -1
> .

We then complete the directed (m — 2)-path with the extension
Up)24/—a s Unj2+d » Un/2+0—a'—15 - s U(ntr—1) /2

which uses the remaining unused lengths.

This leaves us with the special case of ¢ = b’ — 1. We have already seen that when
¢=0b"—1, we may assume 7 >2a’ + 1. Since ¢ is odd, we have />24' + 3 and this
gives enough room to modify our construction slightly so that we obtain a
decomposition. The last edge of the path Py is u/ (y41)/2U—(w—1))2 of length 7 +d’.
Change the edge to w4 (y11)/2U—(a+1)2 Which has length / + & + 1. If the path Q,
exists (depending on the value of ¢), then this is the length of the first edge of Q;. So
we also must modify Q; so it no longer uses an edge of length Z + &’ + 1. What we do
is add 2 to the subscript of every vertex of Q) in the interval (u,,.,us/) taking care
that we skip the appropriate vertex so as not to use an edge of length 2/ — (¢’ — 1)/2.

Now we use the edge from the terminal vertex u_, /> of the modified path P, to
Uy —1),/> to obtain path of length &' which leads to an m-cycle. However, the latter
edge we are using for linking the family of paths arising from P; has length (b —
1)//2 + (a4 1)/2 and this length is being used in the current path P _j)/. So we
modify the latter path by skipping over two consecutive vertices in the interval
(Up—1y2/2, U —1)7 )2+(a+1)/2) instead of the single vertex that avoids using an edge of
length (b' — 1)//2 + (a' + 1)/2. This modification avoids both lengths (' — 1)//2 +
(@ —1)/2 and (' — 1)//2 + (¢’ + 1)/2. The price we pay is that the longest length
being used in the modified path Py_yy is (b' —1)//2 +d' + 1 rather than (b’ —
1)//2 + &' . But this longest length is smaller than (n — 2)/2 provided that />2d’ + 5,
and everything works. On the other hand, if / = 24’ + 3, then it is not difficult to see
that ¢ = b’ — 1 forces @’ = 5, a contradiction. This leaves us only 4" — 2 families of
paths to link together and that is precisely the number of linking edges of different
lengths we have available.

The directed (m — 2)-path for the central vertex is constructed as before. This
completes the subcase of @ = 3 (mod 4). In the special case that ¢’ = 3, the preceding
construction works, but many of the paths become trivial.

The last general subcase we need to consider is ¢ =1 (mod4). There is
considerable similarity with the preceding case so that we may outline what is done
for this subcase. The directed path of length ¢ on which the directed cycle C is
based is

Uoy Up—a—15 U1 oo s Up—(a'43) /25, U—(a'—1) /2, U(b' 1)/ /25
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where we skip the vertex in the interval (u/_u/, 4, (443)/2) giving rise to the arc length
/ — (@’ — 1)/2. This accounts for arc lengths

a+1 a-3

(—d —1,—((—=d),...,—((—)( 5 L > y ey —(—2),
-1 d-1
The path Py is given by
Py up, o, u-, s U (Bar43) /25 U—(a'—1) /2

using edges of lengths /—2d',/—2d' +1,....0 —d —2. For i=1,2,....[ (c—
1)/27, define the path P; by

Piutg, tip o, Uty oo Ui (ar43))2, U—(a—1) /25

where we skip the vertex in the interval (u/ 41, Ui/ (4+3)/2) giving rise to the edge of
length i/ + (¢ — 1)/2. The edge lengths being used are

it +2,il +3,...,il +(d —3)/2,it +(d +1)/2,....it +d +1.
Fori=1,2,...,] (¢—1)/2 ], define the path Q; by
Qi:llo,blj/+al+2,u71, s U_(a—1)/25

where the vertex preceding u_(y_1)2 1S tis1 (30412 if the edge length (i4- 1)/ — (a’ —
1)/2 is not encountered, and is u;/, (3543)2 if the edge length (i + 1)/ — (' —1)/2 is
encountered thereby forcing us to skip a vertex. The edge lengths being used here
start with i/ + @’ + 2 and go to either i/ + 2d’ or i/ + 2d’ + 1, depending on whether
or not (i 4+ 1)/ — (¢’ — 1)/2 was encountered. One important fact about both P; and
Q; is that we need />2d’ + 3 in order to have the distinct paths used to link together
to form an m-cycle be vertex-disjoint.

As before, we have b’ — 2 lengths congruent to + (¢’ — 1)/2 modulo / available to
link families of paths. So as long as ¢<b’ — 2 we can complete the decomposition
when />2d + 3 via the same method used in the preceding case.

We now are left with special cases. One special case is # = 24’ + 1 and the other is
c=0b"—1. As we saw earlier, when / = 24’ + 1, we may assume b’ >9 and this, in
turn, implies ¢<b' — 3. Thus, there are two cases to consider: /=24’ + 1 and
c<b —3,and c=b"—1and /=24 + 3.

When ¢ =5 —1 and /=24 + 3, modify P; by removing the last edge joining
Usy(a+3)2 and u_(y_1)2, and replacing it with the edge joining u, (4132 and uyy;.
The latter edge has length (¢’ 4+ 1)/2. We use edges of length 1 (which have not been
used) as the linking edges for the modified P;. However, Py may use an edge of
length (¢’ + 1)/2. If it does not, no further modifications are necessary. If it does,
then start Py with wuy,u,_»,_» which is possible without repetition of edge lengths
whenever />24' + 5. In that case, continue as before and skip the vertex in the
interval (u/ 242, Us—(30+3)2) With length (¢’ 4-1)/2.If / = 24’ + 3, however, it is not
difficult to see that @’ = 5 and »’ = 3, which yields a special case m = 15, n =40 to
be handled at the end of the proof. No other modifications are necessary.
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We now have one less family of paths to link together and there are now
sufficiently many edges whose lengths are congruent to + (¢’ — 1)/2 modulo Z to do
the job. The unused arc lengths have been changed slightly, however, the
construction of the directed (m — 2)-path for the central vertex remains essentially
the same as before.

We have left / =24’ + 1 for last. Because the proof is intricate, we are going to
present it carefully. The directed path P of length ¢’ we use to obtain the directed m-
cycle C is given by

Pttg, thy o, Uty oo s UGB 1) /25 U (@ — 1) /25 U~ 1)1 /2

It uses arc lengths

b—1)+d -1
d+2,—(d+3), ., —(( - 1),%.
Define the path Py by
Py: Ug, U, U2, U3, U3, ... Ug1+1)/2, U—(a'+1)/2

using edges with lengths 2,4,5, ...,d + 1.

The segment length / = 24’ + 1 is not quite enough to fit two paths per segment.
What we do is construct three paths for every pair of successive segments and show
this gives us enough paths.

Define the path P; by

Py ug, gy, vy, g3, U2, e U@ +1))2, U—(a'+1) /25

where we omit the vertex in the interval (#_(,41)/2, o) which would have given rise to
an edge of length /4 (¢’ + 1)/2. Note that Py uses edges of lengths Z + 2 through
/+d + 1 with / + (d' +1)/2 omitted.

The path Q) is the one requiring the most care. We start the path as

U, Ul +2, U1y - oo s U—(a/—5) /4 Ul pa +(a'+3) 4> U—(a'+3) /4

noting we have omitted the vertex u_(,_1),4 so that the edge length 2/ — (&' +1)/2 is
omitted. As we continue the path, no more vertices will be omitted from the interval
(u_s,up) so that the vertex of Q in that interval furthest from u is going to be
U_(441)/2- There has to be room for those vertices to fit under powers of p’. This
means the last successive vertex we can use in the interval (u/,uz/) iS /g (@—1))2-
But there are only three vertices to follow this in the path. The next edge is
Ussay(a—1)/2U—(a—1)/2- However, under rotation the vertex uy,_(s_1)/4 is available. We
use it to complete the path. It is then clear we do not use any lengths congruent to
+(a' + 1)/2 modulo 7.
We define the path R; to be

U, Uppy(a'—1)/2s U—25 «oes Udtpa -2, U_(a/41) )2

using edge lengths

' '3 3d 3
Y VR A A VN ”2,
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where the last length is smaller than 3/ — (¢’ + 1)/2. If &’ >9, the edge lengths used in
the paths Py, P;, Q;, and Ry are pairwise distinct. If &’ = 5, however, to avoid
duplication of edge lengths, we define R; as ug, up/4,u_1,Uzs16, U_3, thus using edge
lengths 2/ + 4,2/ + 5,2/ + 7, and 2/ + 9, none of which is congruent to + (¢’ + 1)/2
modulo 7.

There are sufficiently many edges of length congruent to +(a’ +1)/2 to link
together the paths to form cycles of length m. The question is whether or not we are
able to construct ¢ paths using the scheme just described. We now address this issue.

We form P;, Q», R, by adding 2/ to the subscripts of all the vertices of P, O, Ry,
respectively, not in the interval (u_,, uy]. This increases the lengths of all edges by 27.
We form Pj, O3, R; by adding 4/ and so on. The number of paths we can obtain this
way clearly is limited by the fact we does not want any edge lengths to exceed
(n—4)/2.

We have c= (' —1)/2+ (b’ +1)/(2d"), & =1 (mod4), and & | (b’ +1). Let us
look at two examples. The smallest value of 4’ for which the preceding conditions
can be satisfied is ' =9 with ¢’ = 5. We then have ¢ =5 and we can construct
the paths Py, Py, Q1, Ry, P, without reaching length (n — 2)/2. The next viable value
of b is b'=17 which implies ¢=9. We can then construct the paths
Py, P1, Q1, Ry, Py, 02, Ry, P3, O3, R3, Py, Q.

It is easy to see that we need 2(c — i)/3 + i intervals of length / for the edge lengths
used in the paths Py, Py, Q1, Ry, Pa, ... where ¢ =i (mod 3) for ie{1,2,3}, and that
2(¢c—1)/34+i<(b' —1)/2 since b’ =9. Thus, at least ¢ paths can be constructed for
all viable values of »'. This takes care of the case / = 2d’ + 1.

The last two steps required to complete the proof of Theorem 5.1 are solutions for
m = 15and n = 36 or n = 40. As usual, we will use a central vertex. Assume first that
n = 36. The directed path P : uy, us, uss, u14 generates a directed cycle C of length 15
where C = Pup’(P)up'*(P)up® (P)up®®(P). The three paths ug,u,uss, u;
ug, Uz, Uzg, up1; and ug, ug, usz, uy lead to six different directed cycles of length 15.
Finally, the directed 13-path

Uy, U7, U32, UT1, U0, U2, U8, Ul4, U4, U7, U3, Us, UL, U]

gives the last remaining directed 15-cycle using the central vertex.

In the case n =40, the directed cycle PuUp'*(P)up?(P) is generated by
the directed path P:ug,ug,uss,uyg,us7, ;3. Four directed cycles are generated
by paths wug, 11, use, Uz, U3, U3 and uy, up, uzg, us, use, 13- Finally, the remaining arc
lengths are used in the directed cycle that connects the central vertex with the
directed 13-path

Up, U13, U3y, U16, U3e, U19, U33, U0, U32, U2, UL, ULL, U2, UDG.
This now completes the proof of Theorem 5.1. O

Theorems 3.1, 4.1, 5.1 together with the observations following the proof of
Lemma 1.2 for m and n both being odd serve to prove the main result, Theorem 1.1.
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