
PROCEEDINGS Open Access

CASPER: context-aware scheme for paired-end
reads from high-throughput amplicon
sequencing
Sunyoung Kwon1,2, Byunghan Lee2, Sungroh Yoon1,2*

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Merging the forward and reverse reads from paired-end sequencing is a critical task that can significantly improve
the performance of downstream tasks, such as genome assembly and mapping, by providing them with virtually
elongated reads. However, due to the inherent limitations of most paired-end sequencers, the chance of observing
erroneous bases grows rapidly as the end of a read is approached, which becomes a critical hurdle for accurately
merging paired-end reads. Although there exist several sophisticated approaches to this problem, their
performance in terms of quality of merging often remains unsatisfactory. To address this issue, here we present a
context-aware scheme for paired-end reads (CASPER): a computational method to rapidly and robustly merge
overlapping paired-end reads. Being particularly well suited to amplicon sequencing applications, CASPER is
thoroughly tested with both simulated and real high-throughput amplicon sequencing data. According to our
experimental results, CASPER significantly outperforms existing state-of-the art paired-end merging tools in terms of
accuracy and robustness. CASPER also exploits the parallelism in the task of paired-end merging and effectively
speeds up by multithreading. CASPER is freely available for academic use at http://best.snu.ac.kr/casper.

Introduction
The advent and widespread use of next-generation
sequencing (NGS) [1-3] has posed new challenges and
opportunities for informatics [4,5] due to the high-
throughput nature and the relatively short and noisy reads
compared to the traditional Sanger sequencing. NGS thus
sparked the development of new pipelines (for base-
calling, genome assembly/mapping, and other essential
tasks) that consider the characteristics of the NGS
platforms used.
In paired-end sequencing, a DNA fragment is read from

either end of the fragment, and some NGS platforms
(such as Illumina HiSeq, MiSeq, and GAIIx) inherently
generate paired-end reads [2,3]. When a fragment is larger
than the sum of the forward and reverse reads, there exists
a gap between the two reads [6]. Otherwise, the forward

and reverse reads overlap, which can ideally give the effect
of elongating reads. Having longer reads provides many
benefits to downstream tasks in the informatics pipeline
[7,6,8]. The read length of today’s sequencers tends to
continuously increase: e.g., at the time of writing, Illumina
MiSeq can produce 2 × 300 bp reads using its reagent kit
v3 (http://www.illumina.com).
However, NGS techniques including the Illumina plat-

form tend to result in rapid degradation of the sequencing
quality as the end of a read is approached (Figure 1). As a
result, the overlapping region (formed by the ends of for-
ward and reverse reads) in a paired-end read frequently
contains errors originating from sequencing and/or base-
calling. Sequencing results are often annotated with per-
base quality scores representing the error probability [9].
Such limitations of sequencing technology often

prevent the accurate merging of paired-end reads, so the
pursuit of new tools for the reliable merging of over-
lapping paired-end reads has become an active area of
research, e.g., SHERA [7], FLASH [6], PANDAseq [10],

* Correspondence: sryoon@snu.ac.kr
1Bioinformatics Institute, Interdisciplinary Program in Bioinformatics, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, 151-747 Seoul, Korea
Full list of author information is available at the end of the article

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

© 2014 Kwon et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://www.illumina.com
mailto:sryoon@snu.ac.kr
http://creativecommons.org/licenses/by/4.0
http://�creativecommons.org/publicdomain/zero/1.0/

and COPE [11]. Most of these tools start by finding the
best overlap between a pair of forward and reverse reads
and then try to merge them by resolving mismatching
bases in the overlap. The best overlap is sought by con-
sidering the overlap alignment [7], the fraction of (mis)
matching bases [6,11], or quality scores [10,11]. The
mismatch resolution is mostly achieved by considering
quality scores [6,10] and replacing the base with the
lower quality score by the base with the higher quality
score. Quality-score-based resolution often produces
incorrect results, especially when the quality scores of
mismatching bases do not differ significantly [12]. It was
proposed to use quality scores and k-mer frequency
together as the merge criterion [11], but the resulting
methodology tends to be time-consuming and of unsa-
tisfactory accuracy according to our experience. Due to
the importance of paired-end merging, some sequence
assemblers (e.g., ALLPATHS-LG [13]) contain a module
for merging paired-end reads as a preprocessing stage,
although the performance, flexibility, and applicability of
such internal modules tends to be limited compared to
the aforementioned methods dedicated to paired-end
merging.
To overcome the limitations of the current approaches

to merging paired-end reads from amplicon sequencing,
here we propose a computational method called context-
aware scheme for paired-end reads (CASPER). In this
scheme, when the difference between the quality scores of
mismatching bases is significant, CASPER relies on the
quality scores for correction. If not, CASPER instead
examines k-mer-based contexts around the mismatch and
makes a statistical decision (up to k partial decisions for
each mismatch). CASPER then makes a final decision
based on the ensemble of the earlier partial decisions.

According to our experiments, CASPER significantly out-
performs the existing approaches in terms of accuracy of
merging and resilience to noise. Furthermore, the time
demand of CASPER remains reasonable in most cases,
taking only a few tens of seconds to process one million
reads. CASPER is freely available for academic use at
http://best.snu.ac.kr/casper.

Proposed method
Figure 2 shows the overall flow of the proposed CASPER
approach that consists of five main steps: (1) preproces-
sing, (2) constructing a table of k-mer counts, (3) finding
the best overlap position, (4) resolving mismatches in the
overlap, and (5) merging forward and reverse reads. Before
explaining the details of each step, we present the assump-
tions and definitions to be used in the explanation.
In paired-end sequencing, the sequencer produces two

reads for each DNA fragment. Suppose that the fragment
length is m (bases), and the lengths of forward and reverse
reads are both n. An overlap between the two reads occurs
when m < 2n. The sequence of a fragment is denoted by S
= 〈s1, s2, . . . , sm〉, si � {A, C, G, T}. We denote the forward
and reverse reads from S by X = 〈x1, x2, . . . , xn〉 and W
= 〈w1, w2, . . . , wn〉, respectively. The i-th base in X (i.e., xi)
is also denoted by X(i), and the subsequence of X ranging
from the i-th to j-th bases (i.e., 〈xi, . . . , xj〉) is denoted by
X(i : j).

Figure 1 Overlap between paired-end reads. Next-generation
sequencing techniques including the Illumina platform tend to
result in rapid degradation of the sequencing quality as the end of
a read is approached [12]. Consequently, the overlapping region
(formed by the ends of forward and reverse reads) in a paired-end
read frequently contains errors originating from sequencing and/or
base-calling.

Figure 2 Overall flow of CASPER . The proposed CASPER
methodology consists of five main steps: (1) preprocessing, (2)
constructing a table of k-mer counts, (3) finding the best overlap
position, (4) resolving mismatches in the overlap, and (5) merging
forward and reverse reads.

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 2 of 11

With no sequencing error (e.g., substitution, insertion,
and deletion), xi = si and w̄i = sm−i+1 for 1 ≤ i ≤ n,
where w̄i represents the Watson-Crick complementary
base of w̄i (e.g., Ā is T, vice versa). In practice, bases
may be called incorrectly, and each called base is
accompanied by a (Phred) quality score denoted by Q
and defined as Q = −10 log10 p, where p is the probabil-
ity that the corresponding base call is incorrect [9].
Sequences X and W are assumed to be accompanied by
QX =

〈
qx1 , qx2 , . . . , qxn

〉
and QW =

〈
qw1 , qw2 , . . . , qwn

〉
,

respectively. Symbol ‘N’ represents any base (indecisive
base-call) and is normally accompanied by the lowest
quality score available. We assume that there are few
indel-type sequencing errors, as is commonly the case
with the Illumina platform.

Preprocessing, k-mer counting, and overlap detection
(steps 1-3)
In the first step of CASPER, every reverse read W in the
input is preprocessed to facilitate the downstream steps.
Specifically, CASPER reverses the order of bases in W and
then complements each base. W and QW are converted
to Y = 〈y1, y2, . . . , yn〉 and QY =

〈
qy1 , qy2 , . . . , qyn

〉
,

respectively. yi = w̄n−i+1 and qy1 = qwn−i+1 for 1 ≤ i ≤ n. In
the remainder of this paper, the term ‘reverse read’ refers
to Y instead of W.
In the second step of CASPER, a table of k-mer counts

is constructed from the input reads, where k is a user-
specified parameter (Table 1). There has been active
research on efficient k-mer counting. For instance, Jellyfish
[14] provides a time-efficient, parallel solution to k-mer
counting. Methods focused on memory efficiency also
exist, e.g., bloom-filter-based BFcounter [15] and DSK
[16]. In CASPER, we adopt and customize Jellyfish for
building a table of k-mer counts. We denote this table by
Tk . For k-mer X(i : i + k − 1) = (xi, xi+1, . . . , xi+k−1), Tk [X
(i : i + k − 1)] indicates the number of occurrences of this
k-mer in all forward and reverse reads of the input data.
Algorithm 1 shows pseudo-code of the remaining steps

of CASPER. In the third step of CASPER, it is decided as
to how much it needs to shift (to the right) the reverse
read Y with respect to the forward read X in such a way
that the fraction of mismatching bases in the overlap
region is minimized (lines 1-8). The resulting overlap
region is considered the best. The (mis)match ratio is

widely used in the literature to locate the optimal overlap
between paired-end reads [6,11]. Parameter ω specifies the
minimum length of an overlap. If too many mismatches
exist in the overlap (i.e., the mismatch ratio exceeds a
user-specified ‘give-up’ threshold g), CASPER does not
merge the reads (line 9).

Resolving mismatching bases in forward and reverse
reads (step 4)
In the fourth step of CASPER, the mismatching bases in
the overlap region are corrected. Ideally, for each position
of the overlap region, the base in the forward read should
match the base in the reverse read. Due to experimental
error and other non-idealities, however, these two bases
often mismatch. To merge paired-end reads successfully,
we need to resolve mismatching bases. The basic principle
is simple: overwrite the incorrect base with the correct
base, assuming that the base either in forward or reverse
read is correct. The remaining question is which of the
two bases is correct. Lines 10-28 in Algorithm 1 reveal
how CASPER answers this question. CASPER scans the
overlap region twice, once for quality-based resolution and
once more for context-based resolution.
Note that in lines 11-28 of the code, position i in for-

ward read X corresponds to position i′ in reverse read Y .
We assume that the two bases X(i) and Y (i′) are not ‘N’
(if both X(i) and Y (i′) are ‘N’, then they are skipped; if
either one is ‘N’, then the other base is informative).
First pass: quality-score-based correction (lines 10-14)
For each pair of mismatching bases in the overlap between
the forward and reverse reads, CASPER first considers the
difference in their quality scores. For X(i) and Y (i′), let bh
(bl) denote the base with the higher (lower) quality score.
For a user-specified parameter δ, if |QX (i) − QY (i′)| > δ,
then CASPER replaces bl by bh. The rationale behind this
is that a significantly higher quality score of bh is a strong
indicator of its correctness. This is in fact the basis on
which most of the current approaches to paired-end mer-
ging are grounded. CASPER is differentiated from them
by the second step.
Second pass: context-based correction (lines 15-28)
A more interesting scenario arises when the difference
in quality scores is moderate. In such cases, CASPER no
longer makes decisions based on the quality scores,
since we cannot assume that the error probability of bh
is negligible relative to that of bl [12]. For the cases

Table 1 User-specified parameters of CASPER and the default values used for experiments

Parameter Default Description

K 17 The size of k-mers (in bp) used to represent contexts around mismatching bases

Ω 10 The minimum length (in bp) of the overlap between forward and reverse reads

g 0.5 CASPER abandons merging if the mismatch ratio in the overlap is greater than g
δ 19 Context-based mismatch resolution starts if quality scores differ less than δ

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 3 of 11

where |QX (i) − QY (i′)| ≤ δ, CASPER therefore makes
context-based decisions by examining the bases before
and after the mismatching position, instead of relying
on quality scores.
For bases X(i) and Y (i′), we consider k different (but

progressively overlapping) windows along the reads and
define the j-th context (for 1 ≤ j ≤ k) in terms of two sub-
sequences of X and Y :

Cj(i, i′) = 〈X(i − k + j : i + j − 1),Y(i′ − k + j : i′ + j − 1)〉

as depicted in Figure 3. For each j, CASPER estimates
P{X(i)|Cj(i, i′)} and P{Y(i′)|Cj(i, i′)} and then constructs
a k-dimensional decision vector D = 〈d1, d2, . . . , dj , . . . ,
dk〉, where dj is defined as

dj =

⎧⎨
⎩
1, ifP{X(i)|Cj(i, i′)} >

P{Y(i′)|Cj(i, i′)};
0, otherwise.

(1)

Element dj = 1(0) represents that the base in the for-
ward (reverse) read is correct. Note that this decision
rule is based on the Bayesian decision theory [17], and
thus the error involved in decision dj is given by
εj = min(P{X(i)|Cj(i, i′)},P{Y(i′)|Cj(i, i′)}) .
In other words, CASPER makes a series of preliminary

decisions and stores the results in D. The elements in D
can be considered as the outputs from k classifiers. We
can make a final decision based on D using ensemble
learning techniques that can combine results from mul-
tiple learners [18]. CASPER employs the idea of linear
opinion pools to make a final decision:

choose

{
X(i) if 1

k

∑k
j=1 dj > 0.5

Y(i′) otherwise
(2)

which can be implemented as voting. If dj were i.i.d.,
then the error from the final decision would be εj/k [18],
but here the dj’s have dependence on each other originat-
ing from the definition of the context, and we expect a
higher level of error than the theoretical estimate (see
‘Experiments on the context definition and probability
computation’ in Results and Discussion).

CASPER estimates the probabilities in Eq. (1) using
the k-mer-count table Tk constructed in step 2. By
Bayes’ theorem, we can express these probabilities as

P{X(i)|Cj(i, i′)} = P{Cj(i, i′)|X(i) is correct}P{X(i) is correct}
P{Cj(i, i′)}

and

P{Y(i)|Cj(i, i′)} = P{Cj(i, i′)|Y(i′) is correct}P{Y(i′) is correct}
P{Cj(i, i′)} .

Note that the context-based mismatch resolution step
assumes that the bases in each of the forward and
reverse reads have a similar probability of being correct.
This assumption further gives

P{X(i)|Cj(i, i′)}
P{Y(i′)|Cj(i, i′)} ≈ P{Cj(i, i′)|X(i) is correct}

P{Cj(i, i′)|Y(i′) is correct} (3)

≈ Tk[X(i − k + j : i + j − 1)]
Tk[Y(i′ − k + j : i′ + j − 1)]

(4)

(see Results and Discussion for our experimental
result that supports the above formulation).
Thus, we can rewrite the decision rule in Eq. (1) using

k-mer counts as follows:

dj =

⎧⎨
⎩
1, ifTk[X(i − k + j : i + j − 1)] >

Tk[Y(i′ − k + j : i′ + j − 1)];
0, otherwise.

(5)

In certain cases, the number of partial decisions made
per mismatch can be less than k. CASPER skips those
context windows whose span exceeds the read boundary
(lines 20-21). Additionally, when the rightmost position
of a window spans a pair of mismatching bases for j = j*

> 1 (i.e., X(i + j − 1) ≠ Y (i′ + j − 1)), CASPER skips all
of the following contexts for j ≥ j* (line 22). Some bases
appearing in such contexts may be erroneous, since they
are yet to be corrected. In contrast, it is guaranteed that
X(i − k + j : i − 1) = Y (i′ − k + j : i′ − 1) for 1 ≤ j < j*,
because the mismatch resolution starts with the leftmost
position in the overlap and proceeds to the right.

Figure 3 Definition of k-mer context Cj(i, i′) . For bases X(i) and Y (i′), we consider k different (but progressively overlapping) windows along
the reads and define the j-th context (for 1 ≤ j ≤ k) in terms of two subsequences of X and Y . The illustration is for k = 3 (1 ≤ j ≤ 3).

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 4 of 11

Lines 18-28 of Algorithm 1 implement the decision
rules represented by Eq. (2) and Eq. (5), also considering
the cases in which the number of partial decisions is less
than k.

Additional details
In the final step of CASPER, each pair of forward and
reverse reads is merged to produce virtually elongated
reads (lines 29-31). The quality score of a base not pro-
cessed by the mismatch resolution remains unchanged.
For a newly replaced base, the quality score of the repla-
cing base is used.
Assuming sequential execution, the worst-case time

complexity of CASPER is O(m log m+N n2), where N is
the total number of paired-end reads, n is the length of
each read, and m is the number of k-mers stored in the
k-mer table. The worst-case space complexity is O(m +
N n). Note that the O(m log m) time and O(m) space com-
plexity terms are due to the Jellyfish algorithm [14] we
utilize for k-mer counting. By parallelization, the O(N n2)
term in the time complexity becomes O(N n2/t), where t is
the number of threads used.
There are two main parts of CASPER that are suitable

for parallelization: k-mer counting and the two-step mer-
ging process. Counting k-mers in different reads or mer-
ging different pairs of reads provides ample opportunities
for data-level parallelization. The former is handled by the
parallel implementation of Jellyfish. For the latter, we
implement the proposed merging algorithm using
OpenMP (http://www.openmp.org), an API that supports
shared-memory multi-threaded programming.
One might consider making a context-based decision

using two separate k-mer tables for forward and reverse
reads. The context-based decision rule in Eq. (1) will then
use P {X(i)|X(i − k + j : i + j − 1)} and P {Y (i′)|Y (i′ −k +j :
i′ +j −1)}, reflecting respectively the forward and reverse
contexts. This would make the probability estimation
more complicated, since the normalization becomes differ-
ent. Ideally, the forward and (preprocessed) reverse reads
should bear the same information and can be considered

two replicates of a fragment. Thus, considering the two
reads independently may lose the advantage of having
such replicates. According to our experiments, this
separate-k-mer-table approach, while taking more time
than the current implementation of CASPER, has a negli-
gible impact on its performance.

Results and discussion
We test the proposed CASPER methodology with the
seven datasets listed in Table 2. To generate A4, A5, S4,
and S5, we customize the GemSIM sequencing simulator
[19] and apply it to a public dataset [20] using the Illumina
error models v4 and v5. Note that datasets A4 and S4 are
generated with higher error rates than A5 and S5. In S4
and S5, there is a single reference fragment, whereas A4
and A5 have all of the twenty three reference sequences
used in the original publication. Datasets C1, C2, and PA
are from real sequencing experiments on bacterial 16S
ribosomal RNAs [21,10].
For performance comparison with the proposed CAS-

PER method, we employ three widely used approaches to
merging paired-end reads: COPE [11], FLASH [6], and
PANDAseq [10]. All of the four tools compared take
quality scores [9] as input, and the quality score informa-
tion of each sequence used was prepared in the FASTQ
format. The specification of the machine used is as
follows: Ubuntu 12.04, 4× 2.2 GHz Intel Xeon E5-4620
CPUs (8 cores/16 threads each), and 512 GB main
memory.

Performance evaluation and comparison
Table 3 lists the performance of CASPER and three other
tools in terms of runtime (measured with 32 threads used)
and other widely used metrics including the accuracy and
F1 score [22]. We use the evaluation methodology
proposed in [10], which examines the completeness of
resolving mismatches in the overlap to call the success of
a merge (refer to Additional file 1 for more details on the
definition of evaluation metrics and additional experimen-
tal results).

Table 2 Details of the datasets used for experiments

dataset
type

ID target† # Total
reads

Refs‡ Fragment
length§

Read
length

Overlap
length

Simulator (error model) or
sequencer used

Source

Simulated A4 V5 1,000,000 23 160-190 100 10-40 GemSIM (v4#) [19,20]

A5 V5 1,000,000 23 160-190 100 10-40 GemSIM (v5b) [19,20]

S4 V5 1,000,000 1 160 100 40 GemSIM (v4#) [19,20]

S5 V5 1,000,000 1 160 100 40 GemSIM (v5b) [19,20]

Real C1 V3 716,366 9 169-195 125 55-81 Illumina GAIIx [21]

C2 V3 1,350,602 9 169-195 125 55-81 Illumina GAIIx [21]

C3 V3 673,845 1 198 108 18 Illumina GAIIx [10]

†hyper-variable regions in 16S rRNA; ‡the number of reference sequences; §excluding the primer (simulated).

#Illumina error model v4 (forward rate 0.99%, reverse 2.40%); bv5 (forward rate 0.28%, reverse 0.34%).

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 5 of 11

http://www.openmp.org

Most notably, CASPER exhibits the highest level of
accuracy and F1 score over all the datasets used. In par-
ticular, for A4/S4 (simulated with higher error rates)
and C1/C2/PA (real data), the average accuracy of CAS-
PER is higher than that of COPE, FLASH, and PANDA-
seq by 86%, 21%, and 15%, respectively. In terms of F1
scores, CASPER outperforms the other tools by 8-55%
for A4/S4 and C1/C2/PA. For the simulated datasets
with lower error rates (A5/S5), the performance of CAS-
PER remains superior to the alternatives tested,
although the performance gap is narrower due to the
low error rates used to simulate A5 and S5. The evident
robustness of CASPER would make it an invaluable tool
for handling noisy sequencing data which are encoun-
tered frequently in practice. The performance of the
tasks that utilize the paired-end merging results (such as
genome assembly and mapping) will also benefit signifi-
cantly from using CASPER, which can provide longer
reads by merging forward and reverse reads robustly.
As for runtime, CASPER is not the fastest, as expected

from the fact that CASPER relies on the time-consuming
k-mer counting. PANDAseq and FLASH, which do not
employ k-mer counts, normally take the least amount of
runtime. Nonetheless, the runtime of CASPER is obviously
reasonable in most cases (taking about thirty seconds),
unlike COPE, another k-mer-based merger that takes
noticeably more time than the k-mer-free tools. Clearly,
there is a trade-off between the runtime and accuracy of
the merging tools, but considering the quality of merges
CASPER can provide, we believe that CASPER is the tool
that best balances this trade-off.

Experiments on the context definition and probability
computation
In the context-based mismatch resolution, CASPER
makes a call based on the ensemble of up to k indivi-
dual decisions. For comparison, we additionally imple-
ment and measure the performance of a version that
makes a decision based on only one of the k contexts,
as shown in Figure 4. The distribution of the accuracy
values this modified version reports for different j
values (1 ≤ j ≤ k) is represented by a box plot. We
observe that the ensemble approach is effective for
delivering more robust performance, although the
observed performance gain is lower than the theoreti-
cal one (see ‘Second pass: context-based correction’ in
Proposed Method), presumably due to the dependence
between contexts.
As stated in ‘Second pass: context-based correction’

in Proposed Method, the context-based mismatch
resolution of CASPER assumes that the bases in each
of the forward and reverse reads have similar prob-
abilities of being correct and thus does not consider
quality scores when estimating probabilities using k-
mer contexts. Alternatively, we can include quality
scores in the probability estimation by multiplying the
ratio of probabilities (i.e., 10−QX(i)/10/10−QY (i′)/10) in Eq.
(3) and Eq. (4). We implement both approaches and
compare the results in Table 4 which indicates that
there is negligible difference between these two
approaches, and thus implying that the quality scores
add little to the information provided by the k-mer
contexts.

Table 3 Performance statistics (A4, A5, S4, S5: simulated; C1, C2, PA: real)

Tool Dataset (#
reads)

merges # correct
merges

Time
(sec)

Accuracy F1 Dataset (#
reads)

merges # correct
merges

Time
(sec)

Accuracy F1

CASPER 999,936 967,842 30 0.968 0.984 713,782 667,421 23 0.932 0.965

COPE A4 262,661 241,630 183 0.242 0.389 C1 603,357 572,885 205 0.800 0.889

FLASH (1,000,000) 989,960 732,040 20 0.732 0.845 (716,366) 688,730 601,561 22 0.840 0.913

PANDAseq 991,698 807,691 6 0.808 0.894 693,518 590,898 5 0.825 0.904

CASPER 999,973 997,201 30 0.997 0.999 1,345,759 1,233,831 40 0.914 0.955

COPE A5 924,634 915,981 205 0.916 0.956 C2 1,105,743 1,046,420 319 0.775 0.873

FLASH (1,000,000) 999,578 977,355 19 0.977 0.989 (1,350,602) 1,282,916 1,101,436 35 0.816 0.898

PANDAseq 999,101 978,527 6 0.979 0.989 1,298,903 1,080,593 9 0.800 0.889

CASPER 1,000,000 960,986 29 0.961 0.980 671,877 658,631 19 0.977 0.989

COPE S4 262,107 230,595 181 0.231 0.375 PA [COPE does not run on PA]

FLASH (1,000,000) 999,964 697,867 18 0.698 0.822 (673,845) 660,984 634,261 16 0.941 0.970

PANDAseq 999,976 785,919 5 0.786 0.880 660,593 635,663 4 0.943 0.971

CASPER 1,000,000 997,303 28 0.997 0.999

COPE S5 974,219 961,366 162 0.961 0.980

FLASH (1,000,000) 999,921 977,431 19 0.977 0.989

PANDAseq 999,947 976,701 6 0.977 0.988

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 6 of 11

Effects of algorithm parameters and multithreading on
performance
Parameter k: the length of k-mer
In general, using larger k has the advantage of examining
wider contexts, but on the other hand, demands more
memory and runtime. In the literature, there exist many
k-mer-based bioinformatics tools, and different values of k
are recommended depending on tasks and applications.
For instance, the default k for seed-and-extend aligners are
11 for BLAST [23] and 28 for MegaBLAST [24].
Figure 5(a) shows how the accuracy and runtime of

CASPER varies as the k-mer size changes from k = 2 to k
= 31 for dataset C1. To clearly show the overhead incurred
by k-mer counting, Figure 5(a) also shows the time taken
to count k-mers. In this figure, the accuracy of CASPER is
seen to increase only up to a certain point as we increase
k, plateauing out around k = 8. As k increases, the time to
count k-mers starts decreasing at first but tends to
increase in the long run, due to the IO bottleneck incurred
by multithreading (see [14] for more details of this

behavior). The only variation here is the value of k, and
the total runtime of CASPER is directly proportional to
the time taken to perform k-mer counting. The default
value CASPER uses is k = 17, which is a widely used value
in genome assembly [25]. Given the length of fragments in
this C1 dataset, smaller values of k should work, as is
observed in Figure 5(a). Users can change k depending on
their analysis target.
Parameter δ: the threshold for starting context-based
mismatch resolution
Recall from ‘Second pass: context-based correction’ in Pro-
posed Method that CASPER makes context-based deci-
sions on which of the forward and reverse reads is correct
if the quality score difference falls below δ. Otherwise,
CASPER utilizes the quality score difference for the
decisions. Figure 5(b) presents the effects of δ on the
accuracy of CASPER. For the datasets used (A4, S4, C1),
we observe a similar trend: as δ increases, the accuracy
improves and eventually becomes saturated. Note that the
number of mismatches handled by the quality-score-based
decision increases as we lower δ. Thus, the observation
that the accuracy degrades as δ is lowered strongly implies
that the quality-score-based scheme becomes ineffective as
δ decreases. This observation justifies the switch to the
context-based scheme when quality scores do not differ
significantly between two mismatching bases. This is also
compatible with our motivation for developing CASPER:
simply relying on quality scores may incur mistakes in
resolving mismatches, when the difference in quality
scores is not significant.
Parameters g and ω
CASPER abandons read merging if the mismatch ratio
in the overlap region is greater than g. Figure 6(a) shows
how the accuracy of CASPER is affected by changing

Figure 4 Effects of making an integrative decision on the accuracy of merging. CASPER makes a call based on the ensemble of up to k
individual decisions. For comparison, we additionally implement and measure the performance a version that makes a decision based on only
one of the k contexts. For each dataset, the box plot in the figure shows the distribution of the accuracy values this modified version reports for
different j values (1 ≤ j ≤ k).

Table 4 Comparison of # correct merges with and
without considering quality scores during the probability
estimation using k-mer counts

Dataset # reads #correct merges increase by q-score (%)

(without) (with)

A4 1,000,000 967,842 967,875 0.003410

A5 1,000,000 997,201 997,211 0.001003

S4 1,000,000 960,986 960,984 -0.000208

S5 1,000,000 997,303 997,303 0.000000

C1 716,366 667,421 667,165 -0.038357

C2 1,350,602 1,233,831 1,233,012 -0.066379

PA 673,845 658,631 658,648 0.002581

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 7 of 11

the g threshold (data: C1, S4, A4). The values of the
other parameters are set to their default. We can
observe that the accuracy steeply increases as we change
g from 0 to approximately 0.2, but after that, the change
in accuracy seems negligible.
Figure 6(b) shows how the accuracy changes as we vary

the value of ω from 3 to 20 for the datasets C1, S4 and A4
(default values were used for the other parameters). In this
plot, we do not see any significant change up to ω = 10.
For larger values of ω, the accuracy gradually decreases for
A4, whereas the accuracy does not change for the other
datasets. This observation can be explained by noticing
the size of overlaps in the datasets used. The overlap size
is 40 for S4 and 50-81 for C1, as listed in Table 2. Conse-
quently, there should be no difference in accuracy for
these datasets by varying ω from 3 to 20. In contrast, the
overlap size for A4 is between 10 and 40, and the accuracy
of CASPER for A4 becomes affected if we increase ω
over 10.
The number of computing threads used for parallelization
Considering that read pairs can be merged independently
of each other, most of the current approaches to merging
paired-end reads provide parallel implementations. The
task of k-mer counting adds another opportunity for paral-
lelization, and CASPER utilizes the parallelized version of
Jellyfish [14] for constructing the k-mer-count table.
Figure 7(a) shows how the runtime of CASPER

decreases as more threads are used for parallel execution.
Due to the part of the code that cannot be parallelized, the

effect of multithreading diminishes as the number of
threads increases past a certain point. The speedup of k-
mer counting shows a similar trend, as can be observed in
the plot.
Figure 7(b) shows a comparison of the four paired-end

merging tools under comparison in terms of speedups by
multithreading. For the cases where only a few threads are
used, the k-mer-based methods (CASPER and COPE) are
slower than FLASH and PANDAseq. As more threads are
utilized, the runtime of CASPER steeply decreases and
shows a similar run-time to the two non-k-mer
approaches. In contrast, although the time demand of
COPE is alleviated by multithreading to a certain extent,
its runtime remains significantly higher than the others.

Concluding remarks
Among the four merging tools tested, CASPER consis-
tently shows the best performance in terms of accuracy
and F1 score for the datasets used. We attribute the main
reason for this improvement to the mismatching resolu-
tion policy employed by CASPER: when the quality scores
differ significantly, it trusts the scores and uses them to
decide the correct bases; otherwise, it switches to the con-
text-based decision scheme based on k-mer counts around
the mismatching bases. CASPER is most clearly differen-
tiated from other approaches by this policy.
One might suggest incorporating quality scores to some

extent even when CASPER makes a context-based deci-
sion, similarly to an existing approach [11]. For instance,

Figure 5 Effects of parameters k and δ on performance. (a) k, the size of k-mers defining contexts (dataset: C1). (b) δ, the threshold for
starting context-based decisions (dataset: C1, S4, A4).

Figure 6 Effects of parameters g and ω on performance (dataset: C1, S4, A4). (a) CASPER abandons read merging if the mismatch ratio in
the overlap is greater than g. (b) ω, the minimum length (in bp) of the overlap region between forward and reverse reads.

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 8 of 11

we could adjust the k-mer counts by considering the qual-
ity scores of the bases in a k-mer. According to our tests
(e.g., see Table 4), however, it is difficult to see any signifi-
cant effect of this hybrid approach on the accuracy of mer-
ging once the quality score difference becomes lower than
a threshold value.
The most notable findings from our experiments can

thus be summarized as follows: when the difference
between the quality scores of a pair of mismatching bases
falls below a threshold, the quality scores often fail to deli-
ver decisive information on the identity of the correct
base. Instead, using the k-mer contexts around the
mismatching position is believed to be more informative.
We envision various opportunities for improving CAS-

PER: (1) Currently, the overlap finding step and the mis-
match resolution step run separately. Given that a
suboptimal arrangement of the overlap may become opti-
mal after the mismatches therein are corrected, a future
revision of CASPER may include simultaneous or iterative
optimization of these two steps. (2) The context-based
decision of CASPER presently relies on the idea of voting
and may further be improved by adopting other types of
ensemble learning techniques. In the revision process, care
should be taken not to incur excessive computational
overhead for learning. (3) CASPER presently considers
only substitution type sequencing errors. Although substi-
tutions are the most common error type in Illumina
sequencing, indels (especially in homopolymers) are still
problematic intervals particularly at read ends. By revising
the context-based mismatch-resolution scheme, we may
augment CASPER so that it can recognize and address
indel-type sequencing errors as well as substitutions.
(4) For the current form of dependence on k-mer counts,
CASPER is particularly well suited for high-coverage
amplicon sequencing. According to our experiments
(summarized in Additional file 1), however, the degree of
sequencing depth required to obtain a high accuracy
with CASPER tends to be moderate, suggesting its
wide applicability of CASPER. For whole-genome shot-
gun sequencing, the context around mismatches in the
overlap between forward and reverse reads may be
defined differently to optimize the effectiveness of

CASPER. It would be intriguing to analyze the effect
of running CASPER on a variety of downstream tasks
such as sequence assembly/mapping and metagenomic
diversity estimation.
input : X, Y, QX , QY // X: forward read, Y : reverse
read, QX ,QY : q-scores
param : ω, g, δ, k // ω: min overlap, g: give-up thresh-

old, δ: difference threshold, k: k-mer size
output: Z // virtually elongated read by merging for-

ward & reverse reads
// step 3: find the best overlapping region between

forward & reverse reads
1 lowestMismatchRatio ¬ ∞, bestOverlapStartIndex

¬ 0
2 for i ¬ 1 to n − ω + 1 do
3 numMismatches ¬ 0
4 for j ¬ i to n do
5 ifX(j) ≠ Y (j − i + 1) then numMismatches ¬

numMismatches + 1
6 numMismatches

n−i+1 < lowestMismatchRatio then
7 lowestMismatchRatio¬numMismatches

n−i+1
8 bestOverlapStartIndex ¬ i
9 if lowestMismatchRatio > g then return // give up

(too many mismatches)
// step 4 (first pass): qualty-score-based mismatch

resolution
10 for i ¬ bestOverlapStartIndex to n do
11 i′ = i − bestOverlapStartIndex + 1 // for conveni-

ence in indexing Y
12 ifX(i) = Y (i′) then continue // skip matching

bases
13 else if QX(i) − QY(i′) > δ then Y (i′) = X(i) // q

in X is significantly better
14 else if QY(i′) − QX(i) > δ then X(i) = Y(i′) // q in

Y is significantly better
// step 4 (second pass): context-based mismatch

resolution
15 for i ¬ bestOverlapStartIndex to n do
16 i′ = i − bestOverlapStartIndex + 1 // for conveni-

ence in indexing Y
17 if X(i) = Y (i′) then continue // skip matching

bases

Figure 7 Effects of the number of threads on runtime (dataset: C1). (a) the total runtime of CASPER and the time taken to k-mer counting
only. (b) comparison of different tools.

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 9 of 11

18 ForwardVotes ¬ 0, ReverseVotes ¬ 0 // otherwise,
examine the k-mer context
19 for j ¬ 1 to k do
20 if i − k + j < 1 then continue // index exceeds

read boundary (left); continue to next j
21 if i + j − 1 > n then break // index exceeds read

boundary (right); go to line 27
22 if j > 1 and X(i + j − 1) ≠ Y (i′ + j − 1) then

break // context scan stops; go to line 27
23 ContextX ¬ Tk[X(i − k + j : i + j − 1)] // k-mer

counts in forward reads
24 ContextY ¬ Tk[Y (i′ − k + j : i′ + j − 1)] // k-mer

counts in reverse reads
25 if ContextX > ContextY then ForwardVotes ¬

ForwardVotes + 1
26 else if ContextX < ContextY then ReverseVotes

¬ ReverseVotes + 1
27 if ForwardVotes > ReverseVotes then Y(i′) ¬ X(i) //

use the base in X
28 else X(i) ¬ Y (i′) // use the base in Y
// step 5: merge forward & reverse reads
29 for i ¬ 1 to bestOverlapStartIndex − 1 do Z(i) ¬

X(i) // copy first part from X
30 for i ¬ 1 to n do Z(i + bestOverlapStartIndex − 1)

¬ Y (i) // copy second part from Y
31 return Z
Algorithm 1: Steps 3-5 of the proposed CASPER

algorithm

Additional material

Additional file 1: (PDF): description of performance evaluation
methods and additional results.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SK implemented the method, carried out the experiments, and analyzed the
results. BL participated in the experiments and analyzed the results. SY
conceived the research, analyzed the results, and wrote the manuscript. All
authors read and approved the final manuscript.

Acknowledgements
This work was supported in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT
and Future Planning) [No. 2011-0009963, and No. 2012M3A9D1054622] and
in part by Samsung Electronics Co., Ltd. The authors would like to thank
Sungwoon Choi and Hanjoo Kim at Yoon lab for helpful discussions, and Dr.
Daniel Mason for proofreading the manuscript.

Declarations
Funding for open access charge was supported by Seoul National University.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Bioinformatics Institute, Interdisciplinary Program in Bioinformatics, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, 151-747 Seoul, Korea.
2Department of Electrical and Computer Engineering, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, 151-744 Seoul, Korea.

Published: 10 September 2014

References
1. Schuster SC: Next-generation sequencing transforms today’s biology.

Nature 2007, 200(8).
2. Shendure J, Ji H: Next-generation dna sequencing. Nature biotechnology

2008, 26(10):1135-1145.
3. Metzker ML: Sequencing technologies?the next generation. Nature

Reviews Genetics 2009, 11(1):31-46.
4. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing

technology. Trends in Genetics 2008, 24(3):142-149.
5. Pop M: Genome assembly reborn: recent computational challenges.

Briefings in bioinformatics 2009, 10(4):354-366.
6. Magoč T, Salzberg SL: FLASH: fast length adjustment of short reads to

improve genome assemblies. Bioinformatics 2011, 27(21):2957-2963.
7. Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR,

Alm EJ, Chisholm SW: Unlocking short read sequencing for
metagenomics. PLOS One 2010, 5(7):11840.

8. Martin JA, Wang Z: Next-generation transcriptome assembly. Nature
Reviews Genetics 2011, 12(10):671-682.

9. Ewing B, Green P: Base-calling of automated sequencer traces using
Phred. II error probabilities. Genome research 1998, 8(3):186-194.

10. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD: PANDAseq:
paired-end assembler for Illumina sequences. BMC Bioinformatics 2012,
13(1):31.

11. Liu B, Yuan J, Yiu SM, Li Z, Xie Y, Chen Y, Shi Y, Zhang H, Li Y, Lam TW,
et al: COPE: an accurate k-mer-based pair-end reads connection tool to
facilitate genome assembly. Bioinformatics 2012, 28(22):2870-2874.

12. Kwon S, Park S, Lee B, Yoon S: In-depth analysis of interrelation between
quality scores and real errors in illumina reads. Engineering in Medicine
and Biology Society (EMBC), 2013 35th Annual International Conference of the
IEEE IEEE; 2013, 635-638.

13. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al: High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proceedings
of the National Academy of Sciences 2011, 108(4):1513-1518.

14. Marçais G, Kingsford C: A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 2011, 27(6):764-770.

15. Melsted P, Pritchard JK: Efficient counting of k-mers in dna sequences
using a bloom filter. BMC Bioinformatics 2011, 12(1):333.

16. Rizk G, Lavenier D, Chikhi R: DSK: k-mer counting with very low memory
usage. Bioinformatics 2013, 29(5):652-653.

17. Berger JO: Statistical Decision Theory and Bayesian Analysis. Springer,
New York; 20042.

18. Alpaydin E: Introduction to Machine Learning. MIT press, Cambridge,
Massachusetts; 2004.

19. McElroy KE, Luciani F, Thomas T: Gemsim: general, error-model based
simulator of next-generation sequencing data. BMC genomics 2012,
13(1):74.

20. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ: Removing noise from
pyrosequenced amplicons. BMC Bioinformatics 2011, 12(1):38.

21. Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD:
Generation of multimillion-sequence 16s rrna gene libraries from
complex microbial communities by assembling paired-end illumina
reads. Applied and environmental microbiology 2011, 77(11):3846-3852.

22. Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, Burlington, Massachusetts 2005.

23. Altschul SF, Madden TL, Sch¨affer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped blast and psi-blast: a new generation of protein
database search programs. Nucleic acids research 1997, 25(17):3389-3402.

24. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning
dna sequences. Journal of Computational biology 2000, 7(1-2):203-214.

25. Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, et al:
The sequence and de novo assembly of the giant panda genome.
Nature 2009, 463(7279):311-317.

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 10 of 11

http://www.biomedcentral.com/content/supplementary/1471-2105-15-S9-S10-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9

doi:10.1186/1471-2105-15-S9-S10
Cite this article as: Kwon et al.: CASPER: context-aware scheme for
paired-end reads from high-throughput amplicon sequencing. BMC
Bioinformatics 2014 15(Suppl 9):S10.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kwon et al. BMC Bioinformatics 2014, 15(Suppl 9):S10
http://www.biomedcentral.com/1471-2105/15/S9/S10

Page 11 of 11

	Abstract
	Introduction
	Proposed method
	Preprocessing, k-mer counting, and overlap detection (steps 1-3)
	Resolving mismatching bases in forward and reverse reads (step 4)
	First pass: quality-score-based correction (lines 10-14)
	Second pass: context-based correction (lines 15-28)

	Additional details

	Results and discussion
	Performance evaluation and comparison
	Experiments on the context definition and probability computation
	Effects of algorithm parameters and multithreading on performance
	Parameter k: the length of k-mer
	Parameter δ: the threshold for starting context-based mismatch resolution
	Parameters γ and ω
	The number of computing threads used for parallelization

	Concluding remarks
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

