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SUMMARY

Transgenic expression of activated AKT1 in the murine prostate induces prostatic intraepithelial neoplasia
(PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN,
we show the concomitant induction of p27Kip1 and senescence. Genetic ablation of p27Kip1 led to downregu-
lation of senescence markers and progression to cancer. In humans, p27Kip1 and senescence markers were
elevated in PIN not associated with CaP but were decreased or absent, respectively, in cancer-associated PIN
and in CaP. Importantly, p27Kip1 upregulation in mouse and human in situ lesions did not depend upon mTOR
or Akt activation but was instead specifically associated with alterations in cell polarity, architecture, and
adhesion molecules. These data suggest that a p27Kip1-driven checkpoint limits progression of PIN to CaP.
INTRODUCTION

Activation of AKT through deregulated phosphatidylinositol 3-

kinase (PI3K) signaling resulting from genetic inactivation of

phosphatase and tensin homolog (PTEN), mutational activation

of PI3K, or the activation of upstream oncogenic tyrosine kinases

is a frequent molecular event in human cancer (Brugge et al.,

2007; Lee et al., 2007). We have previously shown that trans-

genic expression of activated Akt in the murine prostate induces

a uniform and highly penetrant prostatic intraepithelial neoplasia
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(PIN) phenotype confined to the ventral prostate (Majumder

et al., 2003). Even after long-term follow-up, these mice do not

develop invasive cancers. However, in this model, there is robust

and predictable time-dependent regression of the PIN with the

mTOR inhibitor RAD001 (Majumder et al., 2004). This model

thus provides a robust system in which to define transition steps

leading from PIN to invasive cancer.

In human epithelial cancers, reduced levels of p27Kip1 expres-

sion are frequently observed (Slingerland and Pagano, 2000)

and are correlated with tumor progression and poor survival
SIGNIFICANCE

Most human epithelial cancers progress from dysplastic in situ lesions to invasive and ultimately metastatic disease. Pros-
tatic intraepithelial neoplasia (PIN) is a precursor of invasive prostate cancer, but the molecular mechanisms underpinning
this transition are largely unknown. Here we define loss of p27Kip1 expression as a key event in this progression of PIN to
invasive cancer. We further show that p27Kip1 upregulation in PIN correlates with senescence in both murine and human
prostate tissue. Upregulation of p27Kip1 in preinvasive lesions is not dependent on mTOR or Akt activation but is secondary
to loss of cell polarity and disruption of cell-cell adhesions. We suggest that the p27Kip1-dependent checkpoint limits the
progression of PIN to invasive cancer.
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(Loda et al., 1997; Porter et al., 1997; Yang et al., 1998). p27Kip1

functions primarily as a negative regulator of cyclin-CDK activity

and thus likely participates in tumor suppression by inhibiting

cell-cycle progression (reviewed in Chu et al., 2008). Targeted

disruption of p27Kip1 (Cdkn1b�/�) in mice leads to prostatic hy-

perplasia (Cordon-Cardo et al., 1998) and development of pitui-

tary adenomas (Fero et al., 1996, 1998) as the mice age. How-

ever, Cdkn1b�/� mice do not typically develop other

spontaneous tumors (Fero et al., 1996; Kiyokawa et al., 1996;

Nakayama et al., 1996).

In many human cancer cells, oncogene-induced senescence

(OIS) is associated with known tumor suppressor pathways

such as p53, VHL, and Rb (Serrano et al., 1997; Young et al.,

2008). It has been reported that OIS occurs in many human

and mouse precursors of cancer and that this phenomenon

can be reversed by the inactivation of tumor suppressor path-

ways (Braig et al., 2005; Chen et al., 2005; Collado et al., 2005;

Michaloglou et al., 2005). Recently, Young et al. (2008) have re-

ported that senescence induced by loss of VHL in renal cancer

cells is Rb, p27Kip1, and SKP2 dependent but p53 independent.

Here, we have investigated the role of p27Kip1 in tumor sup-

pression in prostate cancer. Using both genetically engineered

mice and human prostate samples, we have identified a relation-

ship among senescence induction, p27Kip1 expression, and PIN

that supports the notion that p27Kip1 induction in the context of

early neoplastic lesions may represent a preinvasive checkpoint

linked to cellular senescence.

Figure 1. Induction of p27Kip1 and Senescence in

Prostatic Intraepithelial Neoplasia of AKT1-Trans-

genic and PtenL/L;Cre+ Mice

(A) Ventral prostates (VPs) from wild-type (WT) and AKT1-

transgenic (AKT1-Tg) mice were stained by immunohisto-

chemistry using antibodies directed against phospho-Akt

(S473) (upper panels) or p27Kip1 (lower panels). Scale bar =

50 mM.

(B) The number of cells staining positive for p27Kip1 was deter-

mined in VPs of WT and AKT1-Tg mice of the indicated ages.

Data are presented as mean ± SEM.

(C) Wild-type (PtenL/L;Cre�) and Pten conditional knockout

(prostate-specific) (PtenL/L;Cre+) VPs were stained with anti-

phospho-Akt (S473) (upper panels) or anti-p27Kip1 (lower

panels). Scale bar = 50 mM (100 mM in insert).

(D) Western blot analysis of p27Kip1 and tubulin in whole-

cell lysates from VPs of WT, Pten conditional knockout

(PtenL/L;Cre+), and AKT1-Tg mice at 6 weeks of age.

(E) VPs from WT and AKT1-Tg mice were stained with anti-

body against HP1a. Scale bar = 50 mM.

(F) The area of HP1a staining was measured in both WT and

AKT1-Tg prostates. Data are presented as mean ± SD.

RESULTS

p27Kip1 Protein and Markers
for Cellular Senescence Are Increased
in AKT1-Transgenic Prostate
Transgenic animals expressing activated Akt

(AKT1-Tg) in the ventral prostate (VP) uniformly

develop intraductal/intra-acinar lesions consistent

with PIN. However, progression to invasive pros-

tate cancer (CaP) has not been observed after 2 years of obser-

vation (data not shown). Moreover, despite the strong prolifera-

tive signal delivered by activated Akt in vitro, AKT1-Tg prostate

shows only a modest increase in BrdU incorporation, suggest-

ing a possible upregulation of cyclin-dependent kinase inhibi-

tors (Majumder et al., 2004). Thus, to determine the level of

p27Kip1 in the VP of AKT1-Tg mice, we performed immunohisto-

chemical (IHC) analysis using anti-p27Kip1. While activation of

Akt is associated with downregulation of p27Kip1 in a number

of in vitro systems (Liang et al., 2002; Shin et al., 2002; Viglietto

et al., 2002), surprisingly, p27Kip1 protein levels were signifi-

cantly higher in prostate epithelial cells expressing Myr-AKT1

when compared to littermate wild-type (WT) mice (Figures 1A

and 1D). Similarly, significant levels of elevated p27Kip1 protein

were observed in the VP of AKT1-Tg mice at 35, 45, and 60

days (Figure 1B).

We previously observed that PIN lesions in AKT1-Tg and Pten

heterozygous (+/�) mice are histologically similar (Majumder

et al., 2003). In the latter, activation of Akt is seen in conjunction

with PTEN loss in PIN lesions (Majumder et al., 2003). Thus, we

next examined mice harboring two floxed Pten alleles and

a transgene driving the expression of prostate-restricted Cre

(ARR2PB-Cre) (referred to as PtenL/L;Cre+) (Wang et al.,

2003). We found that the development of PIN at 6 weeks of

age was accompanied by phosphorylation and activation of

Akt as well as a concomitant increase in p27Kip1 protein when

compared to littermate controls (Figures 1C and 1D). These
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data suggest that p27Kip1 is upregulated in the context of PIN

driven either by myristoylation-dependent Akt activation or by

loss of PTEN.

Cellular senescence is commonly seen in the early or precur-

sor stages of invasive cancer (Braig et al., 2005; Chen et al.,

2005; Collado et al., 2005; Michaloglou et al., 2005). To deter-

mine whether cells in the PIN lesions found in AKT1-Tg mice

were senescent, we stained tissue sections for senescence-

associated b-galactosidase (b-gal) in frozen tissue samples or

for antibodies against HP1a and HP1g in paraffin-embedded

tissue (Bartkova et al., 2006). We found that the stabilization

of p27Kip1 protein was associated with the increased levels of

HP1a, HP1g, and b-gal activity in the PIN lesions of the

AKT1-Tg mice (Figures 1E and 1F; Figures 2A and 2B; data

not shown).

Figure 2. Genetic Inactivation of Cdkn1b Rescues Cells from Senes-

cence and Increases Proliferation in AKT1-Transgenic Mice

(A–L) Twelve hours after BrdU administration, mice were sacrificed, and VPs

of WT (A, E, and I), AKT1-Tg (B, F, and J), Cdkn1b+/� (C, G, and K), and

AKT1-Tg/Cdkn1b+/� (D, H, and L) mice were stained with b-gal (A–D), hema-

toxylin and eosin (E–H), or anti-BrdU antibody (I–L). Scale bar = 50 mM

(100 mM in insert).

(M) The number of BrdU-stained cells per 100 ducts was determined by

manual counting of BrdU-positive cells in all VP lobes. Data are presented

as mean ± SD.
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Loss of p27Kip1 in AKT1-Tg Mice Rescues Cells from
Senescence and Increases Proliferation in Prostate
Epithelial Cells
It has been reported that oncogenes induce senescence in dif-

ferent human and murine precursors of cancer as well as in tu-

mors harboring deletion of the Pten tumor suppressor (Braig

et al., 2005; Chen et al., 2005; Collado et al., 2005; Michaloglou

et al., 2005). Senescence induced by Pten deficiency has been

reported to be dependent on p53. Inactivation of Pten causes

cellular senescence, and combined inactivation of Pten and

p53 causes a lethal form of invasive prostate cancer (Chen

et al., 2005). To test the hypothesis that the senescence ob-

served in the PIN lesions of the AKT1-Tg mice could be reversed

by the inactivation of the tumor suppressor p27Kip1, compound

mice were generated wherein Myr-AKT1 was expressed in

both the Cdkn1b heterozygous and homozygous null settings.

PIN in the VP of AKT1-Tg mice displayed high b-gal activity

(Figure 2B), and both HP1a and HP1g were elevated (Figures

1D and 1E; data not shown). However, b-gal activity as well as

expression of HP1a and HP1g was decreased in the PIN lesions

of mice in which AKT1 was expressed in the context of the

Cdkn1b heterozygous or homozygous background (Figures 2C

and 2D; data not shown). These data suggest that the PIN-in-

duced cellular senescence checkpoint is dependent on p27Kip1.

These findings also raised the possibility that p27Kip1-induced

senescence results in a block in cell-cycle progression and con-

sequently a failure to progress beyond the PIN phenotype. After

administration of BrdU, VPs from 10- to 16-week-old offspring

were harvested, and the rate of proliferation was determined

by IHC detection of incorporated BrdU. Indeed, VPs from

AKT1-Tg/Cdkn1b+/� and AKT1-Tg/Cdkn1b�/� mice showed

significantly increased rates of BrdU incorporation (Figures 2L

and 2M) as compared with AKT1-Tg/Cdkn1b+/+, AKT1-WT/

Cdkn1b+/�, AKT1-WT/Cdkn1b�/�, and AKT1-WT/Cdkn1b+/+

prostates (Figures 2I–2K and 2M; data not shown). At 10–16

weeks of age, the PIN phenotype was exacerbated, but no addi-

tional cancer phenotype was observed at this time point (Figures

2E–2H). Thus, at early time points, loss of Cdkn1b abrogates the

induction of senescence and results in increased prostate epi-

thelial cell proliferation in the setting of Akt activation.

AKT1-Tg Mice Harboring Loss of Either One or Both
Cdkn1b Alleles Develop Invasive Prostate Cancer
These observations were consistent with the notion that p27Kip1

acts as a checkpoint that limits hyperplastic proliferation and

malignant transformation. To determine whether p27Kip1 loss

also results in the progression from PIN to invasive CaP, we ex-

amined VPs of all genotypes resulting from the intercross of

AKT1-Tg/Cdkn1b+/� mice as the mice aged. As predicted,

AKT1-Tg/Cdkn1b+/� and AKT1-Tg/Cdkn1b�/� mice, but not lit-

termate controls or AKT1-Tg/Cdkn1b+/+ mice, developed inva-

sive cancer in the VP (Figures 3A, 3B, and 3E; data not shown).

Thirty-nine percent of AKT1-Tg/Cdkn1b+/� mice and 57% of

AKT1-Tg/Cdkn1b�/� mice developed invasive CaP at the age

of 1 year or more as compared with their control littermates

(Figure 3E). One AKT1-Tg/Cdkn1b+/� and one AKT1-Tg/

Cdkn1b�/� mouse developed a tumor in the VP prior to 1 year

of age (Figure 3E; data not shown).
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Loss of the basal epithelial cell layer and hence loss of expres-

sion of the basal cell-specific marker p63 is a distinguishing fea-

ture of the transition from PIN (p63+) to invasive CaP (p63�) in

humans (Signoretti et al., 2000). We therefore examined p63 ex-

pression in murine prostate tumors by IHC. While basal cells

were present in the PIN lesions in VPs of AKT1-Tg mice

(Figure 3C), prostate tumors from AKT1-Tg/Cdkn1b+/� and

AKT1-Tg/Cdkn1b�/� mice (Figure 3D; data not shown) lacked

the basal cell layer, confirming the invasiveness of these tumors.

To further characterize the tumor phenotype, we examined the

expression of the androgen receptor (AR) and the luminal cyto-

keratin 19 (CK19) by IHC and found that the tumors expressed

readily detectable AR and CK19 (see Figures S1A and S1B avail-

able online; data not shown) but failed to express cytokeratin 14

and p63 (Figure 3D; data not shown). These observations dem-

onstrate the luminal nature of these tumors, which is similar to

human prostate cancer. Finally, BrdU incorporation assays

showed that, as was the case in the PIN lesions arising in

AKT1-Tg/Cdkn1b+/� and AKT1-Tg/Cdkn1b�/� mice, the result-

ing tumors were also highly proliferative (Figures S1C–S1F).

IHC and immunoblot analysis of p27Kip1 suggested that these tu-

mors retained the second allele of p27Kip1, though protein levels

were markedly reduced (Figures S2D–S2F and S2J). We noted

that Akt expression was reduced in these tumors due to varie-

gated expression of the transgene rather than to reduction of

Akt on a per cell basis (data not shown).

Figure 3. Genetic Inactivation of Cdkn1b in AKT1-Transgenic Mice

Results in Development of Invasive Prostate Cancer

(A) Prostatic intraepithelial neoplasia (PIN) in a representative section from the

VP of an AKT1-Tg mouse (�52 weeks old). Scale bar = 100 mM.

(B) Invasive prostate cancer (CaP) in a representative section from an AKT1-

Tg/Cdkn1b+/� mouse. Sections were stained with H&E. Scale bar = 100 mM.

(C) VP from an AKT1-Tg mouse stained with antibodies directed against p63.

Scale bar = 100 mM.

(D) VP from an AKT1-Tg/Cdkn1b+/� mouse stained with antibodies directed

against p63. Scale bar = 100 mM.

(E) Summary of tumor incidence by age and genotype.
Stabilization of p27Kip1 Is Dependent on the PIN
Phenotype
The finding that p27Kip1 levels were increased in the AKT1-Tg

mice raised the possibility that Akt activity might directly lead

to elevated levels of p27Kip1. Alternatively, p27Kip1 elevation

might be associated with activation of the mTOR kinase or

p70S6K pathways further downstream of Akt. To distinguish

among these possibilities, we took advantage of the mTOR de-

pendence of this PIN phenotype. Specifically, inhibition of

mTOR activity using the rapamycin derivative RAD001 (everoli-

mus) leads to the resolution of the PIN phenotype by day 14 of

treatment (Majumder et al., 2004). By comparing RAD001- and

placebo-treated AKT1-Tg and wild-type mice, we hoped to dis-

tinguish the contribution of three possible effectors of p27Kip1 in-

duction, namely the PIN phenotype itself (present or absent),

mTOR (active or inactive), and Akt (active or inactive). To this

end, 8- to 12-week-old AKT1-Tg and littermate wild-type mice

were treated with placebo or RAD001 for 2 or 14 days. Consis-

tent with our previous findings, 14 days after treatment, the VP

histology of RAD001-treated AKT1-Tg mice reverted to normal

(Figures 4A–4C; data not shown), while PIN persisted in pla-

cebo-treated AKT1-Tg mice (data not shown) and in mice

treated with RAD001 for 2 days (Figure 4B).

We next examined p27Kip1 in the VP of AKT1-Tg mice treated

with placebo or RAD001. Elevated levels of p27Kip1 were ob-

served in the VP of AKT1-Tg mice treated with placebo (Figures

4P–4R) and AKT1-Tg mice treated with RAD001 for 2 days (Fig-

ures 4M and 4N). However, p27Kip1 levels reverted to normal af-

ter 14 days of treatment, concomitant with the disappearance of

the PIN phenotype (Figures 4O and 4C). In AKT1-Tg animals,

mTOR inhibition leads to the loss of phosphorylation of both

eIF4G and S6 ribosomal protein (S6RP). In these experiments,

S6RP phosphorylation was inhibited after 2 days of treatment

with RAD001 (Figures 4H and 4I); however, p27Kip1 levels were

unaffected (compare Figures 4M and 4N). As we had previously

shown, the activation of Akt was unaffected by treatment with

RAD001 and persisted on day 14, at which time both the PIN

phenotype and the induction of p27Kip1 had resolved (Majumder

et al., 2004; Figures 4D–4F). Thus, Akt oncogenic activity by

itself is not sufficient for p27Kip1 induction (compare Figures 4F

and 4O).

Finally, we have used expression profiling to identify two

classes of transcripts indicative of either mTOR pathway acti-

vation (Majumder et al., 2004) or a distinct set of transcripts

correlated with the presence or absence of the PIN phenotype.

Aldolase 3 (a Hif-1 target) and prostate stem cell antigen

(PSCA) are prototypical members of each class of transcripts,

respectively. Consistent with the notion that p27Kip1 protein in-

duction is linked to the PIN phenotype, elevated p27Kip1 levels

correlated best with the pattern of mRNA induction seen with

the phenotype marker PSCA and senescence markers rather

than with the pharmacodynamic marker of mTOR activity aldol-

ase 3 (Figure S3, upper panel). Together, these data, summa-

rized in the lower panel of Figure S3, suggest that the cellular

or morphological alterations secondarily arising during the for-

mation of the PIN lesion either alone or together with activation

of Akt lead to the induction of p27Kip1 followed by cellular se-

nescence and a resulting block in both cell proliferation and

phenotype progression.
Cancer Cell 14, 146–155, August 12, 2008 ª2008 Elsevier Inc. 149
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A prediction that follows from these findings is that this puta-

tive p27Kip1 checkpoint might be activated in PIN lesions that

are induced independently of PI3K pathway activation. Indeed,

we also found significant elevation of p27Kip1 in the PIN

phenotype of VPs of c-Myc-transgenic (Myc-Tg) mice as com-

pared to wild-type controls (Figures S4A and S4B). The

Myc-Tg mice developed invasive CaP at the age of 12 months,

and in these cancers, p27Kip1 appeared to be downregulated

as reported in human CaP (Figures 5F and 5G; Figures S4A

and S4B). Thus, the p27Kip1 checkpoint correlates best with

the appearance of PIN lesions.

Figure 4. Induction of p27Kip1 and Increases in Senescence Markers

Do Not Require mTOR Activation and Are Correlated with the PIN

Phenotype

AKT1-Tg mice were treated orally with RAD001 at 10 mg/kg per day (A–O) or

with placebo (P–R) for 0, 2, and 14 days. Shown are sections representative of

results obtained in at least 12 animals evaluated after each specific treatment

period. Scale bar = 100 mM in (A)–(I) and (M)–(R); scale bar = 200 mM in (J)–(L).

(A–C) Tissue sections from VPs stained with H&E.

(D–F) Tissue sections stained with antibody directed against phospho-Akt

(S473).

(G–I) Tissue sections stained with antibody directed against phospho-S6RP.

(J–L) Immunohistochemical analysis was performed in tissue sections with

antibody against HP1a.

(M–R) Tissue sections stained with antibody directed against p27Kip1.
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The Relevance of p27Kip1 Elevation in Human PIN
Levels of p27Kip1 in representative foci of human benign prostatic

epithelium, PIN, and invasive cancer were evaluated by IHC

analysis. The level of p27Kip1 was significantly reduced in inva-

sive cancer compared with benign epithelium (Figures 5D, 5F,

and 5G), as reported previously (Guo et al., 1997; Thomas

et al., 2000). Foci of PIN adjacent to invasive cancer consistently

showed both a reduced intensity of staining and a reduced

number of p27Kip1-positive cells compared with benign epi-

thelium (Figure 5G; data not shown), as reported previously (De

Marzo et al., 1998). In contrast, in 60% of the cases (15 of 25)

of isolated PIN without adjacent invasive cancer, p27Kip1 staining

was of similar intensity to adjacent benign epithelium (Figure 5B)

and was present in a higher percentage of cells compared to

benign epithelium (Figures 5D and 5G). The mean percentage

of cells staining positively for p27Kip1 was 52.4% (range 38%–

82%) in this subset of PIN and 42.9% (range 32%–50%) in the

secretory cells of adjacent benign epithelium (p < 0.001)

(Figure 5G). Thus, we confirmed that the increase in p27Kip1 in

murine models of prostate cancer also occurs in primary human

prostate cancers.

Figure 5. Stabilization of p27Kip1 in Human PIN

(A) Tissue section from normal human prostate stained with H&E.

(B) Normal prostate tissue section stained with antibody directed against

p27Kip1.

(C) Tissue section from human PIN stained with H&E.

(D) PIN tissue section stained with antibody directed against p27Kip1.

(E) Tissue section from human prostate cancer (CaP) stained with H&E.

(F) CaP tissue section stained with antibody directed against p27Kip1. Scale bar =

50 mM in (A)–(F).

(G) The number of p27Kip1-positive cells was determined in normal tissue, PIN,

PIN adjacent to CaP, and CaP. Data are presented as mean ± SEM.



Cancer Cell

p27Kip1 Checkpoint Induces Senescence in PIN
Human PIN Displays the Hallmark of Senescence
It has been reported that senescence is a hallmark of precursor

lesions in many different human tumors (Braig et al., 2005; Chen

et al., 2005; Collado et al., 2005; Michaloglou et al., 2005). In or-

der to determine whether a senescence checkpoint could be

identified in human PIN lesions, we performed pathological anal-

ysis of 21 frozen tissue samples from prostates with documented

PIN. The PIN lesions were documented in 7 of the 21, and senes-

cence was investigated by b-gal staining. Indeed, 4 of the 7 iden-

tified PIN lesions showed considerably more b-gal activity when

compared to nondysplastic epithelial cells in the same tissue

sections (Figures 6A and 6B). In addition, we characterized 44

human PIN lesions obtained from specimens without adjacent

cancer, with normal counterparts from paraffin-embedded tis-

sue sections. IHC and quantitative analysis by spectral imaging

of HP1a and HP1g showed increased levels of both markers in

PIN lesions when compared to normal ducts (Figures 6C–6F;

Figure S5D).

Induction of p27Kip1 during Detachment and Inhibition
of Cell-Cell Contact in Human Primary Prostate
Epithelial Cells
The PIN phenotype in AKT1-Tg mice is characterized by disorga-

nization of luminal epithelial cells, including loss of appropriate

cell polarization (see Majumder et al., 2004 and Figure 7A). In ad-

dition, in PIN lesions, numerous prostate epithelial cells are no

longer in tight contact with the basement membrane or with

nearby basal cells. These observations raised the possibility

that epithelial cell detachment may trigger upregulation of

p27Kip1 protein. To address this possibility, we turned to primary

human prostate epithelial cells (PrECs) engineered to express

SV40 large T antigen, the catalytic subunit of human telomerase

(hTERT), and the AR (Berger et al., 2004; Garraway et al., 2003).

These immortalized cells, PrEC-LEAR, were then transduced

with a retrovirus encoding Myr-Akt to create PrEC-LEKAR cells.

Next, these cells were plated on standard culture plates, on low-

adhesion coated plates, or in suspension, and protein extracts

were prepared after 24, 48, and 96 hr. In both cell lines, cell de-

tachment led to a significant increase in p27Kip1 that was more

notable in Akt-expressing cells (Figure 7C). These data support

the notion that detachment of human prostate epithelial cells, ei-

ther with or without Akt expression, leads to induction of p27Kip1.

Similar results were also obtained in Rat1 fibroblasts trans-

formed with Myr-AKT1 (Figure 7B).

E-cadherin, a member of the cadherin family, mediates epithe-

lial cell-cell interactions and maintains normal architecture and

polarity of epithelial cells in tissue. It also plays an important

role in the progression of many human cancers, including pros-

tate cancer. We asked whether inhibition of cell-cell contact is

sufficient to induce p27Kip1 stabilization in human primary pros-

tate cancer cells. Suppression of E-cadherin expression in

PrECs resulted in an inhibition of the normal architecture of

cell-cell contact (Figure 7E) and increased the level of p27Kip1

protein (Figure 7D).

DISCUSSION

Cancer is characterized by a series of transitions from preneo-

plastic lesions to invasive cancer and finally metastatic disease.
A great deal of emphasis has been placed on defining these

events and understanding the disease progression at the molec-

ular level in metastatic settings. However, less attention has

been paid to the earlier transition points. It is not clear whether

overcoming certain phenotypic transitions is only linked to

checkpoints triggered by specific oncogenic mechanisms or

whether such phenotypic transitions intrinsically raise specific

checkpoint barriers that must be overcome. The angiogenic

switch (as an example) or the epithelial-mesenchymal transition

might represent such barriers or checkpoints to phenotypic tran-

sitions where tumors must acquire new properties in order to

progress (Hanahan and Folkman, 1996).

We have studied the phenotypic transition between PIN and

invasive cancer in a model of prostatic intraepithelial neoplasia

resulting from transgenic activation of AKT. Here we show that

in AKT1-transgenic and Pten homozygous mice, the PIN pheno-

type is associated with increased levels of p27Kip1 and the induc-

tion of markers of senescence. In order to determine whether the

induction of p27Kip1 was causally related to the block in pheno-

type progression, we studied the results of genetic inactivation

of Cdkn1b in the context of AKT1-Tg mice. Loss or downregula-

tion of p27Kip1 led to increased proliferative rates, loss of senes-

cence markers, and progression of the PIN phenotype to

Figure 6. Markers of Cellular Senescence Are Elevated in Human

PIN

(A and B) Frozen sections of normal human prostate (A) and PIN (B) were sub-

jected to b-gal and H&E staining. Blue staining indicates b-gal activity; H&E

was used as a counterstain to visualize the PIN lesion.

(C and D) Tissue sections from paraffin-embedded normal human prostate

and PIN lesions were stained with antibodies against HP1a (C) and HP1g

(D). Scale bar = 50 mM in (A)–(D) (100 mM in insert).

(E and F) Average area of HP1a-positive (E) and HP1g-positive (F) stain

was measured in both PIN lesion and normal tissue. Data are presented as

mean ± SD.
Cancer Cell 14, 146–155, August 12, 2008 ª2008 Elsevier Inc. 151



Cancer Cell

p27Kip1 Checkpoint Induces Senescence in PIN
invasive cancer. These latter data are consistent with prior data

showing that genetic inactivation of Cdkn1b in the context of

Pten+/�mice produces an invasive cancer phenotype (Di Cristo-

fano et al., 2001).

Cellular senescence opposes neoplastic transformation trig-

gered by activation of oncogenic pathways both in vitro and

in vivo (Chen et al., 2005; Collado et al., 2005). Inhibition of

cellular proliferation in premalignant lesions in mouse and hu-

Figure 7. Disruption of Cellular Polarization and Adhesion Is Associ-

ated with Upregulation of p27Kip1 Level
(A) VPs of WT and AKT1-Tg mice stained with ZO-1 antibody and imaged by

confocal microscope. Scale bar = 50 mM.

(B) Rat embryonic fibroblasts stably transfected with either vector or Myr-

AKT1 were cultured under adherent or suspension conditions. Protein lysates

were prepared and immunoblotted with antibodies directed against p27Kip1

(upper panel), phospho-Akt (S473) and phospho-GSK3a and b (middle panel),

and tubulin (lower panel).

(C) Protein lysates were prepared from primary human epithelial cells (LEAR

and LEKAR) cultured under adherent (Ad) or suspension (Susp) conditions. Im-

munoblot analysis was performed using antibodies directed against p27Kip1

(upper panel), phospho-Akt (S473) (middle panel), and tubulin (lower panel).

(D) LEAR cells were transduced with three different shRNAs against E-cad-

herin and shGFP as a control. Cells were harvested 2 days postselection,

and total protein lysates were prepared. Western blot analysis for E-cadherin

(upper panel), p27Kip1 (middle panel), and actin (lower panel) was performed.

(E) LEAR cells transduced with E-cadherin shRNAs and shGFP control were

grown in plates, and images were acquired 2 days postselection. Scale bar =

100 mM.
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man might be the result of oncogene-induced senescence

(Braig et al., 2005; Chen et al., 2005; Collado et al., 2005; Mi-

chaloglou et al., 2005). Chen et al. (2005) have shown that

cells undergo senescence in preneoplastic lesions in Pten-de-

ficient prostate. In addition, myristoylated Akt induces cellular

senescence in primary murine embryonic fibroblasts (Miyau-

chi et al., 2004). These published data suggested that the se-

nescence induced by loss of function of Pten is a result of

Akt activation but requires p53. In contrast to these findings,

more recent data demonstrate that cellular senescence due

to the loss of another tumor suppressor gene, VHL, is p53 in-

dependent (Young et al., 2008). Thus, the cooperating events

that contribute to the induction of senescence in preneoplas-

tic lesions that occurs as a result of loss of a tumor suppres-

sor gene or activation of an oncogene may be diverse.

In our model, we asked whether p27Kip1 and the senescence

checkpoint are specifically associated with oncogene activation

or with a phenotype-induced checkpoint. Careful dissection of

the phenotype in response to mTOR inhibition coupled to mea-

sures of pathway activation for both Akt and mTOR demon-

strated that increased p27Kip1 (Figures 4M–4O) and cellular se-

nescence (Figures 4J–4L) are dependent on the preneoplastic

lesions and do not depend directly upon either Akt or mTOR ac-

tivation. Similarly, we did not find any correlation between mTOR

activation and levels of p27Kip1 or senescence markers in a sub-

set of clinical samples with PIN. However, correlation between

loss of PTEN staining and activation of mTOR in these clinical

PIN specimens was observed (Figure S5; data not shown).

Thus, it appears that a PIN-dependent p27Kip1 checkpoint rather

than an oncogene-induced checkpoint is enacted in the AKT1-

Tg mice. Moreover, in Myc-Tg mice, p27Kip1 elevation was also

seen in the PIN lesions. Thus, the checkpoint is apparently in-

duced as a consequence of phenotypic perturbation that can

be brought about by multiple upstream mechanisms. The appar-

ent phenotype dependence of the p27Kip1 checkpoint may at

least in part explain the synergy noted when Cdkn1b is geneti-

cally inactivated in the context of multiple other oncogenic or tu-

mor suppressor manipulations and the high frequency of down-

regulation of p27Kip1 in human tumors.

It is not yet clear specifically what perturbation associated with

the PIN phenotype might trigger accumulation of p27Kip1. Many

possibilities, including loss of matrix association, loss of polarity,

or loss of luminal-basal cell interactions, could be considered.

Mammoto et al. (2004) previously found that restriction of extra-

cellular matrix adhesion and inhibition of cell spreading are asso-

ciated with induction of p27Kip1 and G1 arrest. In keeping with

this notion, we found that in human prostate epithelial cells,

p27Kip1 was induced under conditions of contact-free growth

(Figures 7B and 7C). Recent data suggest that when E-cadherin

is lost, cells fail to polarize (Capaldo and Macara, 2007). Here we

showed that downregulation of E-cadherin expression by shRNA

in primary human prostate cancer cells increased the level of

p27Kip1 and disrupted cell-cell interactions (Figures 7D and 7E).

We speculate that similar conditions might be recapitulated by

loss of contact between epithelial cells and the basement mem-

brane in vivo, as E-cadherin has been shown to be downregu-

lated in human PIN as well as subsequent carcinoma (Jaggi

et al., 2005). In addition, we have previously shown that PIN

lesions in AKT1-Tg mice lose oriented zona occludens-1
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localization and thus lose normal apical-basal cell polarity (Ma-

jumder et al., 2004). In fact, loss of polarity and detachment

from basal cells and the basement membrane are characteristic

of PIN. Links between the regulation of polarity and cell-cycle

control are increasingly being recognized, particularly in tying

cell orientation to oriented cell division (reviewed in Wodarz,

2001). Intriguingly, disruption of the polarized cytoskeleton and

of bud formation in Saccharomyces cerevisiae is linked to delays

in cell-cycle progression, dependent at least in part on Swe1,

a CDK-inhibitory kinase (reviewed in Lew, 2003). Whether regu-

lation of cell polarity is tied to a senescence checkpoint remains

to be determined.

Importantly, these data are highly relevant to human prostate

cancer. Indeed, we show that p27Kip1 is overexpressed in human

PIN not associated with invasive cancer, presumably represent-

ing the earliest phase of neoplastic transformation. In contrast,

PIN adjacent to invasive cancer, where checkpoint loss may

have already occurred, is associated with low levels of p27Kip1.

The role of p27Kip1 in this process is further supported by

a body of data showing that loss of p27Kip1 is commonly found

in human cancers (Chu et al., 2008) and that invasive tumor cells

specifically degrade p27Kip1. This in turn results in increased

CDK2 activity (Loda et al., 1997).

As many as 30% of men with a diagnosis of PIN on biopsy are

subsequently found to harbor an invasive prostatic adenocarci-

noma on repeat biopsy (Gokden et al., 2005). Our findings there-

fore suggest that CDK inhibitors might have utility in preventing

cancer progression from in situ dysplasia to invasion. Indeed,

our group has previously shown that flavopiridol can in fact re-

duce the prevalence of esophageal cancer in a murine surgical

model of Barrett’s dysplasia and esophageal carcinoma in

Cdkn1b�/�mice (Lechpammer et al., 2005). We have also dem-

onstrated that preinvasive lesions of metaplastic esophageal

mucosa in humans (Barrett’s-associated dysplasias) also exhibit

marked overexpression of p27Kip1 with subsequent loss as inva-

sion ensues, suggesting that upregulation of p27Kip1 may be

a checkpoint in other tissues as well (Singh et al., 1998). CDK in-

hibitors are in clinical trials for a number of human cancers. If

safety and efficacy can be established, prevention trials with

these agents in high-risk patients harboring preinvasive lesions

could be considered.

EXPERIMENTAL PROCEDURES

Generation of Compound Heterozygous Mice

Cdkn1b heterozygous mice (B6.129S4-Cdkn1btm1Mlf/J), generated by the

laboratory of James Roberts (Fred Hutchinson Cancer Research Center, Seat-

tle), were obtained from the Jackson Laboratory (Fero et al., 1996). The hetero-

zygous mice were bred to AKT1-Tg heterozygous mice (FVB-Tg/Pbsn-

Akt1wrs9) to generate F1 AKT1-Tg/Cdkn1b heterozygous mice. The compound

AKT1-Tg heterozygous/Cdkn1b heterozygous mice were intercrossed to gen-

erate the F2 colony, and the resulting offspring were used in this study. All pro-

cedures were performed according to protocols approved by the Institutional

Animal Care and Use Committee of the Dana-Farber Cancer Institute.

Genotyping, Dissections, and Preparation of Tissues

Isolation of genomic DNA from tail cuts or ear punches, PCR-based genotyp-

ing, prostate and genitourinary tract dissections, tissue fixation, and hematox-

ylin and eosin (H&E) stains were performed as described previously (Majumder

et al., 2003; Xu et al., 2007). Cdkn1b heterozygous and homozygous mice were

genotyped as described previously (Di Cristofano et al., 1998).
Administration of RAD001 or BrdU

40-O-(2-hydroxyethyl)-rapamycin (RAD001; 10 mg/kg/day) was administered

as a microemulsion (Taesch and Niese, 1994) (2% w/w) diluted in double-dis-

tilled H2O (ddH2O) by oral gavage as described previously (Majumder et al.,

2004). Mice receiving BrdU were injected intraperitoneally with 50 mg/kg of

BrdU in PBS 12 hr prior to euthanasia and were sacrificed after immediate ven-

tricular perfusion with 4% buffered formaldehyde.

Immunohistochemical and Immunoblot Analysis

Mounted tissue sections (both human and murine) were hydrated, incubated

for 30 min with 3% H2O2 in methanol at room temperature, washed with

ddH2O and PBS, and heated in a microwave to 199�F in 1 mM EDTA

(pH 8.0) for 25 min (for anti-p27Kip1, anti-CK19, anti-phospho-Akt (S473),

anti-phospho-S6RP, anti-AR, and anti-BrdU staining) or in 10 mM citrate

buffer (pH 6.0) for 30 min (for anti-p63, anti-HP1a, and anti-HP1g staining).

Sections were blocked in 10% goat serum (Vector) for 30 min; incubated

with anti-phospho-Akt (S473) (1:400), anti-phospho-S6RP (1:400), anti-AR

(1:400) (Cell Signaling), anti-CK19 (1:200), anti-p27Kip1 (1:200), anti-p63

(1:100), anti-BrdU (1:200) (BD PharMingen), anti-HP1a (1:1000) (clone

15.19s2, Upstate), or anti-HP1g (1:1000) (clone 42s2, Upstate) in 1% BSA

for 12 hr at 4�C; washed with PBS; and incubated with secondary antibody

(1:200) (Vector Laboratories) for 30 min. Antigen-antibody complexes were

detected with an ABC kit (Vector Laboratories) or by 3,30-diaminobenzidine

(DAB) followed by methyl green counterstaining (for HP1a and HP1g). Frozen

sections (5 mm thick) of VPs of different genotypes and frozen human prostate

specimens were stained with b-gal (Calbiochem) and CK14. Protein extracts

and immunoblots were prepared as described previously (Majumder et al.,

2003). Anti-phospho-Akt (S473), anti-phospho-GSK3 (Cell Signaling), anti-

p27Kip1 (BD PharMingen), anti-E-cadherin (BD PharMingen), and anti-tubulin

(B-5-1-2) (Sigma) were used at 1:1000.

Scoring of p27Kip1 Immunohistochemistry in Human

Prostate Specimens

Sixty-nine formalin-fixed cases of PIN were examined, including 44 cases of

PIN with adjacent invasive CaP and 25 cases in patients without the histologic

diagnosis of invasive cancer. All human tissues were collected from Brigham

and Women’s Hospital (Boston) using a protocol approved by the Partners Hu-

man Research Committee Institutional Review Board. Sections were stained

with anti-p27Kip1 antibody as described above. Three hundred cells from rep-

resentative PIN foci, adjacent benign prostatic epithelium, and invasive cancer

were counted, and the number of cells with nuclear p27Kip1 staining was deter-

mined. Only cells in which the staining intensity was equal to or greater than the

adjacent normal secretory prostatic epithelium were considered positive.

Twenty-one frozen human prostate biopsy tissues were stained with b-gal,

and the presence of PIN was detected in seven samples. Higher levels of b-gal

positivity compared to the adjacent normal cells were present in four of these

seven.

Scoring of HP1a and HP1g Staining in Mouse and Human

Prostate Specimens

Both human (n = 44) and mouse (n = 20) prostate tissues were stained with

anti-HP1a and HPg. Since HP1 differential staining was low, localization and

relative intensity were assessed using spectral imaging methods similar to

those described previously (Byers et al., 2007). Spectral imaging and digital

spectral cube deconvolution were performed using a CRi Nuance spectral an-

alyzer (Cri, Inc.) and the associated software package. Image analysis and

stain intensity quantitation were performed on the appropriate spectra using

NIH ImageJ (http://rsb.info.nih.gov/ij/). Images were acquired at 203 objective

magnification, and image intensities were normalized to a threshold value.

Staining above the threshold intensity was considered positive, and the posi-

tive area within fields of 20 nuclei was measured.

Human Prostate Cell Lines, Rat Fibroblast Cells,

and E-Cadherin Knockdown

Human primary prostate epithelial cells (PrECs) expressing SV40 large T anti-

gen, hTERT, and AR without (PrEC-LEAR) or with myristoylated FLAG-AKT1

(PrEC-LEKAR) (Berger et al., 2004) were plated on ultra-low attachment plates

(Corning) at a density of 200,000 viable cells/ml in serum-free media (PrEGM)
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as described previously (Berger et al., 2004). Spheres were collected by gentle

centrifugation (800 rpm) after 1, 2, and 4 days and were dissociated by incuba-

tion for 10 min in 0.05% trypsin, 0.53 mM EDTA (Invitrogen). LEAR cells were

infected with three independent shRNAs against E-cadherin (shECad1, 50-

CCAGTGAACAACGATGGCATT-30; shECad2, 50-CCAAGCAGAATTGCTCAC

ATT-30; and shECad3, 50-CGATTCAAAGTGGGCACAGAT-30) and control

shGFP. Cells were harvested 2 days postselection. PrECs were lysed by son-

ication in 1.25% SDS, 0.0125 NaPO4 (pH 7.2), 50 mM NaF, 2 mM EDTA, 1.25%

NP-40, 1 mM sodium vanadate with protease inhibitors (Roche).

Rat embryonic fibroblast cells were infected with Myr-AKT1, and a stable

cell line was established by single-cell dilution. Expression of Myr-Akt was de-

termined by immunoblot analysis using an antibody against phospho-Akt

(S473). These cells were grown either in adherent cell culture dishes or in sus-

pension for 24 hr. Cells were lysed and protein was isolated as described pre-

viously (Majumder et al., 2003).

Statistical Analysis

One-way ANOVA was used to test for differences in cell proliferation and IHC

scores between different genotypes.

SUPPLEMENTAL DATA

The Supplemental Data include five figures and can be found with this article

online at http://www.cancercell.org/cgi/content/full/14/2/146/DC1/.
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