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In this note, we show by examples that Theorem 5.3, partial proof of Theorem 5.30 , Lemma
5.4 and Remark 5.2 in [1] contain slight flaws and then provide the correct versions.

� 2011 Elsevier Inc. All rights reserved.
1. Theorem 5.3. on Page 850 is incorrect. The following example shows that this theorem does not hold in general.

Example 1. Let U = {a,b,c}, a fuzzy relation R on U is given as follows:
R
 a
. All rights reserved.

ang).
b
 c
a
 0.5
 0.2
 0.4

b
 0.2
 0.3
 0.6

c
 0.4
 0.6
 0.7
A ¼ fða;0:4Þ; ðb;0:8Þ; ðc;0:3Þg; T ¼ T L; and I ¼ I L:
It is easy to see that R is symmetric and T -transitive. By the definitions of C00R; C
00
R; R and R, we have

C00RðAÞðaÞ ¼ 1; RðAÞðaÞ ¼ 0:9; C00RðAÞðcÞ ¼ 0:1 and RðAÞðcÞ ¼ 0:4. Thus, C00R – R and C00R – R.

Theorem 1 (The correction of Theorem 5.3). If R 2 F(U � U) is symmetric and T -transitive, then C00R � R and C00R # RT .

Proof. For any A 2 F(U), x 2 U,
C00RðAÞðxÞ ¼ ^y2UIðRðy; xÞ;^z2UIðRðy; zÞ;AðzÞÞÞ ¼ ^z2U^y2UIðRðy; xÞ; IðRðy; zÞ;AðzÞÞÞ ¼ ^z2UIð_y2UT ðRðy; xÞ;Rðy; zÞÞ;AðzÞÞ

¼ ^z2UIð_y2UT ðRðx; yÞ;Rðy; zÞÞ;AðzÞÞP ^z2UIðRðx; zÞ;AðzÞÞ ¼ RðAÞðxÞ:
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Thus C00RðAÞ � RðAÞ for any A 2 F(U).
C00RðAÞðxÞ ¼ _y2UT ðRðy; xÞ;_z2UT ðRðy; zÞ;AðzÞÞÞ ¼ _z2U_y2UT ðRðy; xÞ; T ðRðy; zÞ;AðzÞÞÞ
¼ _z2UT ð_y2UT ðRðy; xÞ;Rðy; zÞÞ;AðzÞÞ ¼ _z2UT ð_y2UT ðRðx; yÞ;Rðy; zÞÞ;AðzÞÞ 6 _z2UT ðRðx; zÞ;AðzÞÞ ¼ RðAÞðxÞ:
Thus C00RðAÞ# RðAÞ for any A 2 F(U). h

2. Conditions in Lemma 5.4 on Page 851 are not equivalent. A counterexample is shown as follows:

Example 2. Let U = {a,b}. A fuzzy relation R on U is given as follows:
R
 a
 b
a
 0.4
 0.5

b
 0.3
 0.1
T ¼ T M and I ¼ IG. By the definitions of R and R, we obtain R(1a)(a) = R(1b)(b) = 0, however, R is not symmetric.

Theorem 2 (The correction of Lemma 5.4). The following statements are equivalent:

(1) R is symmetric.
(2) Rð1xÞðyÞ ¼ Rð1yÞðxÞ; 8x; y 2 U.
(3) Rð1x)I âÞðyÞ ¼ Rð1y)I âÞðxÞ; 8x; y 2 U; 8a 2 ½0;1�.
Proof. It directly follows from Theorems 4.2 (3) and 4.7 of [2]. h

3. Proof of Theorem 5.30 on Page 851 should be modified as follows.
Suppose that C00R ¼ R. For any x, y 2 U, from Theorem 4.6 (7) of [1], we have
Rð1x!I âÞðyÞ ¼ C00Rð1x!I âÞðyÞ ¼ C00Rð1y!I âÞðxÞ ¼ Rð1y!I âÞðxÞ:

By Theorem 4.7 of [2], we can conclude that R is symmetric. h

4. In Section 4.3 on Page 849, Li et al. gave the following assertion that coN C0FRðAÞ
� �

¼ C0FRðcoN ðAÞÞ;
coN C0FRðAÞ

� �
¼ C0FRðcoN ðAÞÞ and coN ðC00FRðAÞÞ ¼ C

00
FRðcoN ðAÞÞ.

In fact, the above three equalities do not hold in general. A counterexample is as follows:

Example 3. Let U = {a,b,c}, K1 = {(a,0.4), (b,1), (c,0.3)}, K2 = {(a,1), (b,0.4), (c,0.8)},
K3 ¼ fða;0:1Þ; ðb;0:7Þ; ðc;1Þg; and A ¼ fða;0:8Þ; ðb;0Þ; ðc;0:5Þg:

� �
(1) In the definitions of C0FR; C
0
FR; C

00
FR and C00FR; T ¼ T M ; I ¼ IG, by calculating, we have coN C0FRðAÞ ðcÞ ¼ 1;

C0FRðcoN ðAÞÞðcÞ ¼ 0:4; coN C00FRðAÞ
� �

ðcÞ ¼ 1 and C00FRðcoN ðAÞÞðcÞ ¼ 0:7.

(2) In the definitions of C0FR and C0FR; T ¼ T L; I ¼ I L, by calculating, we have coN C0FRðAÞ
� �

ðcÞ ¼ 0:5 and C0FRðcoN ðAÞÞðcÞ ¼ 0.

The correct relationships are given in the next theorem.

Theorem 3. Let ðU; CÞ be a generalized fuzzy approximation space. If I is an R-implicator based on a continuous t-norm T and N
is a negator induced by I , then
8A 2 IFðUÞ; coN C0FRðAÞ
� �

� C0FRðcoN ðAÞÞ; coN C0FRðAÞ
� �

� C0FRðcoN ðAÞÞ; coN C00FRðAÞ
� �

� C00FRðcoN ðAÞÞ:
Proof. For any A 2 IF(U), x 2 U,
C0FRðcoN ðAÞÞðxÞ ¼ ^C2CIðCðxÞ;_y2UT ðCðyÞ; ðcoN ðAÞÞðyÞÞÞ ¼ ^C2CIðCðxÞ;_y2UT ðCðyÞ; IðAðyÞ;0LÞÞÞ
6 ^C2CIðCðxÞ;_y2UIðIðCðyÞ;AðyÞÞ;0LÞÞ 6 ^C2CIðCðxÞ; Ið^y2UIðCðyÞ;AðyÞÞ;0LÞÞ
¼ ^C2CIðT ðCðxÞ;^y2UIðCðyÞ;AðyÞÞÞ;0LÞ ¼ Ið_C2CT ðCðxÞ;^y2UIðCðyÞ;AðyÞÞÞ;0LÞ
¼ N ð_C2CT ðCðxÞ;^y2UIðCðyÞ;AðyÞÞÞÞ ¼ ðcoN ðC0FRðAÞÞÞðxÞ:
Thus we can conclude that coN ðC0FRðAÞÞ � C
0
FRðcoN ðAÞÞ. In the same way, the other relations can be proved. h

5. Based on the correct theorems, Remark 5.2 on Page 852 must be changed accordingly.
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