A weak condition of globally asymptotic stability for neural networks

Weinan Zhang

Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China

Received 9 August 2005; received in revised form 2 November 2005; accepted 18 January 2006

Abstract

In this work we consider a general class of continuous activation functions which may be neither bounded nor differentiable; however, many sigmoidal functions are included as special cases. With this class of activation functions we give a result on asymptotic stability for neural networks under a weak condition of nonnegative definiteness. Then we show that differentiability is a condition for its exponential stability.

Keywords: Asymptotically stable; Exponential stable; Nonnegative definite; Compactness; Neural network

Hopfield neural networks are described by the differential equation

\[
du/dt = -Du + Ag(u) + I,
\]

where \(u := (u_1, \ldots, u_n)^T \), \(I := (I_1, \ldots, I_n)^T \in \mathbb{R}^n \), in which the superscript \(T \) means vector (or matrix) transposing, \(g : \mathbb{R}^n \to \mathbb{R}^n \) is a continuous vector function such that \(g(u) = (g_1(u_1), \ldots, g_n(u_n))^T \), and \(A := (a_{ij}), D := \text{diag}(d_1, \ldots, d_n) \) are both \(n \times n \) matrices. Usually it is supposed that all \(d_j \)'s are positive and all \(g_j \)'s are of sigmoidal type, limiter type, or linear threshold type (as shown in [11]) with the property that \(0 \leq D^+ g_j(u) \leq G_j \), where \(D^+ g_j(u) := \limsup_{s \to 0^+} (g_j(u + s) - g_j(u))/s \) is called the upper right Dini derivative of \(g_j(u) \). Stability is an important problem in the research into neural networks (see, e.g., [5–7]). Many results [1–4,9] on global (asymptotic) stability of (1) require a condition that the matrix \(DG^{-1} - A \) or something like it is positive definite, where \(G = \text{diag}(G_1, \ldots, G_n) \).

A natural question is: Can the positive definiteness condition in those results be replaced by nonnegative definiteness? A positive answer is given in [8] for a special type of functions \(g_j(s) = \tanh(G_j s) \). More generally, its Remark 2 tells us that theorems of asymptotic stability in [8] are still true for the activation functions which satisfy the following conditions:

(a) \(\tilde{g}_j(s)s > 0, j = 1, \ldots, n, \) for all real \(s \neq 0 \),

(b) \(|\tilde{g}_j(s)| < G_j |s|, j = 1, \ldots, n, \) for all real \(s \neq 0 \),

\(\tilde{g}_j(s) \) denotes a compactly supported function of \(g_j(s) \).

\(\tilde{g}_j(s) \) denotes a compactly supported function of \(g_j(s) \).
(c) $g_j'(s) < g_j'(0)$, $j = 1, \ldots, n$, for all real $s \neq 0$, and
(d) $g_j'(s)$ is decreasing as $s > 0$ and $g_j'(s)$ is increasing as $s < 0$,

where $\tilde{g}_j(v) := g_j(v + u_*) - g_j(u_*)$ and u_* is an equilibrium of the system. However, conditions (a) and (b) cannot be checked directly because sometimes it is difficult to give the location of the equilibrium u_* even if the existence of equilibria is known. Moreover, conditions (a), (b), (c) and (d) allow the function g to be unbounded, but for an unbounded sigmoidal function g, lacking compactness, the existence of the equilibrium u_* cannot be guaranteed by Brouwer’s fixed point theorem directly, as used in [8].

In this work, aiming at the above-mentioned conditions (a), (b), (c) and (d), we consider a general class of continuous activation functions g whose upper right Dini derivatives $D^+ g_j$ satisfy

$$0 < D^+ g_j(s) < D^+ g_j(0) \quad \forall s \neq 0, j = 1, \ldots, n. \tag{2}$$

These functions may be neither bounded nor differentiable; however, many sigmoidal functions [11] are included as special cases. Unlike tanh($G_j s$), condition (2) also allows a function under consideration not to vanish at 0. Improving on techniques used in [8], we prove rigorously a general result (our Theorem 1) of asymptotical stability under the weak condition that $D G_0^{-1} - A$ is nonnegative definite. Our condition (2) on activation functions is simpler than those in Remark 2 of [8], being easier to check without u_* and the requirement (d). On the basis of our Theorem 1, we further show in Theorem 2 that differentiability of activation functions is a condition for exponential stability.

1. Main result

Theorem 1. Suppose that g in Eq. (1) satisfies (2) and A is symmetric such that $D G_0^{-1} - A$ is nonnegative definite, where $G_0 = \text{diag}(D^+ g_1(0), \ldots, D^+ g_n(0))$. If (1) has an equilibrium u_*, then (1) has the unique equilibrium u_* and it is globally asymptotically stable.

Let $v = u - u_*$. Then (1) becomes

$$\frac{dv}{dt} = -Dv + A\tilde{g}(v), \tag{3}$$

where $\tilde{g}(v) := g(v + u_*) - g(u_*)$.

Lemma 1. Each component \tilde{g}_j of the vector function $\tilde{g}(v) = (\tilde{g}_1(v_1), \ldots, \tilde{g}_n(v_n))^T$ satisfies that (i) $\tilde{g}_j(0) = 0$ and $D^+ \tilde{g}_j(s) > 0$, (ii) $\tilde{g}_j(s)s > 0$ for $s \neq 0$, and (iii) $\tilde{g}_j(s)/s < D^+ g_j(0)$ for $s \neq 0$.

Proof. (i) is obvious, (ii) is observed, for g is strictly increasing. The proof of (iii) is based on the generalization of the Mean Value Theorem of differential calculus for Dini derivatives (Theorem 12.24 in [10]). The fact of \leq is simple by (2). Assume that $\tilde{g}_j(s_0)/s_0 = D^+ g_j(0)$ for some $s_0 \neq 0$, i.e.,

$$g_j(s_0 + u_*) = g_j(u_*) + D^+ g_j(0)s_0 \tag{4}$$

where u_* is the corresponding component of u_*. Without loss of generality we only discuss the case of $u_j > 0$. By the condition (2) and the generalized Mean Value Theorem for Dini derivatives we ensure that $w := s_0 + u_* < 0$, i.e., $s_0 < -u_*$.

It follows from (4) that

$$(g_j(w) - g_j(0)) - D^+ g_j(0)w = (g_j(u_*) - g_j(0)) - D^+ g_j(0)u_* \tag{5}$$

Obviously, the left-hand side > 0 but the right-hand side < 0 by (2), implying a contradiction. \qed

Proof of Theorem 1. Define $L(t) := \sum_{j=1}^{n} \int_{0}^{v_j(t)} \tilde{g}_j(s) ds$, as is done in many known works (e.g. [1,6]). By (ii) of Lemma 1, $L(t)$ is positively definite, i.e., $L(t) \geq 0$ for all t, and $L(t) = 0$ for a certain t if and only if $v(t) = 0.$ By Lemma 1(ii) and (iii),

$$\frac{d}{dt} L(t) = \tilde{g}(v(t))^T \dot{v}(t) = \tilde{g}(v)^T (-Dv + A\tilde{g}(v)) \leq \tilde{g}(v)^T [-DG_0^{-1} \tilde{g}(v) + A\tilde{g}(v)] = \tilde{g}(v)^T (-DG_0^{-1} + A)\tilde{g}(v) \leq 0 \tag{6}$$

since $DG_0^{-1} - A$ is nonnegative definite. So $L := \lim_{t \to +\infty} L(t)$ exists and $L \geq 0$.
In what follows we prove that \(L = 0 \). For an indirect proof we assume that \(L > 0 \). Then there is a \(t_1 > 0 \) such that \(L(t) \geq L/2 \) for all \(t \geq t_1 \). The definition of \(L(t) \) implies that there is a constant \(\delta_1 > 0 \) such that \(\|v(t)\| \geq \delta_1 \forall t \geq t_1 \).

Thus, for each fixed \(t \geq t_1 \) there exists a component of \(v(t) \), say \(v_k(t) \), such that

\[
|v_k(t)| \geq \frac{\delta_1}{\sqrt{n}}. \tag{7}
\]

Moreover, all \(v_j(t) \)'s are bounded, i.e.,

\[
|v_j(t)| \leq M \quad \forall t \geq t_1, \quad j = 1, \ldots, n, \tag{8}
\]

for a constant \(M > \delta_1 \). Otherwise, without loss of generality, assume that there is an increasing sequence \(\{\xi_i\} \) with \(\xi_i \geq t_1 \) and \(\xi_i \to +\infty \) such that \(v_1(\xi_i) \to +\infty \). Then there is an integer \(\ell > 0 \) such that \(v_1(\xi_\ell) > 0 \) for \(i \geq \ell \). Because \(\bar{g}_1(v_1(\xi_\ell)) > 0 \), we see that

\[
L(\xi_\ell) = \int_{v_1(\xi_\ell)}^{v_1(\xi_{\ell + 1})} \bar{g}_1(v_1(\xi_\ell)) \, dv = \bar{g}_1(v_1(\xi_\ell))(v_1(\xi_{\ell + 1}) - v_1(\xi_\ell)) \to +\infty, \quad \text{as } i \to +\infty,
\]

a contradiction to the convergence of \(\lim_{t \to +\infty} L(t) \).

Having (7) and (8), we observe (6) again. For each fixed \(t \geq t_1 \),

\[
\frac{d}{dt} L(t) = \bar{g}(v)^T D[-v + G_0^{-1} \bar{g}(v)] - \bar{g}(v)^T [DG_0^{-1} - A] \bar{g}(v)
\]

\[
= -\sum_{j=1}^n \bar{g}_j(v_j) d_j \left[1 - \frac{1}{D^+ g_j(0)} \bar{g}_j(v_j) \right] v_j - \bar{g}(v)^T [DG_0^{-1} - A] \bar{g}(v)
\]

\[
\leq -\bar{g}_k(v_k(t)) d_k \left[1 - \frac{1}{D^+ g_k(0)} \bar{g}_k(v_k(t)) \right] v_k(t)
\]

\[
\leq -d_k \left[1 - \frac{1}{D^+ g_k(0)} \bar{g}_k(v_k(t)) \right] \frac{\bar{g}_k(v_k(t))}{v_k(t)} \|v_k(t)\|^2, \tag{9}
\]

where we note the fact that

\[
\bar{g}_j(v_j) v_j \geq 0, \quad 1 - (D^+ g_j(0))^{-1} \bar{g}_j(v_j)/v_j \geq 0,
\]

as given by Lemma 1(ii) and (iii), and the nonnegative definiteness of \(DG_0^{-1} \). Since \(\bar{g}_k \) is an increasing and continuous function and satisfies \(\bar{g}_k(0) = 0 \), we see that

\[
|\bar{g}_k(v_k(t))| \geq \min\{\bar{g}_k(\delta_1/\sqrt{n}), -\bar{g}_k(-\delta_1/\sqrt{n})\} > 0
\]

by (7). Let \(b_k \) denote the minimum. Obviously \(b := \min\{b_j : j = 1, \ldots, n\} > 0 \). Hence

\[
|\bar{g}_k(v_k(t))| \geq b. \tag{10}
\]

Moreover, the continuity of \(\bar{g}_j(s)/s \) on the compact subset \([-M, -\delta_1/\sqrt{n}] \cup \[\delta_1/\sqrt{n}, M\] \) guarantees that

\[
B_j := \max \left\{ \frac{\bar{g}_j(s)}{s} : \frac{\delta_1}{\sqrt{n}} \leq |s| \leq M, \quad \bar{g}_j(s) < \bar{g}_j(0), \quad j = 1, \ldots, n, \right\}
\]

\[
\leq \frac{\bar{g}_k(v_k(t))}{v_k(t)} \leq B_k
\]

by Lemma 1(iii). It follows from (7) and (8) that

\[
\frac{\bar{g}_k(v_k(t))}{v_k(t)} \leq B_k \tag{12}
\]

for the fixed \(t \geq t_1 \). Thus, from (9) to (12) we get

\[
\frac{d}{dt} L(t) \leq -d_k \left[1 - \frac{1}{D^+ g_k(0)} \bar{g}_k(v_k(t)) \right] \frac{\bar{g}_k(v_k(t))}{v_k(t)} \|v_k(t)\|^2 \leq -\Omega_k, \tag{13}
\]

where

\[
\Omega_k := d_k \left[1 - \frac{1}{D^+ g_k(0)} B_k \right] b^2 > 0.
\]
We observe that, similar to (6), for all \(t \geq t_0 \), the inequality of (2) holds only for all \(s \) in a vicinity \(U_\eta(0) \setminus \{0\} \) defined by \(T u := D^{-1} A g(u) + D^{-1} I \), in the closed ball \(X := \{ u \in \mathbb{R}^n : |u| \leq K_1 \} \), where \(K_1 := \|D^{-1}(\|A\|K+I)\| \) and \(K \) is the bound of \(g \). It is worth mentioning that many unbounded sigmoidal functions not only satisfy (2) but also achieve the existence of equilibrium for appropriate \(D \) and \(A \). For example, system (1) with \(n = 1, D > 0, A > 0 \) and \(g(x) := \log(1 + x) \) as \(x \geq 0 \) and \(:= -\log(1 - x) \) as \(x < 0 \) surely has an equilibrium.

2. Exponential stability

Now we prove a result of globally exponential stability for a general function \(g \) which satisfies the condition (2).

Theorem 2. In addition to the conditions in Theorem 1, suppose that \(g \) is differentiable and the equilibrium \(u_s = (u_{s1}, \ldots, u_{sn}) \) satisfies \(u_{sj} \neq 0 \) for all \(j = 1, \ldots, n \). Then \(u_s \) is exponentially stable.

Proof. By Theorem 1, for a given \(\sigma > 0 \), there is a constant \(t_0 > 0 \) such that

\[
|\tilde{g}_j(t)| \leq \sigma \quad \forall t \geq t_0.
\]

Here \(\tilde{g}(t) := u(t) - u_s \). On the other hand, under (2), by Lemma 1(iii) we see that \(\tilde{g}_j(s) / s < D^+ g_j(0) \) for all \(s \neq 0, j = 1, \ldots, n \). Then for each \(s_\tau \neq 0 \), by continuity of \(g \), there are a constant \(0 < \epsilon_\tau < 1 \) and an open neighborhood \(V(s_\tau) \) of \(s_\tau \) such that \(\tilde{g}_j(s) / s < \epsilon_\tau D^+ g_j(0) \), \(\forall s \in V(s_\tau) \). In particular,

\[
\limsup_{s \to 0} \tilde{g}_j(s) / s = D^+ g_j(u_{sj}) < D^+ g_j(0)
\]

since \(u_{sj} \neq 0 \). So there exist a constant \(0 < \epsilon_0 < 1 \) and an open neighborhood \(V(0) \) of \(0 \) such that

\[
|\tilde{g}_j(s)| \leq \epsilon_0 D^+ g_j(0) |s|, \quad \forall s \in V(0).
\]

Thus an open cover of the compact set \(\{ s \in \mathbb{R} : |s| \leq \sigma \} \) is given by the collection of \(V(0) \) and all neighborhoods \(V(s_\tau) \) and therefore we can find the smallest one, denoted by \(\epsilon_j \), from the finitely many numbers \(\epsilon_\tau \) and \(\epsilon_0 \). It follows that

\[
|\tilde{g}_j(s)| \leq \epsilon_j D^+ g_j(0) |s| \quad \text{as} \; |s| \leq \sigma, \; \forall j = 1, \ldots, n.
\]

Let \(\epsilon = \min\{\epsilon_1, \ldots, \epsilon_n\} \). Obviously,

\[
0 < \epsilon < 1.
\]

Similarly, Lemma 1(ii) implies that \(\tilde{g}_j(s) / s > 0 \) for all \(s \neq 0, j = 1, \ldots, n \). Moreover, \(\tilde{g}_j'(0) = D^+ g_j(u_{sj}) > 0 \). By the compactness of the set \(\{ s \in \mathbb{R} : |s| \leq \sigma \} \) we also obtain a small number \(0 < \rho < 1 \) such that

\[
|\tilde{g}_j(s)| \geq \rho |s| \quad \text{as} \; |s| \leq \sigma, \; \forall j = 1, \ldots, n.
\]

We observe that, similar to (6), for \(t \geq t_0 \),

\[
\frac{d}{dt} L(t) = \tilde{g}(v)^T (-Dv + A\tilde{g}(v)) \leq \tilde{g}(v)^T (-\epsilon^{-1} D G_0^{-1} \tilde{g}(v) + A\tilde{g}(v))
\]

\[
\leq \tilde{g}(v)^T (-\epsilon^{-1} D G_0^{-1} + D G_0^{-1}) \tilde{g}(v)
\]

\[
\leq - (\epsilon^{-1} - 1) \min_{j=1,\ldots,n} \{ d_j (D^+ g_j(0))^{-1} \} \tilde{g}(v)^T \tilde{g}(v),
\]

(18)
where we note that $DG_0^{-1} - A$ is assumed to be nonnegative definite in Theorem 1, $(\epsilon^{-1} - 1) > 0$ (by (16)), and (14) and (15) are applied. By (14) and (17), it follows from the definition of $L(t)$ that

$$L(t) \leq \sum_{j=1}^{n} \tilde{g}j(v_j(t))v_j(t) \leq \rho^{-1} \tilde{g}(v)^T \tilde{g}(v) \quad \forall t \geq t_0$$

since \tilde{g}_j is increasing. From (18) we get

$$\frac{d}{dt} L(t) \leq -(\epsilon^{-1} - 1) \min_{j=1,...,n} \{d_j(D^+ g_j(0))^{-1}\} \rho L(t) \quad \forall t \geq t_0.$$

Therefore,

$$L(t) \leq \exp(-\theta(t-t_0))L(t_0) \quad \forall t \geq t_0,$$

where $\theta := (\epsilon^{-1} - 1) \min_{j=1,...,n} \{d_j(D^+ g_j(0))^{-1}\} > 0$. Applying (14) and (17) again, we see that

$$L(t) \geq \rho \sum_{j=1}^{n} \int_0^{v_j(t)} s \, ds = \frac{\rho}{2} \sum_{j=1}^{n} (v_j(t))^2, \quad \forall t \geq t_0.$$

It follows from (19) that the norm of v satisfies that

$$|v(t)|^2 \leq \frac{2}{\rho} \exp(-\theta(t-t_0))L(t_0) \quad \forall t \geq t_0.$$

This proves that u_* is exponentially stable. □

The differentiability of g in Theorem 2 is important. Consider

$$g(s) = \begin{cases} s, & 1 \leq s < +\infty, \\ \sin \left(\frac{\pi}{2} s\right), & 0 \leq s < 1, \\ -g(-s), & -\infty < s < 0, \end{cases}$$

(20)

which is obviously continuous and satisfies (2) because $0 < D^+ g(s) < g'(0) = \pi/2$ for $s \neq 0$ but not differentiable at $s = \pm 1$. On the other hand, the simplest one-dimensional system (1) with this activation function g has an equilibrium at $u_* = 1$ when $D = A + I$. Since the derivative $g'(0) = g'(u_*)$ does not exist, we cannot guarantee that $\lim_{s \to 0} \tilde{g}(s)/s > 0$. Thus the inequality (17) in the proof of Theorem 2 may not be valid and, therefore, we cannot assure its exponential stability.

Remark 4. Let $M^s := \frac{1}{2}(M + M^T)$ denote the symmetric part of the matrix M. If the matrix A in Theorems 1 and 2 is not symmetric, corresponding results can be given with the assumption that there is a matrix $P = \text{diag}(p_1, \ldots, p_n)$, where all p_j's are positive constants, such that $(P[DG_0^{-1} - A])^s$ is nonnegative definite. Actually, in the proof of Theorem 1 we define $L(t) := \sum_{j=1}^{n} p_j \int_0^{v_j(t)} \tilde{g}_j(s) \, ds$ instead. It is a scalar function and satisfies that $(L(t))^T = L(t)$ and $(\frac{d}{dt} L(t))^T = \frac{d}{dt} L(t)$. Thus the assumption imposed on $(P[DG_0^{-1} - A])^s$ can be applied. For example, as in (6), we have

$$\frac{d}{dt} L(t) = \frac{1}{2} \left(\frac{d}{dt} L(t) + \left(\frac{d}{dt} L(t) \right)^T \right)$$

\begin{align*}
& \leq \frac{1}{2} \{-\tilde{g}(v)^T (P[DG_0^{-1} - A]) \tilde{g}(v) - \tilde{g}(v)^T (P[DG_0^{-1} - A])^T \tilde{g}(v) \\
& = -\tilde{g}(v)^T (P[DG_0^{-1} - A])^s \tilde{g}(v). \end{align*}

(21)

References

