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Abstract: We investigate the relation between non-unitarity of the leptonic mixing matrix

and leptogenesis. We discuss how all parameters of the canonical type-I seesaw mechanism

can, in principle, be reconstructed from the neutrino mass matrix and the deviation of

the effective low-energy leptonic mixing matrix from unitary. When the mass M ′ of the

lightest right-handed neutrino is much lighter than the masses of the others, we show that

its decay asymmetries within flavour-dependent leptogenesis can be expressed in terms of

two contributions, one depending on the unique dimension five (d = 5) operator generating

neutrino masses and one depending on the dimension six (d = 6) operator associated

with non-unitarity. In low-energy seesaw scenarios where small lepton number violation

explains the smallness of neutrino masses, the lepton number conserving d = 6 operator

contribution generically dominates over the d = 5 operator contribution which results in

a strong enhancement of the flavour-dependent decay asymmetries without any resonance

effects. To calculate the produced final baryon asymmetry, the flavour equilibration effects

directly related to non-unitarity have to be taken into account. In a simple realization of

this non-unitarity driven leptogenesis, the lower bound on M ′ is found to be about 108 GeV

at the onset of the strong washout regime, more than one order of magnitude below the

bound in “standard” thermal leptogenesis.

Keywords: Cosmology of Theories beyond the SM, Neutrino Physics, Beyond Standard

Model, CP violation

ArXiv ePrint: 0910.5957

Open Access doi:10.1007/JHEP01(2010)017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81154197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:antusch@mppmu.mpg.de
mailto:sblanche@umd.edu
mailto:blennow@mppmu.mpg.de
mailto:enfmarti@mppmu.mpg.de
http://arxiv.org/abs/0910.5957
http://dx.doi.org/10.1007/JHEP01(2010)017


J
H
E
P
0
1
(
2
0
1
0
)
0
1
7

Contents

1 Introduction 1

2 Non-unitarity relation to high-energy observables in the type-I seesaw

model 2

3 The three-family low scale seesaw scenario 5

4 Leptogenesis in the three-family low-scale seesaw scenario 7

4.1 Flavour-dependent decay asymmetries 7

4.2 Final baryon asymmetry 8

5 Flavour equilibration 9

6 Summary and discussion 12

1 Introduction

Non-unitarity of the leptonic mixing matrix at low energies is a generic manifestation of new

physics in the lepton sector often related to the mechanism responsible for the generation

of neutrino masses. Non-unitarity appears whenever additional heavy particles mix with

the light neutrinos or their charged lepton partners. After integrating the heavy states out

of the theory, the 3 × 3 submatrix of the light neutrinos remains as an effective mixing

matrix. This low-energy leptonic mixing matrix is, in general, not unitary.

One example where non-unitarity is predicted is the generic type-I seesaw mecha-

nism [1–4], where the Standard Model (SM) is extended by (typically three) right-handed

neutrinos. If the type-I seesaw mechanism operates at energies as high as the Grand Uni-

fication scale (GUT scale), then non-unitarity effects are tiny. However, if the seesaw

mechanism is realized at low energies close to the electroweak scale, then non-unitarity

is enhanced and can be observable. It may then provide important hints to the origin of

neutrino masses. It is important to note that, in low-energy seesaw scenarios, the smallness

of the neutrino masses is not explained by the largeness of the seesaw scale. However it can

be explained in a technically natural way by a lepton number symmetry which is broken

only by a small amount [5].

While the neutrino masses in the type-I seesaw mechanism are effectively described

by the unique lepton number violating Weinberg operator of d = 5, the non-unitarity of

the leptonic mixing matrix is generated by the lepton number conserving d = 6 operator

contributing to the kinetic terms of the neutrinos [6, 7]. In low-energy seesaw scenarios

with approximately conserved lepton number, the d = 6 operator can cause significant

effects, since it is not suppressed by the smallness of the neutrino masses.
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One attractive feature of the seesaw mechanism is that it can explain the observed

baryon asymmetry of the Universe via the mechanism of leptogenesis [8] (for a recent review,

see ref.[9]). If the seesaw mechanism, and thus also the mechanism of thermal leptogenesis,

operates at high energies, the decay asymmetries for leptogenesis are typically dominated by

the d = 5 operator. Unfortunately the high-energy parameters which control leptogenesis

cannot be fully reconstructed from the measurements at low energy, since combinations of

the Yukawa couplings different from those in the d = 5 operator also appear.

On the other hand, if the seesaw mechanism operates at lower energies, predicting

an observable non-unitarity of the leptonic mixing matrix, one may in principle obtain

enough information from low-energy measurements to reconstruct the full Lagrangian and,

therefore, the parameters that control leptogenesis [7, 10, 11].

The purpose of this paper is to clarify the relation between the high-energy parame-

ters that control successful leptogenesis and their low-energy manifestations, i.e., neutrino

masses and mixings and deviations from unitarity of the leptonic mixing matrix, mak-

ing special emphasis on the latter. In section 2 we describe in detail the method and

conditions under which the full high-energy Lagrangian can be reconstructed from the

low-energy effects. In section 3 we introduce a “minimalistic” low-scale seesaw model with

three right-handed neutrinos in which the smallness of neutrino masses is explained by an

approximate lepton number symmetry. However, deviations from unitary mixing induced

by the d = 6 operator are not protected by the symmetry and can be sizeable, leading

to effects that could, in principle, be tested in precision electroweak measurements. In

section 4 we discuss how, in this model, leptogenesis could be driven by the d = 6 operator

that induces the deviation from unitary mixing via flavoured leptogenesis. In section 5 we

point out that the same d = 6 operator that drives flavoured leptogenesis can also lead to

a flavour equilibration, which could wash out the generation of lepton number. We also

discuss the conditions under which successful leptogenesis can occur. Finally, in section 6,

we summarize and discuss our results.

2 Non-unitarity relation to high-energy observables in the type-I seesaw

model

In this section we describe how the full Lagrangian of the type-I seesaw can, in principle, be

reconstructed from the low-energy observations of neutrino masses and mixings, including

deviations from unitary mixing. The conditions under which this reconstruction is pos-

sible were described in ref.[7], while a method to realize the reconstruction was outlined

in ref.[10]. Here we present a new algorithm to perform the reconstruction through which

the high-energy parameters can be derived more easily.

Let us consider the Lagrangian of the standard type-I seesaw model which consists of

the one for the SM plus an extra piece containing the allowed couplings between the SM

fields and additional gauge singlet fermions (i.e., right-handed neutrinos) N i
R:

L = LSM − 1

2
N i

RMN
ij N cj

R − (YN )iαN i
Rφ̃†ℓα

L + H.c. . (2.1)
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Here, φ denotes the SM Higgs field, which breaks the electroweak (EW) symmetry after ac-

quiring its vacuum expectation value (vev) vEW, and we have used the definition φ̃ = iτ2φ
∗.

The low-energy effects of the three-family low-scale seesaw model, from the point of

view of neutrino oscillation experiments, is given by two effective operators, one of mass

dimension five and one of mass dimension six. The d = 5 operator is the ubiquitous lepton

number violating Weinberg operator

δLd=5 =
1

2
cd=5
αβ

(
Lc

αφ̃∗
)(

φ̃† Lβ

)
+ H.c. , (2.2)

which is the lowest-dimensional effective operator for generating neutrino masses using the

field content of the SM. The coefficient matrix cd=5
αβ is

cd=5
αβ = −(Y T

N )αi(MN )−1
ij (YN )jβ (2.3)

and relates to the low-energy neutrino mass matrix as

mν = v2
EWcd=5 . (2.4)

The effective d = 6 operator

δLd=6 = cd=6
αβ

(
Lαφ̃

)
i�∂
(
φ̃†Lβ

)
(2.5)

conserves lepton number and, after EW symmetry breaking, contributes to the kinetic

terms of the neutrinos. After their canonical normalization, they generate a non-unitary

leptonic mixing matrix N as well as non-universal couplings proportional to N †N of the

neutrinos to the Z boson (see, e.g., refs. [6, 7, 12]). The coefficient matrix cd=6
αβ is given by

(see, e.g., ref.[7])

cd=6
αβ =

∑

i

(Y †
N )αi(MN )−2

ii (YN )iβ , (2.6)

in the basis where MN is diagonal.

If we parametrize the non-unitary leptonic mixing matrix N as [13]

N = (1 + η)U , (2.7)

where η is Hermitian and U is unitary, then ηαβ is related to the coefficient matrix cd=6
αβ by

ηαβ = −v2
EWcd=6

αβ /2 . (2.8)

In refs. [12, 14–17], the following constraints on these parameters at the 90 % C.L. were

derived: ηee < 2.0 · 10−3, ηeµ < 5.9 · 10−5, ηeτ < 1.6 · 10−3, ηµµ < 8.2 · 10−4, ηµτ < 1.0 · 10−3

and ηττ < 2.6 · 10−3.

In the type-I seesaw the full 6 × 6 mixing matrix Utot is the unitary matrix that

diagonalizes the extended neutrino mass matrix:

UT
tot

(
0 mT

D

mD MN

)
Utot =

(
m 0

0 M

)
, (2.9)

– 3 –
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where mD = vEWYN and MN are the neutrino’s Dirac and Majorana mass matrices and m

and M are diagonal matrices. It is easier to perform the diagonalization in two steps: first

a block-diagonalization and then two unitary rotations to diagonalize the mass matrices of

the light and heavy neutrinos, i.e.,

Utot =

(
A B

C D

)(
U 0

0 V

)
, (2.10)

where U and V are unitary matrices. Without loss of generality, we can choose a basis

for the heavy singlets such that V = I and MN = M . When performing the block

diagonalization, the mixing between the light and heavy neutrinos is suppressed when

MN > mD so that

B ≃ Θ = m†
DM−1

N . (2.11)

We can exploit the suppression of eq. (2.11) to write the unitary block diagonalization

as the exponential expansion of an anti-Hermitian matrix:

(
A B

C D

)
= exp

(
0 Θ

−Θ† 0

)
=

(
1 − 1

2
ΘΘ† Θ

−Θ† 1 − 1
2
Θ†Θ

)
+ O(Θ3). (2.12)

The block-diagonalization yields the complex symmetric neutrino mass matrix

mν = −mT
DM−1

N mD, (2.13)

which can be diagonalized by a unitary transformation U such that m = diag(m1,m2,m3) =

UT mνU . Notice that the mixing matrix of the three light neutrinos is given by

N = AU = (1 + η)U = (1 − ΘΘ†/2)U, (2.14)

As described above, η = −ΘΘ†/2 exactly contains the coefficients cd=6 of the d = 6 opera-

tor. In particular, note that this implies that cd=6 is Hermitian and positive semidefinite.

Assuming that the low-energy observables U , m and η have been measured, it is then

natural to ask the question of whether one can reconstruct the high-energy parameters

contained in mD and M . In order to split the low- and high-energy observables, we make

use of the parametrization proposed in ref.[18] for the Dirac mass matrix mD, which is

introduced as follows: From eq. (2.13) we have that −
√

m−1UT mT
DM−1mDU

√
m−1 = 1.

Thus, defining R ≡ i
√

M−1mDU
√

m−1, we have the condition RTR = 1. We will consider

here the case in which the number of heavy right-handed singlets is equal to the number of

light neutrinos, and thus, the matrix R must be a complex orthogonal matrix. Multiplying

by inverses of matrices, the definition of R can be rewritten as

mD = −i
√

MR
√

mU † (2.15)

Notice that the matrix U that appears in the parametrization of eq. (2.15) is not the

neutrino mixing matrix that describes the neutrino couplings in charged-current (CC)

interactions N = (1 + η)U , but only the unitary part of the CC mixing diagonalizing mν .
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In eq. (2.15) the observables of the d = 5 operator describing the light neutrino mass

matrix are all contained within U and m, while R and M contain the missing information

in order to reconstruct the high-energy parameters. In order to perform the reconstruction

we will assume that both the d = 5 operator, i.e., U and m, and the d = 6 operator η

are known. Notice that the deviations from unitary mixing encoded in η can be probed

and potentially measured through electroweak decays [12, 14–16, 19] as well as neutrino

oscillation experiments [13, 20–24].

Using the parametrization of eq. (2.15) in the expression for the d = 6 operator 2η =

−m†
DM−2mD, we define the matrix H as

H ≡ −
√

m−1U †2ηU
√

m−1 = (R∗)−1M−1R. (2.16)

With this definition, H is a positive semidefinite Hermitian matrix, since it can be decom-

posed as FF †, and contains all of the available low-energy information. Equation (2.16)

is known as the conjugate diagonalization (or simply the “condiagonalization”) of the ma-

trix H. Notice that replacing (R∗)−1 by R−1 in eq. (2.16) would reduce it to a normal

diagonalization. It can be shown that all Hermitian positive definite matrices can be con-

diagonalized and the solution is unique under the requirement that the Mi are real and

positive. The simplest way of reconstructing R and M from the matrix H is to note that

H∗H = HT H is a complex symmetric matrix and that

H∗H = R−1M−1R∗(R∗)−1M−1R = RT M−2R, (2.17)

and thus, R is the complex orthogonal matrix which diagonalizes H∗H with corresponding

eigenvalues M−2
i . It should be noted that the reconstruction of R and M has been pre-

viously studied in ref.[10]. However, the simple reconstruction algorithm presented here,

only involving the diagonalization of a complex symmetric matrix, is new. Notice that, for

the algorithm to work and for eq. (2.16) to have solutions, it is vital that the matrix H is a

positive definite matrix. This will be guaranteed as long as the d = 6 operator cd=6 is also

positive definite. By construction cd=6 is positive semidefinite so the only case in which H

is not positive definite is when cd=6 has one or more zero eigenvalues. This could happen

for two reasons: either the number of heavy right-handed neutrinos is smaller than the

number of light neutrinos, or the rows of the Yukawa matrix are not linearly independent.

In any of these cases the number of parameters in the high-energy theory is smaller than

in the full case considered here and the reconstruction of the Lagrangian would then be

easier, sometimes without the need of involving the d = 6 operator but only through U

and m (see, e.g., ref.[25]). If, on the other hand, the number of heavy right-handed singlets

is larger than the number of light neutrinos, then the information encoded in the d = 6

operator η plus the neutrino masses and mixings m and U is not sufficient to reconstruct

the full high-energy Lagrangian. We find these limitations to be in agreement with ref.[10],

where the reconstruction algorithm relies on η being invertible.

3 The three-family low scale seesaw scenario

The “minimalistic” low-scale seesaw model we present here is a type-I seesaw model with

three right-handed neutrinos to which we additionally impose a softly broken “lepton

– 5 –
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number”-like (global) U(1) symmetry where the charge of the SU(2)L doublets Lα is op-

posite to that of the field N3
R but equal to that of the field N2

R. We assign zero lepton

number to N1
R. In the symmetry limit, MN

ij and YN are forced to have the form:

YN =




0 0 0

ye yµ yτ

0 0 0


 , MN =




M ′ 0 0

0 0 M

0 M 0


 . (3.1)

At this level, the neutrinos are exactly massless, but non-unitarity of the leptonic mixing

matrix is already induced. When small soft breaking terms µi and µ′
i are allowed, this rigid

structure is perturbed to

YN =




µ′
e µ′

µ µ′
τ

ye yµ yτ

µe µµ µτ


 , MN =




M ′ µ′
4 µ′

5

µ′
4 µ4 M

µ′
5 M µ5


 , (3.2)

and masses for the light neutrinos, suppressed by the small µi and µ′
i parameters, are

generated. Notice that the d = 6 operator is not protected by the lepton number symmetry

and would have a large leading order contribution

cd=6
αβ =

y∗αyβ

M2
+ . . . , (3.3)

where the dots denote sub-leading terms proportional to µα (or µ4/M,µ5/M) and µ′
α (or

µ′
4/M,µ′

5/M). In particular, the six moduli |ηαβ | depend only on the three parameters

|ye/M |, |yµ/M |, |yτ/M |. This implies that at leading order the rank of the d = 6 operator

is one and that the reconstruction algorithm presented in section 2 would not be applicable.

On the other hand, the number of parameters contributing to the d = 5 and d = 6 operator

at leading order in this model is very limited and they can actually be reconstructed with

information mainly from m and U . Indeed, the d = 5 operator is given by [25]:

cd=5
αβ =

(
µα − µ5

M
yα

)
1

M
yβ + yα

1

M

(
µβ − µ5

M
yβ

)
+ . . . . (3.4)

Following ref.[25] both vectors yα and µα − (µ5/M)yα can be reconstructed from m and U

up to an overall normalization. In particular,

yα ∝
√

1 + ρU∗
α3 +

√
1 − ρU∗

α2, (3.5)

ρ =

√
1 + r −√

r√
1 + r +

√
r

(3.6)

for normal hierarchy and

yα ∝
√

1 + ρU∗
α2 +

√
1 − ρU∗

α1, (3.7)

ρ =

√
1 + r − 1√
1 + r + 1

(3.8)

for inverted hierarchy. Here, r = |∆m2
21|/|∆m2

31|. If terms beyond leading order are

considered for the d = 6 operator, then the reconstruction described in section 2 can be

applied. In principle, this would also allow the extraction of the first Yukawa row Yα1 = µ′
α

if the d = 6 operator is known with sufficient precision.

– 6 –
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N

Lα

φ

L̄β

φ∗

cd=5
αβ N

Lα

φ

Lβ

φ

cd=6
αβ

Figure 1. Effective operator decomposition of the diagrams leading to leptogenesis.

4 Leptogenesis in the three-family low-scale seesaw scenario

4.1 Flavour-dependent decay asymmetries

The flavour-dependent CP asymmetries for the lightest right-handed neutrino (with mass

M ′) in the lepton flavour α are given by

ε1,α ≃ 1

8π(Y Y †)11

∑

j 6=1

{
Im

[
Y T

α1Y
†
αj(Y Y †)1j

3

2
√

xj

+ Y T
α1Y

†
αj(Y Y †)j1

1

xj

]}
, (4.1)

where xj = M2
j /M2

1 ≫ 1 was assumed (with j = 2, 3, M1 ≡ M ′, and with M2, M3 being the

masses of N2
R and N3

R). It is then possible to rewrite ε1,α as the sum of two contributions,

that of the d = 5 operator and that of the d = 6 operator (see figure 1):

ε1,α ≃ 1

8π(Y Y †)11

∑

β

{
Im

[
−3M ′

2
Y ∗

1α cd=5
αβ Y †

β1 + M ′2 Y1α cd=6
αβ Y †

β1

]}

≃ M ′2

8π(Y Y †)11

∑

β

{
Im
[
Y1α cd=6

αβ Y †
β1

]}
, (4.2)

where, in the last step, we have neglected the contribution from the d = 5 operator, since

it is protected by the lepton number symmetry that explains the smallness of neutrino

masses, which is not the case for the d = 6 operator. Assuming the presence of an order

one phase contribution to the imaginary part in eq. (4.2), as well as |Y1e| ∼ |Y1µ| ∼ |Y1τ |, we

can further simplify this expression and express it in terms of the non-unitarity parameters

in eq. (2.8):

ε1,α ≃ M ′2

24π

∑

β 6=α

cd=6
αβ = − 1

12π

M ′2

v2
EW

∑

β 6=α

ηαβ . (4.3)

For M ′ = 1TeV and ηαβ of order 10−4 we obtain a large CP asymmetry ε1,α of order

10−3 without resorting to the usual enhancement for quasi-degenerate masses of the heavy

neutrinos [26, 27]. As the contribution to ε1,α originates from the d = 6 operator (see

also ref.[28]), we will refer to this scenario as non-unitarity driven leptogenesis.

It is crucial for our scenario that leptogenesis occurs when flavour effects are rele-

vant [29, 30], i.e., for a right-handed neutrino mass M ′ < 1012 GeV, so that the flavoured

– 7 –
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CP asymmetries need to be considered instead of the total one ε1 =
∑

α ε1,α, which is sup-

pressed by the neutrino mass operator (d = 5). As we will see next, another requirement

for a non-zero baryon asymmetry is that the washout in each flavour is different. This

is therefore an example of purely flavoured leptogenesis [30, 31], where the asymmetry is

generated exclusively due to flavour effects.

4.2 Final baryon asymmetry

An important parameter for flavoured leptogenesis is given by the decay (or washout)

parameter, Kiα, induced by the RH neutrino Ni, defined as the decay width over the

Hubble expansion rate when T = Mi:

Kiα ≡ ΓD(Ni → ℓαφ + ℓ̄αφ†)

H(T = Mi)
=

|Yiα|2v2
EW

m⋆Mi

, (4.4)

where m⋆ ≃ 1.08 × 10−3 eV [32]. For future use, we also define Ki ≡
∑

α Kiα.

With the assumption M ′ ≪ M and M ′ < 109 GeV, the asymmetry is generated by

N1 in the three-flavour regime [29, 30]. The contributions from the heavier states are

exponentially washed out in all flavours, as long as K1α & 3, ∀α ∈ {e, µ, τ} [33]. Moreover,

as pointed out above, since the CP asymmetry is non-zero due to a pure flavour effect, it

is crucial for the generation of the asymmetry that the washout is different in each flavour.

Therefore, for simplicity, we will assume that the asymmetry is dominantly generated in

one flavour, i.e., ηBα ≃ ηB . The flavoured final asymmetry can be expressed as

ηBα = 0.88 × 10−2ε1,α κ(K1α), (4.5)

where it was assumed that sphalerons decouple after the electroweak phase transition [34,

35]. For K1α & 3, the efficiency factor κ can be approximated as [36]

κ(K1α) ≃ 0.5

K1.16
1α

. (4.6)

In order to focus on the more relevant non-unitarity parameters and the mass scale M ′,

we will for now fix a washout K1α = 5, which is a typical value in the strong washout

regime. This requires Yukawa couplings |Y1α| ∼ 10−6, as needed for the TeV-scale seesaw

mechanism. We further assume the value K1 ≡∑γ K1γ = 45, such that K1α ≪ K1β 6=α. In

other words, in terms of Yukawa couplings, we have the relation 2 |Y1α| = |Y1β 6=α|. Using

eqs. (4.2), (4.5) and (4.6), we have

ηBα ≃ −0.88 × 10−2

36π 51.16

M ′2

v2
EW

∑

β 6=α

ηαβ ≃ 0.6 × 10−5

(
M ′

M

)2 ∑

β 6=α

y∗αyβ. (4.7)

This prediction should be compared to the measured value ηCMB
B = (6.2±0.15)×10−10 [37].

With Yukawa couplings yβ ∼ O(1), it is easy to see that leptogenesis is possible with a mild

hierarchy M ′/M ∼ 10−2. Moreover, it is interesting to see that the scale of leptogenesis can

be lowered, at least in principle, to the weak scale. This is possible in our scenario because

the purely flavoured contribution to the CP asymmetry is not suppressed by the neutrino

– 8 –
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mass operator as in the usual case. The lower bound on the scale of leptogenesis [38–41],

given by M1 > 3 × 109 GeV at the onset of the strong washout, therefore does not apply.

This was already noticed in ref.[33], where, using the Casas-Ibarra parametrization [18]

in the limit |ω32| ≫ 1, it was shown that the scale of leptogenesis could be lowered; the

inverse seesaw model can be shown to correspond to the extreme case |ω32| ≫ 100. The

seesaw model under consideration could therefore potentially offer an alternative to quasi-

degenerate RH neutrinos [26, 27] to evade the gravitino bounds [42–45].

5 Flavour equilibration

From the previous discussion it seems that the scale of leptogenesis could be lowered

to the weak scale without any problem. However, an important effect was neglected,

namely flavour equilibration [46]. If flavours equilibrate, the final baryon asymmetry is

proportional to the total CP asymmetry ε1 =
∑

α ε1α, which is suppressed by the d = 5

neutrino mass operator. We would thus recover the standard scenario, and the usual lower

bound would apply.

Let us now estimate how efficient flavour equilibration is in our case. The main pro-

cesses are ∆L = 0 scatterings with off-shell N2 and N3, e.g., ℓαφ → ℓβφ. Contrary to

standard leptogenesis, the rates can be large, since the Yukawa couplings yα are not con-

strained by neutrino masses, and therefore flavour equilibration is potentially a problem.

The question is to what extent it reduces the available parameter space.

There are three different channels contributing to ∆L = 0 scatterings: s-channel

ℓαφ → ℓβφ, t-channel ℓαφ† → ℓβφ†, and t-channel ℓαℓc
β → φφ†. The reduced cross-sections

for these processes can be found in ref.[47], and in the limit M ′ ≪ M the total ∆L = 0

cross-section is given by

σ̂αβ(x) ≃ 5

4

|yα|2|yβ|2
π

(
M ′

M

)2

x, (5.1)

where x ≡ s/M ′2. Note that the N2 and N3 contributions are essentially equal. The

reaction rate is then obtained using

Γ∆L=0
αβ ≡ M ′z2

96π2ζ(3)

∫ ∞

xthr

dx
√

xK1(z
√

x)σ̂(x), (5.2)

where z ≡ M ′/T and K1 is the modified Bessel function of the second kind. This rate, as

all the rates entering the Boltzmann equations, will be compared to the Hubble expansion

rate, given by

H(z) = 1.66
√

g⋆
M ′2

z2MPl

, (5.3)

where g⋆ = 106.75 and MPl = 1.22 × 1019 GeV.

The Boltzmann equations for leptogenesis are given by

dNN1

dz
= −D (NN1

− N eq
N1

), (5.4)

dN∆α

dz
= ε1α D (NN1

− N eq
N1

) − W ID
α N∆α −

∑

β 6=α

S∆L=0
αβ (N∆α − N∆β

), (5.5)
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where NX denotes any particle number or asymmetry X in a portion of comoving volume

containing one heavy neutrino in ultra-relativistic thermal equilibrium, so that N eq
N1

(T ≫
M1) = 1. As a function of z, the equilibrium RH neutrino number density is given by

N eq
N1

= 0.5 z2 K2(z). Furthermore, we have defined ∆α ≡ ∆B/3 − ∆Lα. The normalized

decay rate is given by D ≡ ΓD/[H(z) z] = K1 z 〈1/γ〉 with the thermally averaged dilation

factor 〈1/γ〉 given by the ratio of the modified Bessel functions K1(z)/K2(z). Finally, we

defined the normalized inverse decay rate W ID
α ≡ ΓID

α /[H(z) z] = 0.25K1α K1(z) z3, and

S∆L=0
αβ ≡ Γ∆L=0

αβ /[H(z) z]. Note that the normalized scattering rate is fitted within 10 % by

S∆L=0
αβ ≃ 6.5 × 10−4 |yα|2|yβ|2

(
M ′MPl

M2

)
z−2. (5.6)

In the Boltzmann equations above, spectator processes [48, 49] and the conversion of a

lepton flavour asymmetry into a ∆α asymmetry have been neglected, but we have checked

that they do not change our results by more than 20 %. We have also checked that ∆L = 1

scatterings contribute subdominantly in the strong washout regime under consideration.

As for ∆L = 2 processes their rates are suppressed by the small neutrino masses and can

be safely neglected.

We show in figure 2 how the scattering rate normalized to the Hubble expansion rate

varies with M ′, for a fixed hierarchy M/M ′ = 10 and washout K1α = 3.5 , and for Yukawa

couplings such that the baryon asymmetry of the Universe is produced [c.f. eq. (4.7)]. The

shaded regions denote the asymmetry production time, roughly when zB − 2 < z < zB + 2

with zB(K) ≃ 2 + 4K0.13 exp(−2.5/K) ≃ 5 [50]. Note that even though the flavour

equilibrating scattering rate falls out of equilibrium before entering the shaded region for

M ′ & 3 × 108 GeV, there is still a residual effect, which suppresses the asymmetry by a

factor of 2–3. The reason is that the scattering rate is within a factor of 2 of the inverse

decay rate during all the asymmetry production, and therefore some flavour equilibration

is achieved.

Since Γ∆L=0/H ∝ 1/M ′ for a fixed mass hierarchy M ′/M , it is clear that the scale of

leptogenesis cannot be arbitrarily low. We have solved numerically the system of Boltzmann

equations (5.4) and (5.5) without neglecting the contribution from any flavour, so that

ηB = 0.88 × 10−2
∑

α

ε1,α κ(K1α), (5.7)

and we have required that the final asymmetry should fall within the 3σ range of the

observed baryon asymmetry, i.e., ηB > 5.75 × 10−10. We then calculated the lower bound

for successful leptogenesis for different hierarchies M/M ′, and the result is shown in figure 3.

We find that the lowest bound on the scale of leptogenesis is given by

M ′
min & 108 GeV, (5.8)

obtained when M/M ′ = 3. Increasing the hierarchy increases the scattering rate for a fixed

value of the baryon asymmetry and thus the lower bound increases. Note that the shaded

area here denotes the non-hierarchical region M < 3M ′, where our results are not valid.
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Figure 2. Scattering rate S∆L=0
αβ leading to flavour equilibration vs. z = M ′/T for different values

of the lightest heavy neutrino mass M ′. Also plotted is the inverse decay rate W ID
α in flavour α,

with K1α = 3.5. The mass hierarchy has been fixed to M/M ′ = 10. The shaded region denotes the

time at which the asymmetry is produced (see text).
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Figure 3. Lower bound on the lightest heavy neutrino mass, M ′

min
, for successful leptogenesis, vs.

the hierarchy parameter M/M ′. The washout parameter is fixed to K1α = 3.5, and the asymmetry

is mainly produced in flavour α.

It should be noted that this lower bound was obtained maximizing the asymmetry with

respect to K1 and K1α and the phases contributing to the CP asymmetry. We have chosen
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K1α = 3.5, the smallest value in the strong washout regime [40]. Moreover, we have fixed

K1β 6=α = 11, so that K1 = 25.5, which maximizes the asymmetry.1

In our model leptogenesis can take place more than one order of magnitude below the

usual lower bound, given by 3×109 GeV at the onset of the strong washout. Unfortunately,

it turns out that the coefficient of the d = 6 operator leading to non-unitarity in eq. (2.8)

is expected to be very suppressed, of order ηαβ ∼ 10−16. The reason is mainly the high

scale of M ′, and thus M , needed for successful leptogenesis. Moreover, the case M/M ′ = 3

provides the largest non-unitarity possible, since the latter decreases when the scale of M

increases. For instance, with M/M ′ = 10, the Yukawa coupling needed for leptogenesis

is y ≃ 0.07, in which case we find the lower bound M ′
min ≃ 109 GeV and the expected

deviation from unitarity is ηαβ ∼ 10−18. We conclude that, in the considered scenario,

successful leptogenesis is incompatible with observable non-unitarity signals. Notice that

a similar relaxation of the lower bound was obtained in [51] (see also [52]), relying on

a d = 7 operator contribution to the neutrino masses. We did not include this effect

since it vanishes in the limit M2 = M3 and, moreover, has a stronger suppression by the

mass hierarchy.

6 Summary and discussion

We have investigated the relation between non-unitarity of the leptonic mixing matrix

and baryogenesis via thermal leptogenesis. We have first studied how all parameters of

the canonical type-I seesaw mechanism can, in principle, be reconstructed from the neu-

trino mass matrix and a measurement of the deviation of the effective low-energy leptonic

mixing matrix from unitary. In the effective low-energy theory, neutrino masses and non-

unitarity are encoded in the lepton number violating d = 5 (Weinberg) operator and in

the d = 6 operator contributing to the neutrino kinetic terms after electroweak symmetry

breaking, respectively.

For the case that the mass M ′ of the lightest right-handed neutrino is lighter than the

masses of the others, we show that its decay asymmetries for flavour-dependent leptogenesis

can be expressed in terms of two contributions, one depending on the unique d = 5 operator

generating neutrino masses and one depending on the d = 6 operator associated with

non-unitarity. We have argued that in low-energy seesaw scenarios, where small lepton

number violation explains the smallness of neutrino masses, the lepton number conserving

d = 6 operator contribution, linked to non-unitarity, generically dominates over the d = 5

operator contribution which results in a strong enhancement of the flavour-dependent decay

asymmetries without any resonance effects. We have referred to this case as non-unitarity

driven leptogenesis.

To calculate the produced final baryon asymmetry, however, we found that lepton

flavour equilibrating effects directly related to non-unitarity play a crucial role and their

effects have to be included. In the simple realization of non-unitarity driven leptogene-

sis considered here, they turn out to forbid lowering the leptogenesis scale down to the

1If |Y1β| is too close to |Y1α|, the washout in all flavours are similar, and the asymmetry is suppressed since

ε1 ≃ 0. However, if |Y1β | is much bigger than |Y1α|, then the CP asymmetry is suppressed [c.f. eq. (4.2)].
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TeV scale. Nevertheless, lowering of the leptogenesis scale, i.e., the mass of the lightest

right-handed neutrino M ′, to about 108 GeV is possible, which is more than one order

of magnitude below the scale of standard thermal leptogenesis. The reduced leptogenesis

scale in non-unitarity driven leptogenesis can improve consistency between leptogenesis

and gravitino (or similar) constraints in supergravity theories. On the other hand, the

deviation from unitarity for the case of M ′ & 108 GeV is far below the experimentally

accessible region.
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[48] W. Buchmüller and M. Plümacher, Spectator processes and baryogenesis,

Phys. Lett. B 511 (2001) 74 [hep-ph/0104189] [SPIRES].

[49] E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the

leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [SPIRES].

[50] S. Blanchet and P. Di Bari, Leptogenesis beyond the limit of hierarchical heavy neutrino

masses, JCAP 06 (2006) 023 [hep-ph/0603107] [SPIRES].

[51] M. Raidal, A. Strumia and K. Turzynski, Low-scale standard supersymmetric leptogenesis,

Phys. Lett. B 609 (2005) 351 [hep-ph/0408015] [SPIRES].

[52] T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses

from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].

– 16 –

http://dx.doi.org/10.1016/S0370-2693(01)00614-1
http://arxiv.org/abs/hep-ph/0104189
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0104189
http://dx.doi.org/10.1088/1126-6708/2006/01/068
http://arxiv.org/abs/hep-ph/0512052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0512052
http://dx.doi.org/10.1088/1475-7516/2006/06/023
http://arxiv.org/abs/hep-ph/0603107
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0603107
http://dx.doi.org/10.1016/j.physletb.2005.01.040
http://arxiv.org/abs/hep-ph/0408015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0408015
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.027
http://arxiv.org/abs/hep-ph/0312203
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0312203

	Introduction
	Non-unitarity relation to high-energy observables in the type-I seesaw model
	The three-family low scale seesaw scenario
	Leptogenesis in the three-family low-scale seesaw scenario
	Flavour-dependent decay asymmetries
	Final baryon asymmetry

	Flavour equilibration
	Summary and discussion

