\mathbb{Z}-cyclic ordered triplewhist tournaments on p elements, where $p \equiv 5(\bmod 8)$

Ian Anderson, Leigh H.M. Ellison*
Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, UK

Received 2 July 2003; received in revised form 22 March 2004; accepted 18 August 2004
Available online 2 April 2005

Abstract

We construct new families of whist tournaments that are at the same time \mathbb{Z}-cyclic, ordered and triplewhist. In particular, we construct such a design on p elements, $p \geqslant 29$, where $p \equiv 5(\bmod 8)$ is prime. © 2005 Elsevier B.V. All rights reserved.

Keywords: Whist tournaments; \mathbb{Z}-cyclic tournaments; Ordered tournaments; Triplewhist tournaments

1. Introduction

A whist tournament $\mathrm{Wh}(4 m+1)$ for $4 m+1$ players is a schedule of games (or tables) (a, b, c, d) involving two players a, c opposing two other players b, d such that
i. the games are arranged into $4 m+1$ rounds each of m games;
ii. each player plays in exactly one game in all but one round;
iii. each player partners every other player exactly once;
iv. each player opposes every other player exactly twice.

We shall be concerned with two refinements of the structure, called triplewhist tournaments and ordered triplewhist tournaments. Call the pairs $\{a, b\}$ and $\{c, d\}$ pairs of opponents of the first kind, and call the pairs $\{a, d\}$ and $\{b, c\}$ pairs of opponents of the second kind. We

[^0]0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.08.025
also say that a and c are partners of the first kind while b and d are partners of the second kind. Then a triplewhist tournament $\mathrm{TWh}(4 m+1)$ is a $\mathrm{Wh}(4 m+1)$ in which every player is an opponent of the first (respectively, second) kind exactly once with every other player; and an ordered whist tournament $\mathrm{OWh}(4 m+1)$ is a $\mathrm{Wh}(4 m+1)$ in which each player opposes every other player exactly once while being a partner of the first (respectively, second) kind. If the players are elements of $\mathbb{Z}_{4 m+1}$, and if the i th round is obtained from the initial (first) round by adding $i-1$ to each element $(\bmod 4 m+1)$, then we say that the tournament is \mathbb{Z}-cyclic. By convention we always take the initial round to be the round from which 0 is absent. The games (tables)

$$
\left(a_{1}, b_{1}, c_{1}, d_{1}\right), \ldots,\left(a_{m}, b_{m}, c_{m}, d_{m}\right)
$$

form the initial round of a \mathbb{Z}-cyclic triplewhist tournament if

$$
\begin{align*}
& \bigcup_{i=1}^{m}\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}=\mathbb{Z}_{4 m+1} \backslash\{0\}, \tag{1}\\
& \bigcup_{i=1}^{m}\left\{ \pm\left(a_{i}-c_{i}\right), \pm\left(b_{i}-d_{i}\right)\right\}=\mathbb{Z}_{4 m+1} \backslash\{0\}, \tag{2}\\
& \bigcup_{i=1}^{m}\left\{ \pm\left(a_{i}-b_{i}\right), \pm\left(c_{i}-d_{i}\right)\right\}=\mathbb{Z}_{4 m+1} \backslash\{0\}, \tag{3}\\
& \bigcup_{i=1}^{m}\left\{ \pm\left(a_{i}-d_{i}\right), \pm\left(b_{i}-c_{i}\right)\right\}=\mathbb{Z}_{4 m+1} \backslash\{0\} . \tag{4}
\end{align*}
$$

Eqs. (1) and (2) show that the partner pairs form a starter [1, p. 136]. Similarly for (1) and (3) with the first opponent pairs, and (1) and (4) with the second opponent pairs. These games form a \mathbb{Z}-cyclic ordered whist tournament if, in addition to forming the initial round of a $\mathrm{Wh}(4 m+1)$,

$$
\begin{equation*}
\bigcup_{i=1}^{m}\left\{\left(a_{i}-b_{i}\right),\left(a_{i}-d_{i}\right),\left(c_{i}-b_{i}\right),\left(c_{i}-d_{i}\right)\right\}=\mathbb{Z}_{4 m+1} \backslash\{0\} \tag{5}
\end{equation*}
$$

Now we shall look at whist tournaments which are simultaneously both triplewhist and ordered tournaments. Such designs will be called ordered triplewhist tournaments and will be denoted by $\operatorname{OTWh}(v)$. We shall show that an $\operatorname{OTWh}(v)$ exists for all v whenever v is a prime $p \equiv 5(\bmod 8)$, and $p \geqslant 29$. Finizio [5] has verified that there is no \mathbb{Z}-cyclic $\operatorname{TWh}(p)$ for primes $p<29$.

Example 1.1. A \mathbb{Z}-cyclic $\operatorname{OTWh}(29)$ is given by the initial round $(1,3,26,13) \times 1$, $3^{4}, \ldots, 3^{24}$.

The original proof by Anderson et al. [2], which dealt with the existence of \mathbb{Z}-cyclic $\mathrm{TWh}(p)$ with $p=8 n+5$ prime, contained a requirement that certain elements be primitive
roots of \mathbb{Z}_{p}. This requirement was shown by Buratti in [4] to be an additional, but not necessary one. The elements in question need only be non-square over \mathbb{Z}_{p}, and a less difficult proof is the result. The theorem of Weil on multiplicative character sums [6, Theorem 5.41, p. 225] is used in the proof which follows. Here is the statement of Weil's theorem, in which the convention is understood that if ψ is a multiplicative character of $\operatorname{GF}(q)$, then $\psi(0)=0$. Adopting this convention, we have $\psi(x y)=\psi(x) \psi(y)$ for all $(x, y) \in \mathrm{GF}(q) \times \mathrm{GF}(q)$.

Theorem 1.1. Let ψ be a multiplicative character of order $m>1$ of the finite $\mathrm{GF}(q)$. Let f be a polynomial of $\mathrm{GF}(q)[x]$ which is not of the form kg^{m} for some $k \in \mathrm{GF}(q)$ and some $g \in \operatorname{GF}(q)[x]$. Then we have

$$
\left|\sum_{x \in \operatorname{GF}(q)} \psi(f(x))\right| \leqslant(d-1) \sqrt{q}
$$

where d is the number of distinct roots off in its splitting field over $\mathrm{GF}(q)$.

2. The existence theorem

We now take a closer look at some constructions which were presented by Anderson and Finizio [3], and find the conditions which must be satisfied in order for them to produce a \mathbb{Z}-cyclic $\operatorname{OTWh}(p)$ for primes $p \equiv 5(\bmod 8)$.

So let $p=8 t+5$ be prime, let x be a non-square element of \mathbb{Z}_{p}, and let θ be a primitive root of p. We now present six constructions.

Construction 1. $\left(1, x,-1, x^{3}\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. First we find the conditions under which this forms a $\operatorname{TWh}(p)$. The partner differences are pairs $\pm 2, \pm x\left(x^{2}-1\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$, and so the partner pairs form a starter provided $2 x\left(x^{2}-1\right)$ is not a square. Similarly, the first kind opponent pairs form a starter provided $(x-1)\left(x^{3}+1\right)$ is not a square, and the second kind opponent pairs form a starter provided $(x+1)\left(x^{3}-1\right)$ is not a square. We now use the fact that 2 is a non-square since $p \equiv 5(\bmod 8)$. So Construction 1 yields a \mathbb{Z}-cyclic $\operatorname{TWh}(p)$ provided $x^{2}-1$ is not a square, $x^{2} \pm x+1$ are squares.

Now, we find the conditions under which this also forms an $\operatorname{OWh}(p)$.
Let $a=-(x-1), b=-\left(x^{2}+x+1\right)(x-1), c=-(x+1), d=-\left(x^{2}-x+1\right)(x+1)$. We require that a, b, c, d lie in distinct cyclotomic classes of index 4 . Since a / c is not a square, we require b / d to be a non-square, and, to guarantee that the two squares (non-squares) lie in distinct cyclotomic classes, we also require that each of $x^{2} \pm x+1$, although squares, are not fourth powers.

So, Construction 1 gives the initial round tables of a $\operatorname{TWh}(p)$ provided $x^{2}-1$ is not a square, $x^{2} \pm x+1$ are squares. They also yield an $\mathrm{OWh}(p)$ provided $x^{2} \pm x+1$ are both not fourth powers.

Construction 2. $\left(1, x^{3}, x^{2},-x^{3}\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. These are the initial round tables of a $\operatorname{TWh}(p)$ provided $x^{2}-1$ is not a square, $x^{2} \pm x+1$ are squares. They also yield an $\mathrm{OWh}(p)$ provided $x^{2} \pm x+1$ are both fourth powers.

Construction 3. $\left(1, x^{3},-x^{4},-x^{3}\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. These are the initial round tables of a $\operatorname{TWh}(p)$ provided $x^{4}+1$ is not a square, $x^{2} \pm x+1$ are squares. We also get an $\mathrm{OWh}(p)$ provided $(x-1) /(x+1)$ is a square but not a fourth power and exactly one of $x^{2} \pm x+1$ is a fourth power.

Construction 4. $\left(1, x,-x^{4},-x\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. These are the initial round tables of a $\operatorname{TWh}(p)$ provided $x^{4}+1$ is not a square, $x^{2} \pm x+1$ are both squares. We also get an $\mathrm{OWh}(p) \operatorname{provided}(x-1) /(x+1)$ is a fourth power, and exactly one of $x^{2} \pm x+1$ is a fourth power.

Construction 5. $\left(1, x,-x^{4}, x^{3}\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. For a $\operatorname{TWh}(p)$, we require $x^{2}-1$ is a square, $x^{4}+1$ is a square, $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$ is a square. We also get an $\mathrm{OWh}(p)$ provided $x^{2}+x+1$ is not a fourth power, but $x^{2}-x+1$ is.

Construction 6. $\left(1,-x,-x^{4},-x^{3}\right) \times 1, \theta^{4}, \ldots, \theta^{8 t}$. For a $\operatorname{TWh}(p)$, we require $x^{2}-1$ is a square, $x^{4}+1$ is a square, $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$ is a square. We also get an $\mathrm{OWh}(p)$ provided $x^{2}-x+1$ is not a fourth power, but $x^{2}+x+1$ is.

Theorem 2.1. Let $p=8 t+5$ be prime. If there exists a non-square element x of \mathbb{Z}_{p} such that $x^{2} \pm x+1$ are both squares and either $x^{2}-1$ is not a square and $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$ is a fourth power, or $x^{2}-1$ is a square and $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$ is not a fourth power, then $a \mathbb{Z}$-cyclic OTWh (p) exists.

Proof. Suppose there exists such a non-square x. If it happens that $x^{2}-1$ is not a square, use Construction 2 if both $x^{2} \pm x+1$ are fourth powers and use Construction 1 otherwise. So, now suppose that $x^{2}-1$ is a square, i.e., $(x-1) /(x+1)$ is a square. Next suppose $x^{4}+1$ is not a square. Since exactly one of $x^{2} \pm x+1$ is a fourth power, we can use Construction 4 if $(x-1) /(x+1)$ is a fourth power and Construction 3 otherwise. Finally, if $x^{2}-1$ is a square and $x^{4}+1$ is a square, use Construction 6 if $x^{2}+x+1$ is a fourth power and Construction 5 otherwise.

It therefore remains to show that a non-square x satisfying the conditions of Theorem 2.1 can be obtained.

Let λ denote the quadratic character $\bmod p$, so that $\lambda(y)=-1$ if y is not a square. Let ψ be any fixed character of order 4 exactly; then $\psi(y)=1$ if y is a fourth power, and $\psi(y)=-1$ if y is a square but not a fourth power. Let

$$
\begin{aligned}
S=\sum_{x \in \operatorname{GF}(p)}(& -\lambda(x))\left(\lambda\left(x^{2}-x+1\right)+1\right)\left(\lambda\left(x^{2}+x+1\right)+1\right) \\
& \times\left(1-\psi\left(\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{2}-1\right)^{2}\right)\right) .
\end{aligned}
$$

Then $S=16|A|$ where A is the set of non-square elements of \mathbb{Z}_{p} satisfying the conditions of Theorem 2.1.

Since $\lambda(x)=\psi\left(x^{2}\right)$,

$$
\begin{aligned}
S=\sum_{x \in \operatorname{GF}(p)} & \left(1-\psi\left(x^{2}\right)\right)\left(\psi\left(\left(x^{2}-x+1\right)^{2}\right)+1\right)\left(\psi\left(\left(x^{2}+x+1\right)^{2}\right)+1\right) \\
& \times\left(1-\psi\left(\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)(x-1)^{2}(x+1)^{2}\right)\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S \geqslant & p-\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}\right)\right| \\
& -\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)^{2}\right)\right|-\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}+x+1\right)^{2}\right)\right| \\
& -\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)^{3}\left(x^{2}+x+1\right)^{3}(x-1)^{2}(x+1)^{2}\right)\right| \\
& -\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)^{3}\left(x^{2}+x+1\right)(x-1)^{2}(x+1)^{2}\right)\right| \\
& -\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)^{3}(x-1)^{2}(x+1)^{2}\right)\right| \\
& -\left|\sum_{x \in \operatorname{GF}(p)} \psi\left(\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)(x-1)^{2}(x+1)^{2}\right)\right| \\
& -\mid \sum_{x \in \operatorname{GF}(p)}\left(\psi\left(x^{2}\right)\right)\left(\psi\left(\left(x^{2}-x+1\right)^{2}\right)+1\right)\left(\psi\left(\left(x^{2}+x+1\right)^{2}\right)+1\right) \\
& \times\left(1-\psi\left(\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)(x-1)^{2}(x+1)^{2}\right)\right) \mid
\end{aligned}
$$

After multiplying this out fully and making the appropriate substitutions (using Theorem 1.1), it can be seen that

$$
S \geqslant p-(25 \sqrt{p}+32 \sqrt{p}), \quad \text { i.e. } S \geqslant p-57 \sqrt{p} \text {. }
$$

Thus,

$$
S=16|A| \geqslant p-57 \sqrt{p}>0 \quad \text { if } p \geqslant 57 \sqrt{p},
$$

i.e. if $\sqrt{p} \geqslant 57$,
i.e. if $p>3249$.

It was then checked by computer that appropriate values of x existed for all primes $29 \leqslant p<3249$ where $p \equiv 5(\bmod 8)$, excluding $p=29$. But an $\operatorname{OTWh}(p)$ has already been constructed for this value of p in Section 1. Here, we list (p, x_{p}) where p is the prime and x_{p} is the smallest suitable value of x for that prime.
$(37,2),(53,14),(61,8),(101,32),(109,14),(149,34),(157,32),(173,7),(181,22)$, $(197,12),(229,21),(269,29),(277,2),(293,8),(317,8),(349,8),(373,18),(389,3)$, $(397,6),(421,2),(461,10),(509,7),(541,2),(557,11),(613,2),(653,12),(661,6)$, (677, 12), (701, 3), (709, 22), (733, 8), (757, 24), (773, 12), (797, 7), (821, 12), (829, 40), $(853,6),(877,2),(941,7),(997,44),(1013,41),(1021,43),(1061,14),(1069,26)$, (1093, 22), (1109, 42), (1117, 2), (1181, 15), (1213, 5), (1229, 17), (1237, 15), (1277, 28), (1301, 39), (1373, 12), (1381, 10), (1429, 2), (1453, 18), (1493, 11), (1549, 40), (1597, 2), $(1613,57),(1621,18),(1637,41),(1669,10),(1693,11),(1709,40),(1733,32)$, $(1741,6),(1789,37),(1861,39),(1877,52),(1901,10),(1933,14),(1949,27)$, $(1973,26),(1997,20),(2029,24),(2053,5),(2069,15),(2141,8),(2213,18),(2221,2)$, $(2237,20),(2269,2),(2293,24),(2309,8),(2333,8),(2341,54),(2357,5),(2381,47)$, $(2389,23),(2437,5),(2477,5),(2549,8),(2557,2),(2621,7),(2677,79),(2693,27)$, $(2741,18),(2749,10),(2789,13),(2797,2),(2837,3),(2861,26),(2909,10),(2917,52)$, $(2957,61),(3037,22),(3061,21),(3109,2),(3181,28),(3221,8),(3229,33)$.

Thus the following theorem is established.
Theorem 2.2. $A \mathbb{Z}$-cyclic $\operatorname{OTWh}(p)$ exists for all primes $p \equiv 5(\bmod 8), p \geqslant 29$.
Example 2.1. The initial round games of a \mathbb{Z}-cyclic OTWh(37).
$(1,8,21,29),(7,19,36,18),(9,35,4,2),(10,6,25,31),(12,22,30,15),(16,17$, $3,20),(26,23,28,14),(33,5,27,32),(34,13,11,24)$.

Example 2.2. The suitable values of x when $p=37$ are 2, 18, 19, 35.
We are now in a position to state the following, as similarly given for DTWh (v) in [3]. The existence of an OTWh(29) and an OTWh(37) is enough to guarantee the existence of an $\operatorname{OTWh}(v)$ for all sufficiently large $v \equiv 1(\bmod 4)$.

Theorem 2.3. An $\mathrm{OTWh}(v)$ exists for all sufficiently large $v \equiv 1(\bmod 4)$.
Proof. It follows from the results of Wilson [7] that a pairwise balanced design, $\operatorname{PBD}(\{29,37\}, v)$ exists for all sufficiently large $v \equiv 1(\bmod 4)$. On each block B of this PBD, form an OTWh $(|B|)$. Then for each x, take the blocks B containing x and, for each such B, take all the tables of the round of the OTWh on B in which x sits out. These games will form a round, which we label as round x, of the required $\operatorname{OTWh}(v)$. It is clear that the triplewhist and ordered whist properties are preserved by this construction.

References

[1] I. Anderson, A hundred years of whist tournaments, J. Combin. Math. Combin. Comput. 19 (1995) 129-150.
[2] I. Anderson, S.D. Cohen, N.J. Finizio, An existence theorem for cyclic triplewhist tournaments, Discrete Mathematics 138 (1995) 31-41.
[3] I. Anderson, N.J. Finizio, Triplewhist tournaments that are also Mendelsohn designs, J. Combin. Des. 5 (1997) 397-406.
[4] M. Buratti, Existence of \mathbb{Z}-cyclic triplewhist tournaments for a prime number of players, J. Combin. Theory Ser. A 90 (2000) 315-325.
[5] N.J. Finizio, Orbits of cyclic $\mathrm{Wh}(v)$ of \mathbb{Z}_{N}-type, Congr. Numer. 82 (1991) 15-28.
[6] R. Lidl, H. Niederreiter, Finite fields, Encyclopaedia of Mathematics, vol. 20, Cambridge University Press, Cambridge, UK, 1983.
[7] R.M. Wilson, An existence theory for pairwise balanced designs III, J. Combin. Theory Ser. A 18 (1975) 71-79.

[^0]: * Corresponding author.

 E-mail address: le@maths.gla.ac.uk (L.H.M. Ellison).

