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Abstract

We construct new families of whist tournaments that are at the same timeZ-cyclic, ordered and
triplewhist. In particular, we construct such a design onp elements,p�29, wherep ≡ 5(mod 8) is
prime.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Whist tournaments;Z-cyclic tournaments; Ordered tournaments; Triplewhist tournaments

1. Introduction

A whist tournament Wh(4m + 1) for 4m + 1 players is a schedule of games (or tables)
(a, b, c, d) involving two playersa, c opposing two other playersb, d such that

i. the games are arranged into 4m + 1 rounds each ofmgames;
ii. each player plays in exactly one game in all but one round;
iii. each player partners every other player exactly once;
iv. each player opposes every other player exactly twice.

We shall be concerned with two refinements of the structure, called triplewhist tournaments
and ordered triplewhist tournaments. Call the pairs{a, b} and{c, d} pairs ofopponents of
the first kind, and call the pairs{a, d} and{b, c} pairs ofopponents of the second kind. We
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also say thata andc are partners of the first kind whileb andd are partners of the second
kind. Then atriplewhist tournamentTWh(4m + 1) is a Wh(4m + 1) in which every player
is an opponent of the first (respectively, second) kind exactly once with every other player;
and anordered whist tournamentOWh(4m + 1) is a Wh(4m + 1) in which each player
opposes every other player exactly once while being a partner of the first (respectively,
second) kind. If the players are elements ofZ4m+1, and if theith round is obtained from
the initial (first) round by addingi − 1 to each element(mod 4m + 1), then we say that
the tournament isZ-cyclic. By convention we always take the initial round to be the round
from which 0 is absent. The games (tables)

(a1, b1, c1, d1), . . . , (am, bm, cm, dm)

form the initial round of aZ-cyclic triplewhist tournament if

m⋃

i=1

{ai, bi, ci, di} = Z4m+1\{0}, (1)

m⋃

i=1

{±(ai − ci), ±(bi − di)} = Z4m+1\{0}, (2)

m⋃

i=1

{±(ai − bi), ±(ci − di)} = Z4m+1\{0}, (3)

m⋃

i=1

{±(ai − di), ±(bi − ci)} = Z4m+1\{0}. (4)

Eqs. (1) and (2) show that the partner pairs form a starter[1, p. 136]. Similarly for (1) and
(3) with the first opponent pairs, and (1) and (4) with the second opponent pairs. These
games form aZ-cyclic ordered whist tournament if, in addition to forming the initial round
of a Wh(4m + 1),

m⋃

i=1

{(ai − bi), (ai − di), (ci − bi), (ci − di)} = Z4m+1\{0}. (5)

Now we shall look at whist tournaments which are simultaneously both triplewhist and
ordered tournaments. Such designs will be calledordered triplewhist tournamentsand will
be denoted by OTWh(v). We shall show that an OTWh(v) exists for allv wheneverv is a
primep ≡ 5(mod 8), andp�29. Finizio[5] has verified that there is noZ-cyclic TWh(p)

for primesp <29.

Example 1.1.A Z-cyclic OTWh(29) is given by the initial round(1,3,26,13) × 1,
34, . . . ,324.

The original proof by Anderson et al.[2], which dealt with the existence ofZ-cyclic
TWh(p)with p =8n+5 prime, contained a requirement that certain elements be primitive
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roots ofZp. This requirement was shown by Buratti in[4] to be an additional, but not
necessary one.Theelements in questionneedonly benon-squareoverZp, anda lessdifficult
proof is the result. The theorem ofWeil on multiplicative character sums[6, Theorem 5.41,
p. 225]is used in the proof which follows. Here is the statement ofWeil’s theorem, in which
the convention is understood that if� is a multiplicative character of GF(q), then�(0)=0.
Adopting this convention, we have�(xy) = �(x)�(y) for all (x, y) ∈ GF(q) ×GF(q).

Theorem 1.1. Let� be a multiplicative character of orderm >1 of the finiteGF(q). Let f
be a polynomial ofGF(q)[x] which is not of the formkgm for somek ∈ GF(q) and some
g ∈ GF(q)[x]. Then we have

∣∣∣∣∣∣

∑

x∈GF(q)

�(f (x))

∣∣∣∣∣∣
�(d − 1)

√
q,

where d is the number of distinct roots of f in its splitting field overGF(q).

2. The existence theorem

We now take a closer look at some constructions which were presented byAnderson and
Finizio [3], and find the conditions which must be satisfied in order for them to produce a
Z-cyclic OTWh(p) for primesp ≡ 5(mod 8).
So letp = 8t + 5 be prime, letx be a non-square element ofZp, and let� be a primitive

root ofp. We now present six constructions.

Construction 1. (1, x, −1, x3) × 1, �4, . . . , �8t . First we find the conditions under which
this forms a TWh(p). The partner differences are pairs±2,±x(x2 − 1) × 1, �4, . . . , �8t ,
and so the partner pairs form a starter provided 2x(x2 − 1) is not a square. Similarly, the
first kind opponent pairs form a starter provided(x − 1)(x3 + 1) is not a square, and the
second kind opponent pairs form a starter provided(x +1)(x3−1) is not a square.We now
use the fact that 2 is a non-square sincep ≡ 5(mod 8). So Construction 1 yields aZ-cyclic
TWh(p) providedx2 − 1 is not a square,x2 ± x + 1 are squares.

Now, we find the conditions under which this also forms an OWh(p).
Leta=−(x−1), b=−(x2+x+1)(x−1), c=−(x+1), d=−(x2−x+1)(x+1).We

require thata, b, c, d lie in distinct cyclotomic classes of index 4. Sincea/c is not a square,
we requireb/d to be a non-square, and, to guarantee that the two squares (non-squares) lie
in distinct cyclotomic classes, we also require that each ofx2 ± x + 1, although squares,
are not fourth powers.
So, Construction 1 gives the initial round tables of a TWh(p) providedx2 − 1 is not a

square,x2 ± x + 1 are squares. They also yield an OWh(p) providedx2 ± x + 1 are both
not fourth powers.

Construction 2. (1, x3, x2, −x3) × 1, �4, . . . , �8t . These are the initial round tables of a
TWh(p) providedx2−1 is not a square,x2±x+1 are squares. They also yield anOWh(p)

providedx2 ± x + 1 are both fourth powers.
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Construction 3. (1, x3, −x4, −x3) × 1, �4, . . . , �8t . These are the initial round tables of
a TWh(p) providedx4+ 1 is not a square,x2± x + 1 are squares.We also get an OWh(p)

provided(x − 1)/(x + 1) is a square but not a fourth power and exactly one ofx2 ± x + 1
is a fourth power.

Construction 4. (1, x, −x4, −x) × 1, �4, . . . , �8t . These are the initial round tables of a
TWh(p) providedx4 + 1 is not a square,x2 ± x + 1 are both squares. We also get an
OWh(p) provided(x − 1)/(x + 1) is a fourth power, and exactly one ofx2 ± x + 1 is a
fourth power.

Construction 5. (1, x, −x4, x3) × 1, �4, . . . , �8t . For a TWh(p), we requirex2 − 1 is a
square,x4 + 1 is a square,(x2 + x + 1) (x2 − x + 1) is a square. We also get an OWh(p)

providedx2 + x + 1 is not a fourth power, butx2 − x + 1 is.

Construction 6. (1, −x, −x4, −x3) ×1, �4, . . . , �8t . For a TWh(p), we requirex2−1 is
a square,x4+ 1 is a square,(x2+ x + 1) (x2− x + 1) is a square.We also get an OWh(p)

providedx2 − x + 1 is not a fourth power, butx2 + x + 1 is.

Theorem 2.1. Letp=8t+5be prime. If there exists a non-square element x ofZp such that
x2± x +1are both squares and eitherx2−1 is not a square and(x2+ x +1)(x2− x +1)
is a fourth power, or x2−1 is a square and(x2+ x +1)(x2− x +1) is not a fourth power,
then aZ-cyclic OTWh(p) exists.

Proof. Suppose there exists such a non-squarex. If it happens thatx2 − 1 is not a square,
use Construction 2 if bothx2 ± x + 1 are fourth powers and use Construction 1 otherwise.
So, now suppose thatx2−1 is a square, i.e.,(x−1)/(x+1) is a square. Next supposex4+1
is not a square. Since exactly one ofx2 ± x + 1 is a fourth power, we can use Construction
4 if (x − 1)/(x + 1) is a fourth power and Construction 3 otherwise. Finally, ifx2 − 1 is
a square andx4 + 1 is a square, use Construction 6 ifx2 + x + 1 is a fourth power and
Construction 5 otherwise.�

It therefore remains to show that a non-squarex satisfying the conditions of Theorem 2.1
can be obtained.
Let� denote the quadratic character modp, so that�(y)=−1 if y is not a square. Let� be

any fixed character of order 4 exactly; then�(y) = 1 if y is a fourth power, and�(y) = −1
if y is a square but not a fourth power. Let

S =
∑

x∈GF(p)

(1− �(x))(�(x2 − x + 1) + 1)(�(x2 + x + 1) + 1)

× (1− �((x2 + x + 1)(x2 − x + 1)(x2 − 1)2)).

ThenS = 16|A| whereA is the set of non-square elements ofZp satisfying the conditions
of Theorem 2.1.
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Since�(x) = �(x2),

S =
∑

x∈GF(p)

(1− �(x2))(�((x2 − x + 1)2) + 1)(�((x2 + x + 1)2) + 1)

× (1− �((x2 + x + 1)(x2 − x + 1)(x − 1)2(x + 1)2)).

Thus,

S�p −
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)2(x2 + x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)2)

∣∣∣∣∣∣
−

∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 + x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)3(x2 + x + 1)3(x − 1)2(x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)3(x2 + x + 1)(x − 1)2(x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)(x2 + x + 1)3(x − 1)2(x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

�((x2 − x + 1)(x2 + x + 1)(x − 1)2(x + 1)2)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

∑

x∈GF(p)

(�(x2))(�((x2 − x + 1)2) + 1)(�((x2 + x + 1)2) + 1)

× (1− �((x2 + x + 1)(x2 − x + 1)(x − 1)2(x + 1)2))

∣∣∣∣∣∣
.

After multiplying this out fully and making the appropriate substitutions (using Theo-
rem 1.1), it can be seen that

S�p − (25
√

p + 32
√

p), i.e. S�p − 57
√

p.

Thus,

S = 16|A|�p − 57
√

p >0 if p�57
√

p,

i.e. if
√

p�57,

i.e. if p >3249.
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It was then checked by computer that appropriate values ofx existed for all primes
29�p <3249 wherep ≡ 5(mod 8), excludingp = 29. But an OTWh(p) has already
been constructed for this value ofp in Section 1. Here, we list(p, xp) wherep is the prime
andxp is the smallest suitable value ofx for that prime.

(37,2), (53,14), (61,8), (101,32), (109,14), (149,34), (157,32), (173,7), (181,22),
(197,12), (229,21), (269,29), (277,2), (293,8), (317,8), (349,8), (373,18), (389,3),
(397,6), (421,2), (461,10), (509,7), (541,2), (557,11), (613,2), (653,12), (661,6),
(677,12), (701,3), (709,22), (733,8), (757,24), (773,12), (797,7), (821,12), (829,40),
(853,6), (877,2), (941,7), (997,44), (1013,41), (1021,43), (1061,14), (1069,26),
(1093,22), (1109,42), (1117,2), (1181,15), (1213,5), (1229,17), (1237,15), (1277,28),
(1301,39), (1373,12), (1381,10), (1429,2), (1453,18), (1493,11), (1549,40), (1597,2),
(1613,57), (1621,18), (1637,41), (1669,10), (1693,11), (1709,40), (1733,32),
(1741,6), (1789,37), (1861,39), (1877,52), (1901,10), (1933,14), (1949,27),
(1973,26), (1997,20), (2029,24), (2053,5), (2069,15), (2141,8), (2213,18), (2221,2),
(2237,20), (2269,2), (2293,24), (2309,8), (2333,8), (2341,54), (2357,5), (2381,47),
(2389,23), (2437,5), (2477,5), (2549,8),(2557,2), (2621,7), (2677,79), (2693,27),
(2741,18), (2749,10), (2789,13), (2797,2), (2837,3), (2861,26), (2909,10), (2917,52),
(2957,61), (3037,22), (3061,21), (3109,2), (3181,28), (3221,8), (3229,33).
Thus the following theorem is established.

Theorem 2.2. AZ-cyclicOTWh(p) exists for all primesp ≡ 5(mod 8), p�29.

Example 2.1. The initial round games of aZ-cyclic OTWh(37).
(1,8,21,29), (7,19,36,18), (9,35,4,2), (10,6,25,31), (12,22,30,15), (16,17,

3,20), (26,23,28,14), (33,5,27,32), (34,13,11,24).

Example 2.2. The suitable values ofxwhenp = 37 are 2,18,19,35.

We are now in a position to state the following, as similarly given for DTWh(v) in [3].
The existence of an OTWh(29) and an OTWh(37) is enough to guarantee the existence of
an OTWh(v) for all sufficiently largev ≡ 1(mod 4).

Theorem 2.3. AnOTWh(v) exists for all sufficiently largev ≡ 1(mod 4).

Proof. It follows from the results of Wilson[7] that a pairwise balanced design,
PBD({29,37}, v) exists for all sufficiently largev ≡ 1(mod 4). On each blockB of this
PBD, form an OTWh(|B|). Then for eachx, take the blocksB containingx and, for each
suchB, take all the tables of the round of the OTWh onB in whichx sits out. These games
will form a round, which we label as roundx, of the required OTWh(v). It is clear that the
triplewhist and ordered whist properties are preserved by this construction.�
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