The Characteristic Polynomial of a Graph*

Abbe Mowshowitz
Department of Computer Science, University of British Columbia Vancouver 8, British Columbia, Canada

Communicated by W. T. Tutte
Received August 25, 1970

Abstract

The present paper is addressed to the problem of determining under what conditions the characteristic polynomial of the adjacency matrix of a graph distinguishes between non-isomorphic graphs. A formula for the coefficients of the characteristic polynomial of an arbitrary digraph is derived, and the polynomial of a tree is examined in depth. It is shown that the coefficients of the polynomial of a tree count matchings. Several recurrence relations are also given for computing the coefficients. An appendix is provided which lists n-node trees ($2 \leqslant n \leqslant 10$) together with the coefficients of their polynomials. It should be noted that this list corrects some errors in the earlier table of [1].

1. Introduction

The search for isomorphism invariants has led to consideration of various algcbraic properties of the adjacency matrix of a graph. In particular, interest has focused on the characteristic polynomial of the adjacency matrix. Of course, the characteristic polynomial does not always distinguish between non-isomorphic graphs. Many examples are known [1,6]. Of particular interest is the fact that there exist nonisomorphic connected regular graphs with the same polynomial [7,9]. Let G_{1} and G_{2} be two such graphs. Consider the graphs

$$
H_{i, k-1}=i G_{1} \cup(k-1-i) G_{2} \quad \text { for } \quad 0 \leqslant i \leqslant k-1
$$

i.e., $H_{i, k-1}$ is the union of i copies of G_{1} and $k-1-i$ copies of G_{2}. Since G_{1} and G_{2} are regular, $H_{i, k-1}$ is regular and the complement $\bar{H}_{i, k-1}$ of $H_{i, k-1}$ is regular and connected. Clearly, all the $H_{i, k-1}$ have the same polynomial since their respective adjacency matrices are direct sums of matrices corresponding to G_{1} and G_{2}. Moreover, it is easy to show [2]

[^0]that, if two regular graphs have the same polynomial, then their complements also have the same polynomial. Hence, the $\bar{H}_{i, k-1}(0 \leqslant i \leqslant k-1)$ are non-isomorphic connected regular graphs and have the same characteristic polynomial, from which we conclude the following: Given any positive integer k, there exists an integer n such that there are at least k non-isomorphic connected regular graphs with n points all having the same characteristic polynomial. ${ }^{1}$

The present paper is addressed to the problem of determining under what conditions the characteristic polynomial does distinguish between non-isomorphic graphs. In what follows, we will characterize the coefficients of the characteristic polynomial of an arbitrary digraph, and examine the polynomial of a tree in detail.

A digraph (or directed graph) D is an irreflexive binary relation on a finite set $V=V(D)$ of elements called the points (or vertices) of D; the collection $E=E(D)$ of ordered pairs of points constitute the lines (or edges) of D. We will write $u v$ for the ordered pair (u, v). By the order of a digraph D, we shall mean the cardinality of $V(D)$. A graph is a symmetric digraph. The adjacency matrix $A=A(D)$ of a digraph D with n points $v_{1}, v_{2}, \ldots, v_{n}$ is defined by its i, j-th entry $a_{i j}$ as follows:

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} v_{j} \text { is a line of } D \\ 0, & \text { otherwise }\end{cases}
$$

for $1 \leqslant i, j \leqslant n$. Two digraphs whose adjacency matrices have the same characteristic polynomial will be called cospectral. For graph-theoretic terms used without explicit definitions, see [5].

2. Determination of Coefficients

Collatz and Sinogowitz [1] investigated the relationship between the coefficients of the characteristic polynomial of the adjacency matrix of a graph and certain subgraphs. However, no general formula for the coefficients was derived. In this section we will generalize their results and derive such a formula.

Let D be a digraph with n points, and $A=A(D)$ its adjacency matrix. The characteristic polynomial of A is given by $\phi(\lambda)=\operatorname{det}(A-\lambda I)$, which can be expressed

$$
\begin{equation*}
\phi(\lambda)=\sum_{i=0}^{n}(-1)^{i} a_{i} \lambda^{n-i} \tag{1}
\end{equation*}
$$

[^1]It is well known [3] that the k-th coefficient $a_{k}(1 \leqslant k \leqslant n)$ is equal to the sum of all principal minors of order k. Since each k order principal submatrix of A is the adjacency matrix of a subdigraph of D containing k points, it is clear that any principal minor of A is the determinant of the adjacency matrix of a subdigraph of D. Thus the coefficients of the characteristic polynomial of A can be expressed in terms of determinants of matrices belonging to subdigraphs of D.

For an arbitrary digraph H of order k, let $f_{H}\left(\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}\right)$ denote the number of collections of disjoint directed cycles in H of lengths $i_{1}, i_{2}, \ldots, i_{r}$, where $i_{j} \geqslant 1(1 \leqslant j \leqslant r)$ and $i_{1}+i_{2}+\cdots+i_{r}=k$. Using the formula for the determinant of the adjacency matrix of a digraph [5, p. 151], we obtain the following:

Theorem 1. Let D be a digraph of order n. Then for $1 \leqslant k \leqslant n$, the k-th coefficient a_{k} of the characteristic polynomial of $A(D)$ is given by

$$
\begin{equation*}
a_{k}=\sum\left[\prod_{j=1}^{r}(-1)^{i_{j}+1}\right] f_{D}\left(\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}\right) \tag{2}
\end{equation*}
$$

where the summation is taken over all rank r partitions $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ $(1 \leqslant r \leqslant k)$ of k, and $a_{0}=1$.

In an undirected graph (symmetric digraph) G each undirected cycle of length greater than 2 contributes two directed cycles of the same length. Of course, an undirected line contributes exactly one directed cycle of length 2, and a loop contributes one directed cycle of length 1 . So, if for a given partition $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ of k we let

$$
g\left(i_{j}\right)= \begin{cases}1, & \text { if } \quad 1 \leqslant i_{j} \leqslant 2 \\ 2, & \text { if } \quad i_{j}>2\end{cases}
$$

and define $\bar{f}_{G}\left(\left\{i_{1}, \ldots, i_{r}\right\}\right)$ as above but for undirected cycles (and lines), (2) becomes

Theorem 2. Let G be a graph of order n. Then for $1 \leqslant k \leqslant n$ the k-th coefficient a_{k} of the characteristic polynomial of $A(G)$ is given by

$$
\begin{equation*}
a_{k}=\sum\left[\prod_{j=1}^{r}(-1)^{i_{j}+1} g\left(i_{j}\right)\right] \bar{f}_{G}\left(\left\{i_{1}, \ldots, i_{r}\right\}\right) \tag{3}
\end{equation*}
$$

where the summation extends over all rank r partitions $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ $(1 \leqslant r \leqslant k)$ of k, and $a_{0}=1$.

To fix ideas, let us evaluate the coefficients for the graph shown in Figure 1. From (3) we have

$$
\begin{array}{ll}
a_{0}=1 & a_{4}=\bar{f}(\{2,2\})-2 \bar{f}(\{4\}) \\
a_{1}=\bar{f}(\{1\}) & a_{5}=-2 \bar{f}(\{2,3\})+2 \bar{f}(\{5\}) \\
a_{2}=-\bar{f}(\{2\}) & a_{6}=-\bar{f}(\{2,2,2\})+2 \bar{f}(\{2,4\})+4 \bar{f}(\{3,3\})-2 \bar{f}(\{6\}) \\
a_{3}=2 \bar{f}(\{3\}) & a_{7}=-2 \bar{f}(\{2,5\})+2 \bar{f}(\{2,2,3\})-4 \bar{f}(\{3,4\})+2 \bar{f}(\{7\})
\end{array}
$$

Counting the relevant subgraphs, we obtain:

$$
\left.\left.\begin{array}{rlrl}
\bar{f}(\{2\}) & =9 & \bar{f}(\{5\}) & =1 \\
\bar{f}(\{3\}) & =3 & \bar{f}(\{2,2,2\}) & =8 \\
\bar{f}(\{2,5\}) & =0 \\
\bar{f}(\{2,2\}) & =17 & \bar{f}(\{2,2,3\}) & =2 \\
\bar{f}(\{4\}) & =2 & \bar{f}(\{3,4\}) & =0 \\
\bar{f}(\{2,3\}) & =5 & \bar{f}(\{3,3\}) & =0 \\
\bar{f}(\{6\}) & =0 & & \bar{f}(\{7\})
\end{array}\right)=0\right\}
$$

from which one immediately computes the polynomial given in Figure 1.

G

$$
\phi_{G}(\lambda)=\lambda^{7}-9 \lambda^{5}-6 \lambda^{4}+13 \lambda^{3}+8 \lambda^{2}-4 \lambda-2
$$

Fig. 1. The Polynomial of a Seven Point Graph

From Theorem 1 , it is obvious that a digraph D of order n with no cycles and no symmetric lines has characteristic polynomial $\phi_{D}(\lambda)=\lambda^{n}$. This fact gives rise to the following

Theorem 3. For any positive integer k there exists an integer n such that there are at least k non-isomorphic weakly connected digraphs with the same characteristic polynomial.

Proof. Let $n=2 k^{\prime}+1$ where $k^{\prime}>k$. Consider the collection of digraphs $D_{0}, D_{1}, \ldots, D_{k^{\prime}}$ constructed as follows. D_{0} is the directed path of length $2 k^{\prime}$, i.e., $V\left(D_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 k^{\prime}+1}\right\}, E\left(D_{0}\right)=\left\{e_{1}, e_{2}, \ldots, e_{2 k^{\prime}}\right\}$ where $e_{i}=v_{i} v_{i+1}, 1 \leqslant i \leqslant 2 k^{\prime}$. For $1 \leqslant j \leqslant k^{\prime}$ let

$$
V\left(D_{j}\right)=V\left(D_{0}\right)
$$

and

$$
E\left(D_{j}\right)=\left\{e_{1}^{(j)}, e_{2}^{(j)}, \ldots, e_{2 k}^{(j)}\right\}
$$

where

$$
e_{i}^{(j)}=\left\{\begin{array}{l}
v_{i+1} v_{i}, \quad \text { for } 1 \leqslant i \leqslant j \\
e_{i}, \quad \text { for } j+1 \leqslant i \leqslant 2 k^{\prime}
\end{array}\right.
$$

Clearly, the $k^{\prime}+1$ digraphs $D_{0}, D_{1}, \ldots, D_{k^{\prime}}$ are pairwise non-isomorphic and weakly connected. Moreover, they are acyclic and have no symmetric lines, so that they all have the same characteristic polynomial $\left(\phi(\lambda)=\lambda^{n}\right)$, which concludes the proof.

3. Non-isomorphic Cospectral Trees ${ }^{2}$

Consider an arbitrary tree T. Since the only cycles in T are directed cycles of length 2 corresponding to the lines of T, the summation in (3) need only take into account partitions of the form $\left\{2^{r}\right\}=\{2,2, \ldots, 2\}$. Now, writing $h_{r}(T)$ for $\bar{f}_{T}\left(\left\{2^{r}\right\}\right)$, we have the following immediate consequence of Theorem 2:

Corolqary 2.1. Let T be a tree of order n. Then for $1 \leqslant k \leqslant n$ the k-th coefficient a_{k} of $\phi_{T}(\lambda)$ is given by

$$
a_{k}=\left\{\begin{array}{l}
(-1)^{r} h_{r}(T), \quad \text { if } k=2 r \text { for some } r \geqslant 1, \tag{4}\\
0, \text { otherwise, }
\end{array}\right.
$$

and $a_{0}=1$.
It is evident from (4) that $\left|a_{k}\right|$ is the number of sets consisting of k pairwise non-incident lines of T, which is precisely the number of independent sets of lines of order k in T. Making this observation from another point of view, one sees that $\left|a_{k}\right|$ is the number of matchings of order k in T.

It is of interest to record the foregoing remarks.

[^2]THEOREM 4. Let $\phi_{T}(\lambda)=\sum_{k=0}^{n}(-1)^{k} a_{k} \lambda^{n-k}$ be the characteristic polynomial of a tree T with n points. Let $m=\max _{0 \leqslant k \leqslant n}\left\{k \mid a_{k} \neq 0\right\}$. Then
(i) $\left|a_{k}\right|=$ the number of matchings of order k in T.
(ii) Any maximal matching in T is of order m, and, thus, the number of such maximal matchings is $\left|a_{m}\right|$.

Counting independent sets of lines in a tree has a useful dual formulation. For a given tree T consider its line graph $L(T) . L(T)$ is defined as follows. The points of $L(T)$ correspond to the lines of T; and two points of $L(T)$ are adjacent if and only if the corresponding lines of T are incident. Thus, an independent set of lines of order k in T corresponds to an independent set of points of order k in $L(T)$.

It is known [5] that a graph is the line graph of a tree if and only if it is a connected block graph in which each cut point is on exactly two blocks, and each block is a complete graph. The duality between independent sets of lines and points given by a tree and its line graph affords some leverage in the constructuin of cospectral trees.

Theorem 5. Let T_{1} and T_{2} be trees. If T_{1} and T_{2} are cospectral, then $L\left(T_{1}\right)$ and $L\left(T_{2}\right)$ have the same number of points and lines.

Proof. Since T_{1} and T_{2} are cospectral, $h_{k}\left(T_{1}\right)-h_{k}\left(T_{2}\right)$ for all k. In particular, this holds for $k=1$, so that $L\left(T_{1}\right)$ and $L\left(T_{2}\right)$ have the same number of points, say $n . h_{2}\left(T_{1}\right)\left[=h_{2}\left(T_{2}\right)\right]$ is the number of pairs of nonadjacent points in $L\left(T_{1}\right)$ [$\left.L\left(T_{2}\right)\right]$. So, the number of lines in $L\left(T_{1}\right)$ is $\binom{n}{2}-h_{2}\left(T_{1}\right)$, which is equal to $\binom{n}{2}-h_{2}\left(T_{2}\right)$.

We turn now to the problem of computing the coefficients of the characteristic polynomial of a tree. If T is a tree and v is a point of T, we denote by $T-v$ the tree obtained from T by removing v together with all lines incident to v. If u is a point not in T, we form the tree $T+u v$ by joining the point u to v.

The following is a special case of Theorem 2 of [6]:
Lemma 1. Let T be a tree and v a point of T. Then

$$
h_{k}(T+u v)=h_{k}(T)+h_{k-1}(T-v)
$$

Proof. The tree $T+u v$ consists of the lines of T and the additional line $u v$. So, there are two ways to construct a matching of order k depending on whether or not the line $u v$ is included. In the former case, we need to find a matching of order $k-1$ in $T-v$ since we cannot choose a line incident to $u v$. This may be done in $h_{k-1}(T-v)$ ways. In the latter case,
all the lines of T are available for choosing a matching of order k. There are $h_{k}(T)$ ways to do this.

As a simple application of Lemma 1 , consider the path P_{n} on n points. The following is also derived in [6] but in a different form, looking at the polynomial as a function of λ rather than at the coefficients:

Theorem 6. Let P_{n} be a path on n points. Then
(i) $h_{k}\left(P_{n+1}\right)$ satisfies the recurrence

$$
h_{k}\left(P_{n \mid 1}\right)=h_{k}\left(P_{n}\right)+h_{l}\left(P_{n-1}\right)
$$

(ii) $h_{\bar{k}}\left(P_{n+\frac{1}{1}}\right)=\binom{n-k+1}{k}$.

Proof. Part (i) is an immediate consequence of Lemma 1. We prove part (ii) by induction on k. Clearly, $h_{1}\left(P_{n+1}\right)=\binom{n}{1}$ for any $n>1$. So, assume

$$
h_{k}\left(P_{n+1}\right)=\binom{n-k+1}{k}
$$

Then

$$
\begin{aligned}
h_{k+1}\left(P_{n+1}\right) & =\sum_{r=2}^{n-2 k+1} h_{k}\left(P_{n+1-r}\right)=\sum_{r=2}^{n-2 k+1}\binom{n-r+1}{r} \\
& =\sum_{r=0}^{n-1-2 k}\binom{k+r}{k}=\binom{n-(k+1}{k+1}+1
\end{aligned}
$$

as required.
A more interesting class of trees whose coefficients can be determined rather easily consists of trees homeomorphic to a star. Such a tree is one with a single point of degree >2, every other point being of degree 1 or 2 .

Suppose S is a tree homeomorphic to a star. Let S be of order $n+1$, and let v be the point in S with degree >2. Furthermore, let d_{i} be the number of points in S whose distance from v is $i \geqslant 1$, and m the maximal distance between v and any other point in S. The tree S is completely characterized by the point v and the parameters $d_{1}, d_{2}, \ldots, d_{m}$, so we shall write $S-S_{v}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$.

THEOREM 7. Let $S=S_{v}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ be a tree homeomorphic to a star. Then $h_{r a}(S)$ satisfies the recurrence

$$
h_{k}\left(S_{v}\left(d_{1}, \ldots, d_{m}\right)\right)=\sum_{i=2}^{m} \sum_{r=1}^{d i} h_{k-1}\left(S_{v}\left(d_{1}, \ldots, d_{i-1}-1, d_{i}-p\right)\right)
$$

Proof. Suppose u_{1} is a point of S such that the distance $d\left(u_{1}, v\right)$ between u_{1} and v is m. Obviously, u_{1} is an end point of S. Let $u_{1}{ }^{\prime}$ be the point adjacent to u_{1}. The number of matchings of order k containing the line $u_{1} u_{1}{ }^{\prime}$ is clearly

$$
h_{k-1}\left(S_{v}\left(d_{1}, d_{2}, \ldots, d_{m-1}-1, d_{m}-1\right)\right)
$$

Having used $u_{1} u_{1}^{\prime}$, delete it from the tree and choose another point u_{2} such that $d\left(v, u_{2}\right)=m$. Let $u_{2}{ }^{\prime}$ be the point adjacent to u_{2}. Now, the number of matchings of order k including $u_{2} u_{2}{ }^{\prime}$ is

$$
h_{k-1}\left(S_{v}\left(d_{1}, d_{2}, \ldots, d_{m}-1, d_{m}-2\right)\right)
$$

Continuing in this way until all the d_{m} points at distance m from v are exhausted, we find the number of matchings of order k contributed by the lines incident to those points to be

$$
\sum_{r=1}^{d_{m}} h_{k-1}\left(S_{v}\left(d_{1}, d_{2}, \ldots, d_{m-1}-1, d_{m}-r\right)\right)
$$

Repeating this proccss successively for points at distance $m-j$ from v for $1 \leqslant j \leqslant m-2$, we obtain the desired recurrence.

Now we will find the solution of the recurrence given in Theorem 7 using a direct combinatorial argument.

Theorem 8. Let $S=S_{v}\left(d_{1}, \ldots, d_{m}\right)$ be as above. Then

$$
\begin{align*}
h_{k}\left(S_{v}\left(d_{1}, \ldots, d_{m}\right)\right)= & \sum\binom{d_{m}}{i_{m}}\binom{d_{m-1}-i_{m}}{i_{m-1}} \cdots\binom{d_{2}-i_{3}}{i_{2}}\binom{d_{1}-i_{2}}{1} \\
& +\sum\binom{d_{m}}{i_{m}}\binom{d_{m-1}-i_{m}}{i_{m-1}} \cdots\binom{d_{2}-i_{3}}{i_{2}}, \tag{5}
\end{align*}
$$

where the summation for both terms extends over all ordered sequences $\left(i_{2}, i_{3}, \ldots, i_{m}\right)$ of non-negative integers satisfying $i_{2}+i_{3}+\cdots+i_{m}=k-1$ and $i_{2}+i_{3}+\cdots+i_{m}=k$, respectively.

Proof. There are two cases to consider depending on whether a line incident to v is chosen or not:

Case 1. A line incident to v is chosen. Then $k-1$ additional lines must be selected. The selection may be made by choosing i_{m} from those $d_{m n}$ lines at distance m from v, and i_{j} from $d_{j}-i_{j+1}(2 \leqslant j \leqslant m-1)$ of the d_{j} lines at distance j from v, where $i_{2}+i_{3}+\cdots+i_{m}=k-1 . i_{j+1}$ lines must be excluded from the d_{j} since i_{j+1} lines were chosen from those
at distance $j+1$ from v. Clearly, the number of ways of making these selections is precisely the first term of (5).

Case 2. No line incident to v is chosen. In this case, the selection is as in case 1 except that k lines must be chosen and d_{1} lines are excluded. Again the number of possible selections under the given constraints is exhibited in the second term of (5).

Expressions for the coefficients of other classes of trees may be obtained by examining special types of line graphs. Before considering a case in point we will give a recurrence in terms of the line graph of a tree which parallels the one given in Lemma 1. In what follows, we will write $h_{k}(L)$ for $h_{k i}(T)$ when $L=L(T)$ for a tree T.

Let T be a tree and $L=L(T)$ its line graph. An end block K_{i} (complete of order t) of L is a block which is joined to exactly one other block of L. Let v be the point in common between K_{t} and the block to which it is joined. Then the graph $L-K_{t}-v$ is obtained from L by removing K_{t} together with v, and $L-K_{t}$ is the graph resulting from the removal of K_{t} alone.

Lemma 2. Let $L=L(T)$ be the line graph of a tree T, and let K_{t} and v be as above. Then $h_{k}(L)$ satisfies the recurrence

$$
h_{k}(L)=(t-1) h_{k-1}\left(L-K_{t}-v\right)+h_{k}\left(L-K_{t}\right) .
$$

Proof. There are two cases to consider, depending on whether or not a point of K_{t} (other than v) is contained in an independent set of order k. Clearly, the first term of the recurrence arises from the former, and the second term from the latter.
Now we consider a line graph $L=L\left(t_{1}, \ldots, t_{m}\right)$ of the following form. L consists of a block K_{m} together with m end blocks $K_{t_{j}}(1 \leqslant j \leqslant m)$ joined to K_{m}. Call such a graph a line-star.

Theorem 9. Let $L=L\left(t_{1}, \ldots, t_{m}\right)$ be a line-star as above. Then

$$
\begin{align*}
h_{k}(L)= & \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m}\left(t_{i_{1}}-1\right)\left(t_{i_{2}}-1\right) \cdots\left(t_{i_{k}}-1\right) \tag{i}\\
& +\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k-1} \leqslant m}\left(t_{i_{1}}-1\right)\left(t_{i_{2}}-1\right) \cdots\left(t_{i_{k-1}}-1\right) \\
& \times(m-k+1) .
\end{align*}
$$

(ii) If $t_{1}=t_{2}=\cdots=t_{m}=t$, then $h_{k}(L)=\binom{m}{x_{k}}(t-1)^{t-1}(t+k-1)$.

Proof. The two summations in (i) are obtained as follows. Consider an independent set of order k. Either all k points are chosen from the end blocks (first term), or $k-1$ points are chosen from the end blocks and one point is chosen from k_{m} (second term).

Part (ii) follows from (i) by substituting t for each $t_{j}(1 \leqslant j \leqslant m)$.

Corollary 9.1. Suppose $L_{1}=\left(t_{1}, \ldots, t_{m}\right)$ and $L_{2}=L\left(s_{1}, \ldots, s_{n}\right)$ are line-stars corresponding to trees T_{1} and T_{2}, respectively, with $t_{j}>1$, $s_{j}>1$ and $m \neq n$. Then T_{1} and T_{2} are not cospectral.

Proof. Taking $n>m$, the result follows immediately from the observation that $h_{n}\left(L_{1}\right)=0$, but $h_{n}\left(L_{2}\right)>0$.

When $t_{1}=t_{2}=\cdots=t_{m}=t$, we will write $L(m t)$ for $L\left(t_{1}, t_{2}, \ldots, t_{m}\right)$. As an application of Lemma 2, let us evaluate $h_{k}\left(L^{\prime}\right)$ where L^{\prime} is the line graph obtained from $L(m t)(t>1)$ by joining an end block K_{s} to point v of some K_{t}. According to Lemma 2

$$
h_{k}\left(L^{\prime}\right)=(s-1) h_{k-1}\left[L^{\prime}-K_{s}-v\right]+h_{k}\left[L^{\prime}-K_{s}\right]
$$

Clearly, $L^{\prime}-K_{s}-v$ is just $L((t-1),(m-1) t)$, and $L^{\prime}-K_{s}$ is $L(m t)$. Hence,

$$
\begin{aligned}
h_{k}\left(L^{\prime}\right)= & (s-1)\left\{\binom{m-1}{k}(t-1)^{k}+\binom{m-1}{k-1}(t-1)^{k-1}(t-2)\right. \\
& +\binom{m-1}{k-1}(t-1)^{k-1}(m-k+1) \\
& \left.+\binom{m-1}{k-2}(t-1)^{k-2}(t-2)(m-k+1)\right\} \\
& +\binom{m}{k}(t-1)^{k-1}(t+k-1) .
\end{aligned}
$$

We conclude with the following result.

Theorem 10. There exist infinitely many pairs of non-isomorphic cospectral trees.

Proof. Consider the pair of trees T_{1} and T_{2} shown in Figure 2. Let u, v, x, y be as in the figure, and let n be the number of lines in T_{1} (and T_{2}). It is clear that $h_{1}\left(T_{1}\right)=h_{2}\left(T_{2}\right)=n$, and $h_{k}\left(T_{1}\right)=h_{k}\left(T_{2}\right)=0$, for
$k>2$. Now $h_{2}\left(T_{1}\right)=w v$, and $h_{2}\left(T_{2}\right)=x(y+1)+y$. Equating $h_{2}\left(T_{1}\right)$ and $h_{2}\left(T_{1}\right)$, and using the relations $u+v=n-1, x+y=n-2$, we obtain

$$
\begin{equation*}
y^{2}-v^{2}-(n-1) v \quad(n-2) y-(n-2)=0 \tag{6}
\end{equation*}
$$

Fig. 2. Pairs of Cospectral Trees

Taking $y=v+1$ in (11) gives

$$
\begin{equation*}
v=(2 n-5) / 3 \tag{7}
\end{equation*}
$$

So, to obtain a pair of cospectral trees of the desired form, we need only find a valuc of $n(\geqslant 7)$ which makes v an intcger. Clcarly, $n=7+3 k$, $k=0,1,2, \ldots$, are permissible values, which concludes the proof.

Appendix

The following table is a list of n-point trees, $2 \leqslant n \leqslant 10$, together with the coefficients of their characteristic polynomials. The polynomial of a tree T is given by

$$
\phi_{T}(\lambda)=\sum_{i=0}^{n}(-1)^{i} a_{i} \lambda^{n-i}
$$

Note that, for all trees, $a_{0}=1$ and $a_{i}=0$ for odd values of i.
The present list is an expanded and corrected version of an earlier one in Collatz and Sinogowitz [1]; trees preceded by an asterisk are those whose polynomials were given incorrectly in that paper. For a complete catalog of the characteristic polynomials of graphs on 7 points, see King [8].

TREE	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8} a_{10}$	TREE	COEFFICIENTS $a_{2} a_{4} a_{6}$ as alo
$\xrightarrow{\bullet}$	-1	$\cdots \cdots$	-69.3
\cdots	-2	$\rightarrow \cdots$	-6 9.4
$>$	-3 0	\ldots	-610-4
\cdots	-31	$\$$	$\begin{array}{lllll}-7 & 0 & 0 & 0\end{array}$
$><$	-4 0	$\rangle<$	-7 5 0 0
\gg	-42		$\begin{array}{lllll}-7 & 8 & 0 & 0\end{array}$
\cdots	-4 3	$><$	$\begin{array}{lllll}-7 & 9 & 0 & 0\end{array}$
4	-5 000	$><6$	$\begin{array}{lllll}-7 & 9 & 0\end{array}$
\rightarrow -	$\begin{array}{llll}-5 & 3 & 0\end{array}$		$\begin{array}{lllll}-7 & 9 & -3 & 0\end{array}$
$><$	$\begin{array}{llll}-5 & 4 & 0\end{array}$	$\rightarrow<$	
\gg	$\begin{array}{lll}-5 & 5 & 0\end{array}$	$\rightarrow<$	$\begin{array}{lllll}-7 & 11 & -3 & 0\end{array}$
$\because \square$	$\begin{array}{llll}-5 & 5 & -1\end{array}$	$><$	
$\cdots \cdots$	$\begin{array}{llll}-5 & 6 & -1\end{array}$	$\rightarrow \cdots$	-7 $12 \begin{array}{llll}-3 & 0\end{array}$
\geqslant	-6000		-7 12-4 0
$><$	-64		
$\Rightarrow<$	-6 6 0	* $>$	$\begin{array}{lllll}-7 & 12 & -7 & 1\end{array}$
$\rangle \rightarrow$	-670	$><$	-7 13-4 0
\cdots	-67-2		-7 $73-50$
$>\cdot<$	-6 8 0		-713-60
	$\begin{array}{llll}-6 & 8 & -2\end{array}$.713-70
$\geq \cdots$	$\begin{array}{llll}-6 & 9 & -2\end{array}$	$\rightarrow<$	-7 13.71

tree	$\left\lvert\, \begin{aligned} & \text { COEFFICIENTS } \\ & \text { a2 } 24 \\ & 4\end{aligned}\right.$	tree	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8}$ al 0
$\geqslant 0 . \ldots$	-7 $14 \begin{array}{lll}-7 & 0\end{array}$	\rangle 䢒	$-8 \quad 17-60$
$\cdots!\cdots$	$\begin{array}{lllll}-7 & 14 & -8 & 0\end{array}$	$\geqslant \ll$	$\begin{array}{llllll}-8 & 17 & -7 & 0\end{array}$
$\rightarrow \rightarrow$	$\begin{array}{lllll}-7 & 14 & -8 & 1\end{array}$	$\geqslant-\infty$. 817.80
	-7 714.91	$\rightarrow<$	$\begin{array}{lllll}-8 & 17 & -9 & 0\end{array}$
$\cdots \cdots$	-7 15 -10 1	$\square<$	-8 17-100
$\underset{y}{2}$	$\begin{array}{lllll}-8 & 0 & 0 & 0\end{array}$		-817.100
\cdots	-8 6000	$\rightarrow<$	-817-112
$\cdots \ll$	-81000		-8 17-12 2
\cdots,		$\rightarrow \cdots$	-8 18-10 0
$\cdots<$.	-8 11-4		-8 18-10 0
$\rangle \ll$	-81200	$\geq \ll$	-818-120
\ll	. 81400	$\cdots 1 \cdots$	-818-120
$\dot{y}<6$	-814-4 0		-818-12 2
$>\ll$	-8 14-6	$\ldots!$	-818-12 2
$\rightarrow<$	-81500		-818.14 3
	-8 15-4 0		-818.16 5
$\Rightarrow \leqslant$. 819.120
$\cdots 1$	-815-70	> $<$	-819-130
$\pm \leqslant$	-815.10 2	$\rightarrow>$	1-819.132
$\rightarrow 1<$	-8 $\begin{array}{llll}6 & -6 & 0\end{array}$	$><$	-819.14 2
$\geqslant 1<$	-816-8 0		-819-142

TREE	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8}$ al $_{0}$	TREE	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8} a_{10}$
$\checkmark \cdot<$	-8 19.143	$><$	-918 9.900
	-8 19-15 2	$\Rightarrow<$	-9 18-13 3 - 0
	-8 19-15 3	$\rightarrow>$	-9 19 0000
	-819-16 4	I	
\ldots,	. 820.162	\gg	$\begin{array}{llllll}-9 & 19 & -9 & 0 & 0\end{array}$
	-8 20-173		$\begin{array}{llllll}-9 & 20.8 & 0 & 0\end{array}$
	-8 20-17 4		-9 20-12.0 0
	-8 20-18 4	\gg	$\begin{array}{llllll}-9 & 21 & -8 & 0 & 0\end{array}$
\gg	-8 20-18 5	$\rightarrow 1 \leqslant$	$\begin{array}{llllll}-9 & 21 & -9 & 0 & 0\end{array}$
$\cdots \cdots$	-8 21.205	\gg	-921-9 00
W	$\begin{array}{llllll}-9 & 0 & 0 & 0 & 0\end{array}$		-9 21 -11 0 0
\vec{k}		$>1<$	-9 21.1200
\gg	-912 01200	$\Rightarrow \mathrm{K}$	-921-12000
$\rightarrow 1$	-913	$\Rightarrow>$	$\begin{array}{llllll}-9 & 21 & -13 & 0 & 0\end{array}$
$\Rightarrow H$	-9 13-5 000	$\rightarrow \Rightarrow<$	
$\rightarrow K$	-915 000		-9 21-153 0
HK	-916 000	$\Rightarrow<$	-9 $21-1740$
$>K$		$>\cdots<$	-9 $222-9.900$
$\Rightarrow K$		$\geqslant \leqslant$	
$\gg 6$	-917-8 010	$\cdots \rightarrow$	-922-13000
$\cdots \infty$	-918.500	$\rightarrow<$	-922-15000

tree	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8} a_{10}$	TREE	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8} a_{10}$
\rightarrow	-9 22-16000	$\cdots<$	-924.2030
$\rightarrow<$	-9 222.1630		.924.2040
$\Rightarrow<$	-9 22-173		-924-2050
$\rightarrow<$	-9 22.1740		-924.2130
	-9 22-19 50	$\rightarrow<$	-924-2140
	-922-229-1	$\Rightarrow-<$	-924-21501
$>1<$	-9 23.1400		-924.2250
	-9 23.1500	$\rightarrow<$	-924-2260
$<$.923.16 00		-924-236 0
			-924-2370
$1<$	$\begin{array}{ll}-9 & 23-17\end{array} 30$	$\Rightarrow-\alpha$.924.249-1
,	-923-18 40		-924-2590
$\rightarrow<$	-9 23-19 $4 \quad 0$		-9 25-21001
	-923-2040	\cdots	-925-2230
	-9 $24-1700$		-925-224 0
$\cdots<$	-9 24-18 00		-925-234 0
			.925-23501000
$\rightarrow-<$	-924-19000	$>1-1$	-925-236 0
$\Rightarrow<$	-924-19 30	$\rightarrow<$.925-2440
$\Rightarrow \cdots<$	-9 24-19 40	∞	-925-24 50
$\rightarrow \square$	-924-200 0	$>1<$.925-2460

TREE	$\left\|\begin{array}{\|ccc\|} \text { COEFFICIENTS } \\ a_{2} & a_{1} & a_{6} \\ a_{8} & a_{10} \end{array}\right\|$	TREE	COEFFICIENTS $a_{2} a_{4} a_{6} a_{8} a_{10}$
$\rightarrow \cdots$.925-2470	$><$	-9 26-288 0
$><R_{0}$	-9 25-2570	\cdots	-9 26-289 0
	-925-25 80		-926-289 0
	-9 25-25 9 -1		-9 26-28 10-1
\rightarrow	-925-26 80		-9 $966-2811$
$\therefore \cdots$	-9 25-26 $10-1$		-9 26-29 110
\because	-9 25-2812-1		-9 26-29 11
\ldots	.926.254 0		-9 26-3013-1
$<$	-926-26 50	$\ldots<$	-927-3090
$>\cdots<$	-9 26-266 0		-9 27-31 110
\rightarrow	-926.267 0	\cdots	-9 $27-31111-1$
	-926-2770		-9 27-3112-1
			.927-32 12
$<$	-926-2780		.9 $27.3213-1$
	-926-2790		-9 27-3214
	-9 26-27 10-1\|		-928-3515

References

1. L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 63-77.
2. H. J. Finck and G. Grohmann, Vollständiges Produkt, chromatische Zahl und charakteristisches Polynom regulärer Graphen (I), Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 1-3.
3. F. R. Gantmacher, "The theory of Matrices," Vol. I (English translation), Chelsea, New York, 1959.
4. F. Harary, The determinant of the adjacency matrix of a graph, SIAM Rev. 4 (1962), 202-210.
5. F. Harary, "Graph Theory," Addison-Wesley, Reading, Mass., 1969.
6. F. Harary, C. King, A. Mowshowitz, and R. C. Read, Cospectral Graphs and digraphs, Bull. London Math. Soc., forthcoming.
7. A. J. Hoffman and D. K. Ray-Chaudhuri, On the line graph of a symmetric balanced incomplete block design, Trans. Amer. Math. Soc. 116 (1965), 238-252.
8. C. King, Characteristic polynomials of 7 -node graphs, Scientific Rept., University of the West Indies/CC6(AFOSR project 1026-66).
9. S. S. Shrikhande, The uniqueness of the L_{2} association scheme, Anu, Math. Statist. 30 (1959), 781-789.

[^0]: * This research was supported in part by grant NRC A-7328 from the National Research Council of Canada.

[^1]: ${ }^{1}$ The foregoing demonstration is due to A. J. Hoffman (personal communication).

[^2]: ${ }^{2}$ A list of n-point trees, $2 \leqslant n \leqslant 10$, together with the coefficients of their characteristic polynomials is given in the appendix to this paper.

