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The present paper is addressed to the problem of determining under what 
conditions the characteristic polynomial of the adjacency matrix of a graph 
distinguishes between non-isomorphic graphs. A formula for the coeiiicients 
of the characteristic polynomial of an arbitrary digraph is derived, and the 
polynomial of a tree is examined in depth. It is shown that the coefFicients of the 
polynomial of a tree count matchings. Several recurrence relations are also given 
for computing the coefficients. An appendix is provided which lists n-node 
trees (2 < N < 10) together with the coefficients of their polynomials. It should 
be aoted that this list corrects some errors in the earlier table of [I]. 

1. INTR~DUCTIQN 

The search for isomorphism invariants has led to consideration of 
various algebraic properties of the adjacency matrix of a graph. In 
particular, interest has focused on the characteristic polynomial of the 
adjacency matrix. Of course, the characteristic polynomial does not 
always distinguish between non-isomorphic graphs. Many examples are 
known [l, 61. Of particular interest is the fact that there exist non- 
isomorphic connected regular graphs with the same polynomial [7: 91. 
Let G, and 6, be two such graphs. Consider the graphs 

H,,lc-l = iG, u (k - 1 - i> 6, for ID<i<k-1, 

i.e., Hialcel is the union of i copies of 6, and k - I - i copies of G, * 
Since GI and G, are regular, Hi,,-, is regular and the complement 
of Hi,+1 is regular and connected. Clearly, all the H,,,c-l 
polynomial since their respective adjacency matrices are direct sums of 
matrices corresponding to G, and G, . Moreover, it is easy to show f2] 

*This research was supported in part by grant NRC A-7328 from the National 
Research Council of Canada. 
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that, if two regular graphs have the same polynomial, then their comple- 
ments also have the same polynomial. Hence, the Ei?i,k--l (0 < i < k - 1) 
are non-isomorphic connected regular graphs and have the same charac- 
teristic polynomial, from which we conclude the following: Given any 
positive integer k, there exists an integer n such that there are at least k 
non-isomorphic connected regular graphs with y1 points all having the 
same characteristic polynomia1.l 

The present paper is addressed to the problem of determining under 
what conditions the characteristic polynomial does distinguish between 
non-isomorphic graphs. In what follows, we will characterize the coeffi- 
cients of the characteristic polynomial of an arbitrary digraph, and examine 
the polynomial of a tree in detail. 

A digraph (or directed graph) D is an irreflexive binary relation on a 
finite set V = V(D) of elements called the points (or vertices) of D; the 
collection E = E(D) of ordered pairs of points constitute the lines (or 
edges) of D. We will write UZI for the ordered pair (u, v). By the order of 
a digraph D, we shall mean the cardinality of V(D). A graph is a symmetric 
digraph. The adjacency matrix A = A(D) of a digraph D with ?Z points 
01 , 02 1--., un is defined by its i, j-th entry aij as follows: 

6 if vjvi is a line of D, 
“’ = 10, otherwise, 

for 1 < i, j < n. Two digraphs whose adjacency matrices have the same 
characteristic polynomial will be called cospectral. For graph-theoretic 
terms used without explicit definitions, see [5]. 

2. DETERMINATION OF COEFFICIENTS 

Collatz and Sinogowitz [l] investigated the relationship between the 
coefficients of the characteristic polynomial of the adjacency matrix of a 
graph and certain subgraphs. However, no general formula for the 
coefficients was derived. In this section we will generalize their results 
and derive such a formula. 

Let D be a digraph with IZ points, and A = A(D) its adjacency matrix. 
The characteristic polynomial of A is given by 4(X) = det(A - M)), 
which can be expressed 

$(A) = .f (-l>i &v--i (1) 
i=O 

1 The foregoing demonstration is due to A. J. Hoffman (personal communication). 
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It is well known [3] that the k-th coefficient a,(1 < k < n) is e 
sum of all principal minors of order k. Sin each k order principal 
submatrix of A is the adjacency matrix of a su igraph of D containing k 
points, it is clear that any principal minor of A is the determinant of the 
adjacency matrix of a subdigraph of D. Thus the coeficients of the 
characteristic polynomial of A can be expressed in terms of determinants 
of matrices belonging to subdigraphs of D. 

For an arbitrary digraph H of order k, let fH((iI , iz ,L~.) i,>> denote the 
number of collections of disjoint directed cycles in H of lengths il f i, , . ~ ~ ) i, , 
where ij 3 1 (1 < j < r) and i, + iz + ... + I, = k. Using the formula 
for the determinant of the adjacency matrix of a digraph (5, p. l5l], we 
obtain the following: 

THEOREM 1. Let D be a digraph of order n. Then for 1 < k < 11; the 
k-th coQ5cien.t a, of the characteristic polynomial of A( 

where the summation is taken over all rank r partitions (iI 9 iz ?‘.., i,) 
(1 <r < k) qf k, and a,, = 1. 

In an undirected graph (symmetric digraph) G each undirected cycle of 
length greater than 2 contributes two directed cycles of the same length. 
Of course, an undirected line contributes exactly one directed cycle of 
length 2, and a loop contributes one directed cycle of length 1. So, if for 
a given partition (& , iz ,*.., i,] of k we let 

and define fc({il ,..., ir>) as above but for undirected cycles (and lines), 
(2) becomes 

THEOREM 2. Let G be a graph of order n. Then for 1 < k < n the 
k-th coeflcient a, of the characteristic polynomial of A(G) is giveB by 

where the summation extends aver all rank r part~tio~$ (iI, ix ,...) i,.] 
(1 < r < k) ofk, and a,, = 1. 
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To fix ideas, let us evaluate the coefficients for the graph shown in 
Figure 1. From (3) we have 

a, = 1 a4 =f(G 2)) - 2x41) 

al =f(U>> a5 = --2f({2,3)) + 2f65)) 

a2 = --JKW a6 = --fKT Z%) + 2fKL 4)) + 4f({3,3)) - 2fW) 
a3 = 2fG31) a7 = --2f(O, 51) + 2f(Q, 2,311 - 4f({3,4)) + 2f({71) 

Counting the relevant subgraphs, we obtain: 

f(m) = 9 fW>) = 1 5GZ 51) = 0 

f({3)) = 3 fK& 2,2>> = 8 f@, 2, 31) = 1 

.m 21) = 17 fGZ4H = 2 f({3,48 = 0 

f({4B = 2 fC3,3H = 0 f(I78 = 0 
fW, 31) = 5 fWD = 0 

from which one immediately computes the polynomial given in Figure 1. 

$,(A) =~~-9~~-6~~+13X~t8>\~ -&2 

FIG. 1. The Polynomial of a Seven Point Graph 

From Theorem 1, it is obvious that a digraph D of order n with no 
cycles and no symmetric lines has characteristic polynomial q5&) = hlz. 
This fact gives rise to the following 

THEOREM 3. For any positive integer k there exists an integer n such 
that there are at least k non-isomorphic weakly connected digraphs with 
the same characteristic polynomial. 
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Proof. Let n = 2k’ + 1 wlbere k’ > k. Consider the collection of 
digraphs D, ) D, ,..., DJGf constructed as follows. D, is the directed 
of length 2k’, i.e., V(Q) = {vl , v2 ,... 7 v,,~,,), E(D,) = (q , e, 1...5 ezic~) 
where ei = vivi+l , 1 < k’ < 2k’. For 1 < j < dc’ let 

WJ = vm 
and 

where 
E(Dj) = {elj), e!‘,..., e$>, 

e!i’ = 1 %ilVi f for 1 < i < j, 
z ei , for j-I-1 <i<2k’. 

Clearly, the k’ + 1 digraphs D, ) D, ,..., Dkj are pairwise non-isomorphic 
and weakly connected. Moreover, they are acyclic and have no symmetric 
lines, so that they all have the same characteristic polynomial ($(A) = An), 
which condudes the proof. 

3. NON-ISOMORPHIC COSPECTRAL TRE& 

Consider an arbitrary tree T. Since the only cycles in T are directed 
cycles of length 2 corresponding to the lines of T, the summation in (3) 
need only take into account partitions of the form (2’) = (2,2,..., Zj* Now, 
writing h,(T) for fr({2Tj), we have the following immediate consequence of 
Theorem 2: 

COROLLARY 2.1. Let T be a tree of order K Then for I < k < n the 
k-th coejicient ak of c$&) is giveiz by 

ak = (- 1)’ h,(T), 
1 

ifk = 2r fop. some r > 1, 
otherwise, (41 , 

anda, = 1. 

It is evident from (4) that / ak / is the number of sets consisting of k 
pairwise non-incident lines of T, which is precisely the nuxlber of indepen- 
dent sets of Iines of order k in T. Making this observation from another 
point of view, one sees that 1 ak / is the number of matchings of order k 
in T. 

It is of interest to record the foregoing remarks. 

2A list of n-point trees, 2 < n < 10, together with the coeBicients of their charac- 
teristic polynomials is given in the appendix to this paper. 
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THEOREM 4. Let (b&l) = Cz=,, (-1)” ak+-’ be the characteristic poly- 
nomial of a tree T with n points. Let m = max,,,+(k j ak # O}. Then 

(i) 1 ak [ = the number of matchings of order k in T. 
(ii) Any maximal matching in T is of order m, and, thus, the number of 

such maximal matchings is / a, /. 

Counting independent sets of lines in a tree has a useful dual formula- 
tion. For a given tree T consider its line graph L(T). L(T) is defined as 
follows. The points of L(T) correspond to the lines of T; and two points 
of L(T) are adjacent if and only if the corresponding lines of Tare incident. 
Thus, an independent set of lines of order k in T corresponds to an 
independent set of points of order k in L(T). 

It is known [5] that a graph is the line graph of a tree if and only if 
it is a connected block graph in which each cut point is on exactly two 
blocks, and each block is a complete graph. The duality between inde- 
pendent sets of lines and points given by a tree and its line graph affords 
some leverage in the construct&r of cospectral trees. 

THEOREM 5. Let Tl and T2 be trees. If Tl and T, are cospectral, then 
L(TJ and L(T,) have the same number of points and lines. 

Proof. Since Tl and T2 are cospectral, h,(T,) = hk(T,) for all k. In 
particular, this holds for k = 1, so that L(T,) and L(T,) have the same 
number of points, say n. h,(T,) [=h,(T,)] is the number of pairs of non- 
adjacent points in L(T,) [L(T,)]. So, the number of lines in L(T,) is 
(2”> - h,(T,), which is equal to (1) - h,(T,). 

We turn now to the problem of computing the coefficients of the 
characteristic polynomial of a tree. If T is a tree and v is a point of T, 
we denote by T - v the tree obtained from T by removing v together 
with all lines incident to v. If u is a point not in T, we form the tree T + uv 
by joining the point u to v. 

The following is a special case of Theorem 2 of [6]: 

LEMMA 1. Let T be a tree and v a point of T. Then 

h,(T + UV) = h,(T) + h,-,(T - V). 

Proof. The tree T + uv consists of the lines of T and the additional 
line uv. So, there are two ways to construct a matching of order k depend- 
ing on whether or not the line uv is included. In the former case, we need 
to find a matching of order k - 1 in T - v since we cannot choose a line 
incident to UV. This may be done in hkel(T - v) ways. In the latter case, 
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all the lines of T are available for choosing a matching of order k. There 
are h,(T) ways to do this. 

As a simple apphcation of Lemma 1, consider the path P, on fz points. 
The fohowlng is also derived in [6] but in a diEerent form, looking at the 
p~~~~orn~a~ as a function of h rather than at the coefficients: 

THEOREM 6. Let P, be a path on n points. Then 

(i) h,(P,+3 satisfies the recurrence 

hdP,+,> = W’n) + MP,z-d. 

(ii) h,(PB,,,) = (12-;+y 

Proof. Part (i) is an immediate consequence of Lemma 1. We prove 
part (ii) by induction on k. Clearly, hl(Pn,J = (y) for any n > I. So, 
assume 

Then 

as required. 
A more interesting class of trees whose coefficients can be ~eterm~~le~ 

rather easily consists of trees homeomorphic to a star. Such a tree is one 
with a single point of degree >2, every other point being of degree B or 2. 

Suppose S is a tree homeomorphic to a star. Let S be of order n --t 1, 
and let Y be the point in S with degree >2. Furthermore, let C& be the 
number of points in S whose distance from v is i >, 7, and m the maximal 
distance between u and any other point in S. The tree S is completely 
characterized by the point v and the parameters ti, , dz ,..., L;;, ~ so we 
shall write S = S,(d, , dz :..., d,). 

THEOREM 7. Let S = S,(d, , d, ,...i dm) be a tree ~~o~eo~o~pb~c to 
a star. Then h,(S) satisfies the recurrence 

m  di 

h,(S,@l ,..-, d,)) = C C h,-,(S,(d; ,...: dim,. - 1, di - I)). 
i=2 r=1 
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Proof. Suppose u1 is a point of S such that the distance d(u, , v) 
between u1 and v is m. Obviously, u1 is an end point of S. Let q’ be the 
point adjacent to ul. The number of matchings of order k containing 
the line ulul’ is clearly 

fd%@, 34 ,.-., d,-, - 1, d, - 1)). 

Having used ulul’, delete it from the tree and choose another point u2 such 
that d(v, uz) = m. Let u2’ be the point adjacent to ug . Now, the number 
of matchings of order k including uzuz’ is 

L,C-W, 74 ,-.., d, - 1, d, - 2)). 

Continuing in this way until all the d, points at distance m from v are 
exhausted, we find the number of matchings of order k contributed by 
the lines incident to those points to be 

Repeating this process successively for points at distance m - j from v 
for 1 < j < m - 2, we obtain the desired recurrence. 

Now we will find the solution of the recurrence given in Theorem 7 
using a direct combinatorial argument. 

THEOREM 8. Let S = S,(d, ,..., d,) be as above. Then 

where the summation for both terms extends over all ordered sequences 
(i2 , i3 ,..., i,) of non-negative integers satisfying i2 + i3 + .** + i, = k - 1 
and i2 + i3 + .‘. + i, = k, respectively. 

Proof. There are two cases to consider depending on whether a line 
incident to v is chosen or not: 

Case 1. A line incident to v is chosen. Then k - 1 additional lines 
must be selected. The selection may be made by choosing i, from those 
d, lines at distance m from v, and ii from di - ij+l (2 < j < m - 1) of 
the dj lines at distance j from v, where i2 + i3 + **. + i, = k - 1. ijtl 
lines must be excluded from the dj since ij+l lines were chosen from those 
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at distance j + 1 from U. Clearly, the number of ways of making these 
selections is precisely the first term of (5). 

Case 2. No line incident to u is chosen. In this case, the selection is as 
in case 1 except that k lines must be chosen and 4 lines are excluded. 
Again the number of possible selections under the given constraints is 
exhibited in the second term of (5). 

Expressions for the coefficients of other classes of trees may be obtained 
by examining special types of line graphs. Before considering a case in 
point we will give a recurrence in terms of the line graph of a tree which 
parallels the one given in Lemma 1. In what follows, we will write h,(L) 
for h,(T) when L = L(T) for a tree T. 

Let T be a tree and L = L(T) its line graph An end block d”; (complete 
of order t> of L is a block which is joined to exactly one other block of L. 
Eet 0 be the point in common between Kt and the block to which it is 
joined Then the graph L - Kt - u is obtained from by removin 
Kt together with v, and L - Kt is the graph resulting from the removal 
of Kt alone. 

LEMMA 2. Let L = L(T) be the line graph of a tree ITT and let K2 and v 
be as above. Then h,(L) satisJes the recurrence 

IZ~,(L) = (t - 1) h,-,(L - Kc - v> -I- ML - K& 

ProoJ There are two cases to consider, depending on whether or not 
a point of Kt (other than v) is contained in an independent set of order k. 
Clearly, the first term of the recurrence arises from the former, and the 
second term from the latter. 

Now we consider a line graph L = L(t, ,..., t,,J of the following fo 
L consists of a block K, together with m end blocks Ktj (1 <j < rn’) 
joined to K, . Call such a graph a line-star. 

THEOREM 9. Let L = L(t, ,..., t,) be a line-star as above. Then 

(ii) Iftt,=t,=*--= t, = t, then h,(L) = (T)(t - I)“-’ (t + k - I>- 
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Proof. The two summations in (i) are obtained as follows. Consider 
an independent set of order k. Either all k points are chosen from the 
end blocks (first term), or k - 1 points are chosen from the end blocks 
and one point is chosen from k, (second term). 

Part (ii) follows from (i) by substituting t for each tj (1 <j 9 m). 

COROLLARY 9.1. Suppose L, = (tI ,..., &,J and L, = L(s, ,..., sJ are 
line-stars corresponding to trees TI and T2, respectively, with tj > 1, 
,.q > 1 and m # n. Then TX and Tz are not cospectral. 

Proof. Taking n > m, the result follows immediately from the 
observation that h,(Ld = 0, but h,(L,) > 0. 

When t, = t, = **- = tm = t, we will write L(mt) for L(t, , t2 ,..., tm). 
As an application of Lemma 2, let us evaluate h&L’) where L’ is the line 
graph obtained from L(mt)(t > 1) by joining an end block K, to point v 
of some KS . According to Lemma 2 

h&C’) = (s - 1) h&L - K, - VI + ML - &I. 

Clearly, L’ - K, - v is just L((t - l), (m - 1) t), and L’ - KS is L(mt). 
Hence, 

h,(L’) = (s - 1) I(” ; 1) (t - l)k + (21 :) (t - l)“-1 (t - 2) 

+ (;I ;, tt - 1)*-l (m - k + 1) 

+ (;I i) (t - 1)“-2 (t - 2)(m - k + l)\ 

+ ( ;) (t - l)“-l (t + k - 1). 

We conclude with the following result. 

THEOREM 10. There exist infinitely many pairs of non-isomorphic 
cospectral trees. 

Proof. Consider the pair of trees TI and Tz shown in Figure 2. Let 
u, v, x, y be as in the figure, and let n be the number of lines in TI (and 
T2). It is clear that h,(T,) = h&T,) = n, and hK(TI) = he(T2) = 0, for 
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k > 2. ow h,(T,) = uv, and izz(TJ = X(V + I) + y. ~~~at~~~ ~~~~~~ 
and h,(TI), and using the relations u + v = kz - 1, x -/- y = iz - 2, we 
obtain 

y2 - v2 -i (n - 1) v - (72 - 2) y - (72 - 2) = 0. @I 

‘i 

i 
V X 

FIG. 2. Pairs of Gospectral Trees 

Taking y = Y + 1 in (11) gives 

v = (2n - 5)/3. 71 

So, to obtain a pair of cospectral trees of the desired form, we need 
only find a value of n( 27) which makes v an integer. Clearly, n = 7 + 3k, 
k = 0, 1, 2 ,..., are permissible values, which concludes the proof. 

APPENDIX 

The following table is a list of n-point trees, 2 < PE < 10, together 
with the coefficients of their characteristic polynomials. The ~o~~~orni~~ 
of a tree T is given by 

#=(A) = i (,--l>i a$w. 
iso 

Note that, for all trees, a, = 1 and a, = 0 for odd values of i. 
The present list is an expanded and corrected version of an earlier one 

in Collatz and Sinogowitz [l]; trees preceded by an asterisk are those 
whose polynomials were given incorrectly in that paper. For a complete 
catalog of the characteristic polynomials of graphs on 7 points, see 
King [8]. 
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TREE 

- 

COE[FICIENTS 
TREE COEFFICIENTS 

a2 a4a6 a8a10 “2Wa6a8alO 

-1 .- -6 9 -3 

-2 -6 9 -4 
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-8 19-15 2 

T -8 19-15 3 

-8 19-16 4 

l ---< -8 20-16 2 

T----- -820-17 3 

1 >------- I-8 20-17 4 

-8 20-18 4 

I---* -8 20-18 5 

* -8 21-20 5 

-90000 

-97000 

-912 0 0 0 

-913 0 0 0 

3 -9 13 -5 0 0 

+-I+ -915 0 0 0 

4-K -9 16 0 0 0 

-917 0 0 0 

-9 17 -5 0 0 

---++ I-9 18 -5 0 0 

O2 O4 C’6Q8alO 

-9 18 -9 0 0 

-9 18-13 3 0 

-9 19 0 0 0 

-9 21-12 0 0 

-9 21-12 0 0 

2-x -9 21-13 0 0 

-9 21-14 0 0 

+---+ l-9 22-9 0 01 

/, 
\ l-9 22 -11 0 0 / 

-----+( j-922-13 0 01 

---++* j-9 22-15 0 0 1 
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TREE 
COEFFICIENTS 

TREE 
Q2a4 “6a8alO 

/COEFFICIENTS 

Ia2 a4 a6 a8alO 
I 

-9 22 -16 0 0 ----- l-9 24-20 3 0 / 

+ I-9 22-17 4 01 / -9 24 -21 3 0 j 

I-9 22-19 5 

-9 23-16 0 0 x j-9 24-23 6 0 
I 

j 

-9 23-17 0 0 ,-9 24-23 7 

-9 24-20 0 0 cc>T< i-9 25-24 6 0 1 
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TREE 
COEFFICIENTS 

'2 a4 '6 98al( 

--+---- -9 25-24 7 

>/T -9 25.25 7 0 

-x -9 25-25 8 0 

x -9 2.5-25 9 -1 

>--- -9 25.26 8 0 

>-3----- -9 25-2610 -1 

7.. -9 25-2812 -1 

>-----< -9 26-25 4 0 

---H -9 26-26 5 0 

__rt__c -9 26-26 6 0 

>------< -926-267 0 

y -9 26-27 7 0 

---x -9 26-27 8 0 

)_)_(_ -9 26.27 8 0 

' >---< -9 26-27 9 0 

-9 26-2710 -1 

*T -9 26-28 9 0 

-926-28 9 0 

-9 27-30 9 O- 

T------- -9 27-31 11 0 

'7 -9 27.31 11 -1 

)-------- -9 27-31 12 -1' 

-9 27.3212 0 

-9 27-3213 -1 

>------ -9 27.3214 1 

* -9 28-3515 1 
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