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The present paper is addressed to the problem of determining under what
conditions the characteristic polynomial of the adjacency mattix of a graph
distinguishes between non-isomorphic graphs. A formula for the coefficients
of the characteristic polynomial of an arbitrary digraph is derived, and the
polynomial of a tree is examined in depth. It is shown that the coefficients of the
polynomial of a tree count matchings. Several recurrence relations are also given
for computing the coefficients. An appendix is provided which lisis #-node
trees (2 < # < 10) together with the coefficients of their polynomials, It should
be noted that this list corrects some errors in the earlier table of [11.

1. INTRODUCTION

The search for isomorphism invariants has led to consideration of
various algebraic properties of the adjacency matrix of a graph. In
particular, interest has focused on the characteristic polynomial of the
adjacency matrix. Of course, the characteristic polynomial does not
always distinguish between non-isomorphic graphs. Many examples are
known [1, 6]. Of particular interest is the fact that there exist non-
isomorphic connected regular graphs with the same polynomial [7, 9].
Let G, and G, be two such graphs. Consider the graphs

Hi’k_l:l.GlU(k—l—i)Gg for 0<i<k——l,

i.e.; H,;, is the union of i copies of Gy and & — 1 — i copies of G,.
Since G, and G, are regular, H, , ; is regular and the complement H, ,_,
of H, ;. is regular and connected. Clearly, all the H, ,_; have the same
polynomial since their respective adjacency matrices are direct sums of
matrices corresponding to G; and G,. Moreover, it is easy to show [2]

* This research was supported in part by grant NRC A-7328 from the National
Research Council of Canada.
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that, if two regular graphs have the same polynomial, then their comple-
ments also have the same polynomial. Hence, the H; ;. ; (0 <i <k — 1)
are non-isomorphic connected regular graphs and have the same charac-
teristic polynomial, from which we conclude the following: Given any
positive integer k, there exists an integer n such that there are at least k&
non-isomorphic connected regular graphs with » points all having the
same characteristic polynomial.

The present paper is addressed to the problem of determining under
what conditions the characteristic polynomial does distinguish between
non-isomorphic graphs. In what follows, we will characterize the coeffi-
cients of the characteristic polynomial of an arbitrary digraph, and examine
the polynomial of a tree in detail.

A digraph (or directed graph) D is an irreflexive binary relation on a
finite set ¥ = V(D) of elements called the points (or vertices) of Dj; the
collection E = E(D) of ordered pairs of points constitute the /lines (or
edges) of D. We will write up for the ordered pair (v, v). By the order of
a digraph D, we shall mean the cardinality of V(D). A graph is a symmetric
digraph. The adjacency matrix A = A(D) of a digraph D with n points
U1, Ug ..., Uy, 18 defined by its 7, j-th entry a;; as follows:

g — (1, if v, is a line of D,
“ 710, otherwise,

for 1 < i, j < n. Two digraphs whose adjacency matrices have the same
characteristic polynomial will be called cospectral. For graph-theoretic
terms used without explicit definitions, see [5].

2. DETERMINATION OF COEFFICIENTS

Collatz and Sinogowitz [1] investigated the relationship between the
coefficients of the characteristic polynomial of the adjacency matrix of a
graph and certain subgraphs. However, no general formula for the
coefficients was derived. In this section we will generalize their results
and derive such a formula.

Let D be a digraph with # points, and 4 = A(D) its adjacency matrix.
The characteristic polynomial of 4 is given by ¢(A) = det(d — Al),
which can be expressed

B = f:o(—ni A= )

1 The foregoing demeonstration is due to A. J¥. Hoffman (personal communication).



THE CHARACTERISTIC POLYNOMIAL OF A GRAPH 179

¥t is well known [3] that the k-th coefficient a,{1 << & < n) is equal to the
surn of all principal minors of order k. Since each & order principal
submatrix of 4 is the adjacency matrix of a subdigraph of D containing &
points, it is clear that any principal minor of 4 is the determinant of the
adjacency matrix of a subdigraph of D. Thus the coefficients of the
characteristic polynomial of 4 can be expressed in terms of determinants
of matrices belonging to subdigraphs of D.

For an arbitrary digraph H of order k, let /u({i; , is ,..., {,}) dencte the
number of collections of disjoint directed cycles in H of lengths i, , 4, ,..., i,
where i; > 1 (I <j<r)and i +1i, + - + i, = k. Using the formula
for the determinant of the adjacency matrix of a digraph [5, p. 151}, we
obtain the following:

TreoreM 1. Let D be a digraph of order n. Then for | <k <n, the
k-th coefficient ay, of the characteristic polynomial of A(D) is given by

o = 3 [T 1] fol s s i, @

where the summation is taken over all rank r partitions {iy, 1y ,..., iy}
Q<r<kyofk, and ay = 1.

In an undirected graph (symmetric digraph) G each undirected cycle of
length greater than 2 contributes two directed cycles of the same length.
Of course, an undirected line contributes exactly one directed cycle of
length 2, and a loop contributes one directed cycle of length 1. So, if for
a given partition {i; , iy ,..., i,} of k we let

L, i 1< <2,
gh) =1y i i

and define fe({i; ,..., i,}) as above but for undirected cycles (and lines),
(2) becomes

Tueorem 2. Let G be a graph of order n. Then for 1 <k < n the
k-th coefficient a, of the characteristic polynomial of A(G) is given by

a = 3 [IT (-0 6] Foltis - 1) ©)

where the summation extends over all rank r partitions {iy, iy .., iy}
A<r<kofk,and ay = 1.
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To fix ideas, let us evaluate the coefficients for the graph shown in
Figure 1. From (3) we have

a =1 ay = f({2,2) — 27({4)

a = f({1}) a; = —2f({2,3}) + 27 ({5)

a = —f({2)  as = —F(2.2,2) + 272, 4) + 43, 3) — 27 ({6}
ay = 2f((3})  a; = —20({2, 5Y) + 2f({2, 2, 3D — 47({3, 4 -+ 2f({T)

£

Counting the relevant subgraphs, we obtain:
f@2y =9 F{sH =1 J{2,5) =0
f@H=3 f@22.2p=8 [f{2.2,3)=1
f{22p =17 f{2,4) =2 f{3,4p =0
fa) =2 f{3.3) =0 F@m =0
f@2,3) =5 feh =0

from which one immediately computes the polynomial given in Figure 1.

=

G
X0 =07.903 604 1333 +8)2 .41 -2
Fic. 1. The Polynomial of a Seven Point Graph

From Theorem 1, it is obvious that a digraph D of order n with no
cycles and no symmetric lines has characteristic polynomial ¢p(A) = A~
This fact gives rise to the following

THEOREM 3. For amy positive integer k there exists an integer n such
that there are at least k non-isomorphic weakly connected digraphs with
the same characteristic polynomial.
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Proof. Let n=2k" +1 where k' > k. Consider the coliection of
digraphs Dy, Dy ,..., Dy constructed as follows. D, is the directed path
of length 2&', ie., V(Do) = {01, Vs yees Voprap, F(Do) = {1, 25 yue, Copr}
where e, = v,0;,4, 1 <Ii<<2k'. For 1 <j <k let

V(D) = V(Dy)
and
E(‘Da) = {ei(lj)ﬁ e(zj)s'--a eéjlg' s
where

E(-j) _ Uiyql; 5 fOI‘ 1 < i < j,
¢ e, for j+1<i<2k.

Clearly, the k" + 1 digraphs D, , Dy ,..., Dy are pairwise non-isomorphic
and weakly connected. Moreover, they are acyclic and have no symmetric
lines, so that they all have the same characteristic polynomial {$(A} = A7),
which concludes the proof.

3. NoN-1ISOMORPHIC COSPECTRAL TREES?

Consider an arbitrary tree 7. Since the only cycles in 7 are directed
cycles of length 2 corresponding to the lines of 7, the summation in {3)
need only take into account partitions of the form {27} = {2, 2,..., 2}. Now,
writing A,(T") for f({2’}), we have the following immediate consequence of
Theorem 2:

CoroLLARY 2.1. Let T be a tree of order n. Then for 1 < k < n the
k~th coefficient a,, of $r(}) is given by

(=D h(T), ifk = 2rfor somer =1,

a g
k 0, otherwise,

@
and ay = 1.

It is evident from (4) that | a, | is the number of sets consisting of &
pairwise non-incident lines of 7, which is precisely the number of indepen-
dent sets of lines of order k in 7. Making this observation from another
point of view, one sees that | g, | is the number of matchings of order &
in 7.

It is of interest to record the foregoing remarks.

2 A list of n-point trees, 2 < n < 10, together with the coefficients of their charac-
teristic polynomials is given in the appendix to this paper.

582b/12/2-6
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THEOREM 4. Let ¢r(X) = Yo (—1)F @A™ be the characteristic poly-
nomial of a tree T with n poinis. Let m = maXy<,<, ik | ap 7 0}. Then

(@) | a | = the number of matchings of order k in T.

(ii) Any maximal maiching in T is of order m, and, thus, the number of
such maximal matchings is | a,, |.

Counting independent sets of lines in a tree has a useful dual formula-
tion. For a given tree T consider its line graph L(T). L(T) is defined as
follows. The points of L(T") correspond to the lines of T; and two points
of L{T) are adjacent if and only if the corresponding lines of T are incident.
Thus, an independent set of lines of order k£ in T corresponds to an
independent set of points of order &k in L(T).

It is known [5] that a graph is the line graph of a tree if and only if
it is a connected block graph in which each .cut point is on exactly two
blocks, and each block is a complete graph. The duality between inde-
pendent sets of lines and points given by a tree and its line graph affords
some leverage in the constructuin of cospectral trees.

THEOREM 5. Let T, and T, be irees. If T; and T, are cospectral, then
I(T)) and L(T,) have the same number of points and lines.

Proof. Since T; and T, are cospectral, h(T;) = h(T,) for all k. In
particular, this holds for k& = 1, so that L(Ty) and L(7,) have the same
number of points, say n. h(Ty) [=hy(T,)] is the number of pairs of non-
adjacent points in L(Ty) [L(T,)]. So, the number of lines in L(T%) is
() — hy(T3), which is equal to (2) — hy(TY).

We turn now to the problem of computing the coefficients of the
characteristic polynomial of a tree. If T is a tree and v is a point of T,
we denote by T — v the tree obtained from 7" by removing v together
with all lines incident to v. If # is a point not in 7, we form the tree T + uv
by joining the point u to v.

The following is a special case of Theorem 2 of [6]:

LemMA 1. Let T be a tree and v a point of T. Then
T + uv) = h(T) -+ by (T — v).

Proof. The tree T + uv consists of the lines of T and the additional
line uv. So, there are two ways to construct a matching of order & depend-
ing on whether or not the line uv is included. In the former case, we need
to find a matching of order & — 1 in 7" — v since we cannot choose a line
incident to uv. This may be done in A,_(T — v) ways. In the latter case,
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all the lines of T are available for choosing a matching of order k. There
are /{7 ways to do this.

As a simple application of Lemma 1, consider the path 2, on n points.
The following is also derived in [6] but in a different form, looking at the
polynomial as a function of A rather than at the coeflicients:

THEOREM 6. Let P, be q path on n points. Then

(1) A (Pyyy) satisfies the recurrence
hk(Pn+1) = hk(P’n) + h]c<Pn—1)~
(i) FlPria) = ("%

Proof. Part (i) is an immediate consequence of Lemma 1. We prove
part (i) by induction on k. Clearly, A,(P,.;) = (}) for any » > 1. So,
assume

—k+1
hk(Pn+l) = (n k + )
Then
n—2k-+1 n—2k+1 . 1
hk+l(Pn+1) = Z hk(P'rH-l—r) = Z (n : + >
=2 7:=2

”"iz’“(k—kr) _ (nw(k+ 1)+ 1y
' k k-1 A
as required.

A more interesting class of trees whose coefficients can be determined
rather easily consists of trees homeomorphic to a star. Such a tree is one
with a single point of degree >2, every other point being of degree | or 2.

Suppose S is a tree homeomorphic to a star. Let S be of order n -- 1,
and let v be the point in S with degree >2. Furthermore, let d; be the
number of points in S whose distance from v is i > 1, and m the maximal
distance between v and any other point in S. The tree § is completely
characterized by the point v and the parameters &, ,d,,..., d, . so we
shall write § = S,(d, , 4, ,..., d,,).

Tueorem 7. Let S =S8,(d,,d;,....d,) be a tree homeomorphic to
a star. Then {S) satisfies the recurrence

m di

kk<Sv(d1 geees d'm)) = Z z hk—l(Sv(dl peees dz'——]. ~ 1, dz - '»'))'

=2 r=1
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Proof. Suppose u; is a point of S such that the distance d(u , v)
between u, and v is m. Obviously, u, is an end point of S. Let u," be the
point adjacent to u; . The number of matchings of order k containing
the line w1y’ is clearly

hk—l(S’U(dl > dZ FIREE) dm—~1 - 15 dm - 1))'

Having used w1, delete it from the tree and choose another point u, such
that d(v, u,) = m. Let u,’ be the point adjacent to u, . Now, the number
of matchings of order & including u,u," is

hk—l(S’D(dl s d2 [AAa] dm - 1: dm - 2))-

Continuing in this way until all the 4, points at distance m from v are
exhausted, we find the number of matchings of order & contributed by
the lines incident to those points to be

Ay
Z hk—l(Sv(dl H d2 FERLE) dm—]_ - 1’ dm - r))
r=1

Repeating this process successively for points at distance m — j from v
for 1 <j <{m — 2, we obtain the desired recurrence.

Now we will find the solution of the recurrence given in Theorem 7
using a direct combinatorial argument.

THEOREM 8. Let S = S, (d; ..., d,,) be as above. Then

(Sl o dy)) = 3 () (Pt ) (2 ) (e

Im im—1 iy
S L G B AP S

where the summation for both terms extends over all ordered sequences
(iy » I3 »..rs Im) Of RON-NEgativE integers satisfying iy + iy + - + i, =k — 1
and iy - iy + - + I, = k, respectively.

Proof. There are two cases to consider depending on whether a line
incident to v is chosen or not:

Case 1. A line incident to v is chosen. Then k& — 1 additional lines
must be selected. The selection may be made by choosing 7,, from those
d,, lines at distance m from v, and i; from d; —i;, Q <j<m — 1) of
the d; lines at distance j from v, where i, +i; + - + i, =k — L. i
lines must be excluded from the d; since i; 4 lines were chosen from those
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at distance j -+ 1 from ». Clearly, the number of ways of making these
selections is precisely the first term of (5).

Case 2. No line incident to v is chosen. In this case, the selection is as
in case I except that k lines must be chosen and d; lines are excluded.
Again the number of possible selections under the given constraints is
exhibited in the second term of (5).

Expressions for the coefficients of other classes of trees may be obtained
by examining special types of line graphs. Before considering a case in
point we will give a recurrence in terms of the line graph of a tree which
parallels the one given in Lemma 1. In what follows, we will write /(L)
for (T when L = L(T') for a tree T.

Let T'be a tree and L = L(7) its line graph. An end block K, (complete
of order ¢) of L is a block which is joined to exactly one other block of L.
Let v be the point in common between K; and the block to which it is
joined. Then the graph L — K; — v is obtained from L by removing
K; together with v, and L — K, is the graph resuiting from the removal
of X, alone.

Lemma 2. Let L = L(T) be the line graph of @ tree T, and let K, and v
be as above. Then h(L) satisfies the recurrence

(L) = (t — D) py(L — Ky —v) + (L — K.

Proof. 'There are two cases to consider, depending on whether or not
a point of K; (other than v) is contained in an independent set of order k.
Clearly, the first term of the recurrence arises from the former, and the
second term from the latter.

Now we consider a line graph L = L(i, ,..., ,,) of the following form.
L consists of a block K, together with m end blocks K, I<j<m
Jjoined to K, . Call such a graph a line-star.

TuroreMm 9. Let L = L{t ,..., t,) be a line-star as above. Then

@ m) = hy (t, — D, — D (G, — 1

1t <y <l

-+ Z @, — D, — Dty — 1)

L <y <o oLy ST

X (m—k- 1.

() Ifti=ty = =t, =t, then hy(L) = (T)t — 1)t (¢t — k — 1).
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Proof. The two summations in (i) are obtained as follows. Consider
an independent set of order k. Either all & points are chosen from the
end blocks (first term), or & — 1 points are chosen from the end blocks
and one point is chosen from k,, (second term).

Part (ii) follows from (i) by substituting # for each #; (1 <j < m).

CorOLLARY 9.1. Suppose L; = (t1,..., ty) and Ly = L(sy,...,5,) are
line-stars corresponding to trees Ty and T,, respectively, with t; > 1,
8; > 1 and m = n. Then Ty and T, are not cospectral,

Proof. Taking n > m, the result follows immediately from the
observation that %,(L,) = 0, but 4,(L;) > 0.

When #, =1, = - =1, = t, we will write L(mt) for L(t;, 5 son.s L)
As an application of Lemma 2, let us evaluate A,(L") where L’ is the line
graph obtained from L(mt)(¢ > 1) by joining an end block X to point v
of some K; . According to Lemma 2

h(L) = (s — 1) hpa[L" — K — 0] + W[l — K]

Clearly, L' — K, — v is just L((t — 1), (m — 1) t), and L' — K is L(mt).
Hence,

@y =6—n ("7 e+ (P ) e—Dre—2

m

+ (7)) e— v —k+ 1

+ (P ) =t — Dm— ket 1)

+(’Z)(t—1)k—1(t+k—1).

We conclude with the following result.

TaeorReM 10. There exist infinitely many pairs of non-isomorphic
cospectral trees.

Proof. Consider the pair of trees T and T, shown in Figure 2. Let
u, v, x, y be as in the figure, and let # be the number of lines in 7; (and
T,). It is clear that A(Ty) = h(T2) = n, and h(Ty) = h(Tp) =0, for
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k> 2. Now hy(Ty) = uv, and hy(Ty) = x(y -~ 1) -+ v. Equating A{(77)

and 4,(T%), and using the relations u +v=n—1, x +y=n —2, we
obtain

V=r+@—-Dr—@m-2)y—@n—-2)=0 ©)

§

FiG. 2. Pairs of Cospectral Trees

T2

Taking y = v + 1 in (11) gives
v = (2n — 5)/3. (7

So, to obtain a pair of cospectral trees of the desired form, we need
only find a value of n(>>7) which makes » an integer. Clearly, n = 7 + 3k,
k =0,1,2,.., are permissible values, which concludes the proof.

APPENDIX

The following table is a list of n-point trees, 2 << n < 10, together
with the coefficients of their characteristic polynomials. The polynomial
of a tree T is given by

br(N) = 20 (—1) gAn,

Note that, for all trees, g, = 1 and a; = 0 for odd vaiues of .

The present list is an expanded and corrected version of an earlier one
in Collatz and Sinogowitz [1]; trees preceded by an asterisk are those
whose polynomials were given incorrectly in that paper. For a complete
catalog of the characteristic polynomials of graphs on 7 points, see
King [8].
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COEFFICIENTS
€2 9496 9g 910

- |COEFFICIENTS

a2 a4 ag ag ajgy

-1

-6 9.3

TREE TREE
: — Py —
e -2 o 69 .4
> 30 ——————  |-610 -4
—— 31 Sl 7000
> 40 e 7500
P o 42 ><L 7800
——— 43 e 7900 .
Sk 500 e 7900
e — 530 '_>I<"‘ 7930
>< 540 > 7110 0
> 1550 >, 7130
T s s P 71 .40
———— 5 6 ] N 712.3 0
S 60 0 o< 71240
L 640 e 71250
 — 660 # < 7127 1 .
S 1670 > 713-40
—t— 67 2 > 713.5 0
>l 68 0 > 713 .6 0
> 68 -2 > 71370
B 69 -2 < 713.7 1
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-
COEFFICIENTS COEFFICIENTS

TREE a2 a4 o6 agalg TREE a2 a4 agag alg
e 171470 e e 81760 |
»ﬁ—f—-a 714 80 ° T 81770 |
”>—-—~—?~ 71481 >-«<f—~‘7 817 -8 0

D 714 .9 1 T 81790
e 1.7 15.10 1 e -817-10 0
S 8000 >f— 81700
Sl 8600 | 817.11 2
> 810 0 0 = -817-12 2
e 81100 | > -818-10 0
R 8 1 -4 0 > 1-818-10 0
P 8120 0 > 81812 0
P 814 0 e lsga20
Sl 8144 0 | T > 81812 2
TS 81460 |——t 1818122
L 8150 0 | e -818.14 3
e 815 -4 0 =< -818.16 5
Sl 81560 | >eee 81912 0
——p— 81570 |7 >< 181913 0
Tl 81510 2 T < 31932 |
ol 81660 | o< 819042
< 81680 | >+ 81914 2
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COEFFICIENTS

COEFFICIENTS

TREE TREE
a2 o4 o6 agulQ ag a4 ag agalo

T>—< |819.143 e 2918 .90 0
< -8 19.15 2 e -9 18133 0
> |-81953 > 919 0 0 0
> -819-16 4 : ' 91980 0
————< |.820.16 2 =l 91990 0
> [.820.17 3 > 92080 0
> |.820.17 4 < -920-12.0 0
T -820-18 4 > 92180 0
> |820.185 >l 9219 0 0
-8 21.20 5 T 921900

=¥ lsoooof S lesamoo
—Si. 97000 >} 921,120 0
> 91200 0] T > 921,120 0
—— 9130 0 0 i 921130 0
k- 913500 S 9 21.14 0 0
> 91500 of T > 921153 0
> 9160 0 0] < 921174 0
>k 9000 S>—& 922.9 0 0
> 917 50 0| o> ©22.110 0
>><— 91780 0| ————> 1.922.130 0
———> 91850 0] ——>< 922150 0
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TREE COEFFICIENTS IREE COEFFICIENTS
a2 a4 a6 o8 aig a2 a4 26 080IQ

=< 922160 0| T > 924203 ©
T 92216 3 0f >11< 924204 0
< 922,073 0f T > 1924205 0
L 922074 O T D& 924213 0
b (922095 0| T > 924214 0
— 9 22.229 1| o> 924.215 0
s 923040 0| > $24.225 0
e 923050 0f T o> 924226 0
D e 923160 0| T > -924-236 0
P 92370 0 _ <& 924237 0
T L 92373 0of > 924.249 .1
>l e23a84 o T 924259 0
T 923094 0| D>—p—< |925.210 0
P 923.20 4 Of o< 1925223 0
> 92497 0 0 > -925.224 0
T 924080 0 D> 925234 0
T (92483 0| T 925235 0
Tl 924090 0f D> 925236 0
o< 92419 3 0f o 925244 0
T 924,19 4 Of e |.925.245 0
T 924200 0f =< 925246 0
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TREE

COEFFICIENTS
a2 A4 96 98390

TREE

COEFFICIENTS
ap dy 9g 9g g

Univ. Hamburg 21 (1957), 63-77.

—>—————— 925247 0| T >< 926288 0
> 925257 0| e~~~ |926-289 0

i 1< 925258 o T > 926289 0
o< 925259 1| e |-926.2810 1
T 1925268 0 _>—< |.926-2811 .1
TS 9252610 1| > 9262911 0
e 9252812 -1 T >—< -9 26-2911 -1
> [.926.254 0f _ ><__ -9 26-3013 -1
T -926-26 5 0| < 927309 0
T .926.266 0| T e 9273111 0
T |.926-267 0 i 927 3111 1|
T 1926277 O T o | 9 27.3112 1]
T 926278 0f >t 927.3212 0
T 926278 0 T > -9 27.3213 1
o 1926279 0| > |.927-3214 1
T 19262710 1 -9 28-3515 1
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