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Abstract

Let a family of gradient Gaussian vector fields on Zd be given. We show the existence of a uniform
finite range decomposition of the corresponding covariance operators, that is, the covariance operator can
be written as a sum of covariance operators whose kernels are supported within cubes of diameters ∼ Lk .
In addition we prove natural regularity for the subcovariance operators and we obtain regularity bounds as
we vary within the given family of gradient Gaussian measures.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we construct a finite range decomposition for a family of translation invariant
gradient Gaussian fields on Zd (d � 2) which depends real-analytically on the quadratic form that
defines the Gaussian field. More precisely, we consider a large torus (Z/LNZ)d and obtain a fi-
nite range decomposition with estimates that do not depend on N . Equivalently, we show that the
discrete Green’s function CA of the (elliptic) translation invariant difference operator A = ∇∗A∇
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can be written as a sum CA = ∑
k CA,k of positive kernels CA,k which are supported in cubes of

size ∼ Lk with natural estimates for their discrete derivatives ∇αCA,k (see Theorem 2.1) as well
as for their derivatives with respect to A (see Theorem 2.2).

To put this into perspective recall that an Rm-valued Gaussian field ξ on Zd (with vanishing
expectation, E(ξ(x)) = 0) is said to have range M if the correlation matrices E[ξ r (x)ξ s(y)],
r, s = 1, . . . ,m, vanish whenever |x − y| > M . In the following we consider only translation
invariant Gaussian fields. We say that Gaussian fields ξk form a finite range decomposition
of ξ if ξ = ∑

k ξk and ξk has range ∼ Lk , where L � 2 is an integer. The existence of such
a decomposition is equivalent to a decomposition of the correlation matrices CA(x, y)r,s :=
E[ξ r (x)ξ s(y)] as a sum of positive (semi-)definite matrix-valued kernels CA,k with range ∼ Lk ,
i.e.,

∑
x,y

∑
r,s C

r,s
A,k(x, y)ξ r (y)ξ s(x) � 0 and CA,k(x, y) = 0 if |x − y| � Lk .

We are interested in gradient Gaussian fields, i.e., Gaussian fields with σ -algebra deter-
mined by the gradients ∇ξ . Such fields arise naturally e.g. in problems in elasticity where
only the difference of values is relevant for the energy. In this case we seek a decomposition
into gradient Gaussian fields such that the gradient–gradient correlation E[∇iξ

r (x)∇j ξ
s(y)] =

∇i∇∗
j E[ξ r (x)ξ s(y)] vanishes for |x − y|� Lk . Gradient Gaussian fields are more subtle to han-

dle since they exhibit long range correlations (the gradient–gradient correlation of the original
field typically has only algebraic decay |x −y|−d with the critical exponent −d). In the language
of quantum field theory gradient Gaussian fields are thus often referred to as massless fields.

Decomposition into a sum of positive definite operators has been discussed in [7] where a ra-
dial function is written as a weighted integral of tent functions. In [5], finite range decompositions
of the resolvent of the Laplacian (a − �)−1, with a � 0, have been obtained both for the usual
Laplacian and for finite difference Laplacian on the simple cubic lattice Zd . In [3] these results
are extended and generalised by providing sufficient conditions for a positive definite function to
admit decomposition into a sum of positive functions that are compactly supported within disks
of increasing diameters 1

2Lk . More precisely, the authors of [3] consider positive definite bilinear
forms on C∞

0 and prove that finite range decompositions do exist when the bilinear form is dual
to a bilinear form ϕ �→ ∫ |Bϕ(x)|2 dx where B is a vector-valued partial differential operator
satisfying some regularity conditions.

The main novelty of our paper is twofold. First we extend the finite range decomposition for
the discrete Laplacian to a situation where no maximum principle is available (even in the scalar
case there is no discrete maximum principle for general elliptic difference operator ∇∗A∇ with
constant coefficients). This can be seen as an adaptation of [3] to the discrete setting. Secondly,
we show that the finite range decomposition can be chosen so that the kernels CA,k depend
analytically on A as long as A is positive definite.

Our main motivation is the renormalisation group (RG) approach to problems in statistical
mechanics, following the longstanding research programme of Brydges and Yau [4], and in par-
ticular the recent work of Brydges [2], both inspired by the work of K.G. Wilson [9]. The goal is
to get good control of the expectations E(K) of nonlinear functions that depends on a gradient
Gaussian field ξ in a large region Λ ⊂ Zd of the integer lattice. The size of Λ and the long range
correlations in ξ make it difficult to obtain accurate estimates on the expectation E(K). In [1]
we show that such control can nonetheless be obtained in many interesting cases using the RG
approach. One key difference with the earlier work of Brydges and others is the necessity to
drop the assumption of isotropy. Hence the relevant quadratic term is a general finite difference
operator ∇∗A∇ and reduces no longer to a multiple of the discrete Laplacian. For this reason we
need a finite range decomposition for general (elliptic) operators A and, in addition, we need to
control derivatives of the finite range decomposition with respect to A.
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In Section 2 we introduce the setting of gradient fields and the relevant Green’s functions. Our
two main results are given in Theorems 2.1 and 2.2. The existence of the finite range decompo-
sition is proved in Section 3 where we adapt and extend the methods in [3] to our setting. The
regularity estimate for a fixed A is established in Section 4. Real-analytic dependence on A is
proved in Section 5.

2. Notation and main results

We are interested in gradient Gaussian fields on bounded domains in Zd . For that let L � 3
be a fixed odd integer and consider for any integer N the space

VN = {
ϕ: Zd →Rm; ϕ(x + z) = ϕ(x) for all z ∈ (

LNZ
)d} = (

Rm
)TN

of functions on the torus TN := (Z/LNZ)d equipped with the scalar product

〈ϕ,ψ〉 =
∑

x∈TN

〈
ϕ(x),ψ(x)

〉
Rm. (2.1)

Notice that a function on TN can be identified with an LN -periodic function on Zd . We will later
denote the corresponding space of Cm-valued function, equipped with the usual scalar product
in the same way.

We consider two distances on Zd : ρ(x, y) = inf{|x − y + z|: z ∈ (LNZ)d} and ρ∞(x, y) =
inf{|x − y + z|∞: z ∈ (LNZ)d}. Then the torus can be represented by the lattice cube TN =
{x ∈ Zd : |x|∞ � 1

2 (LN − 1)} of side LN , equipped with the metric ρ or ρ∞. Gradient Gaussian
fields can be easily defined as discrete gradients of Gaussian fields. However it turns out to be
inconvenient to work directly with the space of discrete gradient fields, since the constraint of
being curl free (in a discrete sense) leads to a complicated bookkeeping. Instead, we use that
discrete gradient fields are in one-to-one relation to usual fields modulo a constant. To eliminate
this constant we use the normalisation condition that the sum of the field over the torus vanishes.
We thus denote by XN the subspace

XN =
{
ϕ ∈VN :

∑
x∈TN

ϕ(x) = 0

}
. (2.2)

The forward and backward derivatives are defined as

(∇ϕ)rj (x) = ϕr(x + ej ) − ϕr(x),(∇∗ϕ
)r
j
(x) = ϕr(x − ej ) − ϕr(x), r = 1, . . . ,m; j = 1, . . . , d. (2.3)

Let A : Rm×d → Rm×d be a linear map that is symmetric with respect to the standard scalar
product (·,·)Rm×d on Rm×d and positive definite, that is, there exists a constant c0 > 0 such that

(AF,F )Rm×d � c0‖F‖2
m×d for all F ∈Rm×d with ‖F‖Rm×d = (F,F )

1/2
m×d . (2.4)
R R
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The corresponding Dirichlet form defines a scalar product on XN ,

(ϕ,ψ)+ := E(ϕ,ψ) =
∑

x∈TN

〈
A
(∇ϕ(x)

)
,∇ψ(x)

〉
Rm×d , ϕ,ψ ∈XN. (2.5)

Skipping the index N , we consider the triplet H− =H =H+ of (finite-dimensional) Hilbert
spaces obtained by equipping the space XN with the norms ‖ · ‖−, ‖ · ‖2, and ‖ · ‖+, respectively.

Here, ‖ · ‖2 denotes the 
2-norm ‖ϕ‖2 = 〈ϕ,ϕ〉1/2, ‖ϕ‖+ = (ϕ,ϕ)
1/2
+ , and ‖ · ‖− is the dual norm

‖ϕ‖− = sup
ψ : ‖ψ‖+�1

〈ψ,ϕ〉. (2.6)

One easily checks that ‖ · ‖− is again induced in a unique way by a scalar product (·,·)−. The
linear map A defines an isometry

A :H+ → H−, ϕ �→ Aϕ = ∇∗(A∇ϕ). (2.7)

Indeed, it follows from the Lax–Milgram theorem that, for each f ∈H−, the equation

(ϕ, v)+ = 〈f, v〉 for all v ∈H+ (2.8)

has a unique solution ϕ ∈ H+. Hence A is a bijection from H+ to H−. Moreover

‖Aϕ‖− = sup
{〈Aϕ,v〉: ‖v‖+ � 1

} = sup
{
(ϕ, v)+: ‖v‖+ � 1

} = ‖ϕ‖+. (2.9)

Thus A is an isometry from H+ to H−. In view of the symmetry of A it follows that

(ϕ,ψ)− = (
A−1ϕ,A−1ψ

)
+ = 〈

A−1ϕ,AA−1ψ
〉 = 〈

A−1ϕ,ψ
〉
. (2.10)

In the more abstract construction of Brydges and Talarczyk [3] it is important that the operator
A can be written as

A =B∗B, (2.11)

where B∗ denotes the dual of B. This is indeed possible in our case. Since the operator A is
symmetric and positive definite it has a positive square root A1/2 and we can define B by

(Bϕ)(x) = (
A1/2∇ϕ

)
(x). (2.12)

This yields

(ϕ,ψ)+ = 〈Bϕ,Bψ〉, ‖ϕ‖+ = ‖Bϕ‖2. (2.13)

In the following, however, we will not use the operator B explicitly and will, instead, directly use
that 〈Aϕ,ψ〉 = 〈A∇ϕ,∇ψ〉 and exploit that the right hand side is sufficiently local in ϕ and ψ .
We do, however, make crucial use of the assumption that A is positive definite in the proof of
Lemma 3.4. For many of the other estimates it would be sufficient to assume that the operator
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A is positive which is implied by the weaker condition that A is positive definite on matrices of
rank one, i.e., 〈A(a ⊗ b), a ⊗ b〉� c0|a|2|b|2 for all a ∈ Rm, b ∈Rd .

Consider now the inverse CA = A−1 of the operator A (or the Green function) and the corre-
sponding bilinear form on XN defined by

GA(ϕ,ψ) = 〈CAϕ,ψ〉 = (ϕ,ψ)−, ϕ,ψ ∈XN. (2.14)

Given that the operator A and its inverse commutes with translations on TN , there exists a unique
kernel CA such that

(CAϕ)(x) =
∑

y∈TN

CA(x − y)ϕ(y) (2.15)

(see Lemma 3.5 below). We write CA ∈ MN , using MN (in analogy with XN ) to denote the
space of all matrix-valued maps on TN with zero mean. Notice that if the kernel CA is constant,
CA(x) = C for any x ∈ TN , where C is a linear operator on Rm, then

(CAϕ)(x) =
∑

y∈TN

CA(x − y)ϕ(y) = C
∑

y∈TN

ϕ(y) = 0 (2.16)

for any ϕ ∈ XN . It is easy to see that the function GA,y(·) = CA(· − y) is the unique solution
GA,y ∈ MN of the equation

AGA,y =
(

δy − 1

LNd

)
1, (2.17)

where 1 is the unit m × m matrix. Notice that for any a ∈ Rm one has:

(AGA,y)a =
(

δy − 1

LNd

)
a ∈XN.

We now state our main results.

Theorem 2.1. The operator CA : H− →H+ admits a finite range decomposition, i.e., there exist
translation invariant positive-definite operators

CA,k : H− → H+, (CA,kϕ)(x) =
∑

y∈TN

CA,k(x − y)ϕ(y), k = 1, . . . ,N + 1, (2.18)

such that

CA =
N+1∑
k=1

CA,k, (2.19)

and for each associated kernel CA,k ∈MN there exists a constant matrix CA,k such that

CA,k(x − y) = CA,k whenever ρ∞(x, y)� 1
Lk for k = 1, . . . ,N. (2.20)
2
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Moreover, for any multiindex α, there exists a constant Cα(d) > 0 depending only on the dimen-
sion d , such that ∥∥∇αCA,k(x)

∥∥� Cα(d)L−(k−1)(d−2+|α|)Lη(α,d) (2.21)

with η(α, d) = max( 1
4 (d +|α|−1)2, d +|α|+6)+10, and for all x ∈ TN and k = 1, . . . ,N +1.

Here, ∇α = ∏d
i=1 ∇αi

i and ∇0
i = id, and ‖ · ‖ denotes the operator norm.

Note that since any function in XN has mean zero the kernel C̃A,k = CA,k −CA,k generates the
same operator CA,k . Thus (2.20) indeed guarantees that CA,k has finite range. See Lemmas 3.6
and 3.5 for further details.

The operator A, its inverse CA, and the finite range decomposition itself, depend on the linear
map A : Rm×d → Rm×d . Our major result is that the finite range decomposition can be defined
in such a way that the maps A �→ CA,k are real-analytic, as long as A is positive definite.

Let Lsym(Rm×d) denote the space of linear maps A :Rm×d → Rm×d that are symmetric with
respect to the standard scalar product on Rm×d and let

U := {
A ∈ Lsym

(
Rm×d

)
: (AF,F )Rm×d > 0 for all F ∈Rm×d, F �= 0

}
(2.22)

denote the open subset of positive definite symmetric maps.

Theorem 2.2. Let d � 2 and let α be a multiindex. For each integer N � 1, each k = 1, . . . ,N +1
and each odd integer L � 16 there exist real-analytic maps A �→ CA,k from U to MN such that
the following three assertions hold.

(i) If CA,k denotes the translation invariant operator on induced by CA,k then

CA =
N+1∑
k=1

CA,k. (2.23)

(ii) There exist constant m × m matrices CA,k such that

CA,k(x) = CA,k if ρ∞(x,0) � 1

2
Lk. (2.24)

(iii) For any multiindex α, there exists a constant Cα(d) such that if (A0F,F)Rm×d � c0‖F‖2
Rm×d

for all F ∈Rm×d and c0 > 0 then

sup
‖Ȧ‖�1

∥∥∇αD
j
ACA0,k(x)(Ȧ, . . . , Ȧ)

∥∥
� Cα(d)

(
2

c0

)j

j !L−(k−1)(d−2+|α|)Lη(α,d) (2.25)

with η(α, d) = max( 1
4 (d + |α| − 1)2, d + |α| + 6) + 10, and for all x ∈ TN and all j � 0.

Here ∇α = ∏d ∇αi , we use ‖Ȧ‖ to denote the operator norm of a linear mapping
i=1 i
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Ȧ : Rm×d → Rm×d , and the j -th derivative with respect to A in the direction Ȧ is taken
at A0.

The condition L � 16 can be dropped. However, in applications to renormalisation group ar-
guments, one needs to choose L large also for other reasons. Given δ ∈ (0,1/2), the property (ii)
can be strengthened to CA,k(x) = CA,k if ρ∞(x,0) > δLk , provided that L is large enough. Then
the constants Cα(d) and η(α, d) depend also on δ. We refer to Remark 3.10 for further details.

The proof of the existence of the finite range decomposition, i.e., (2.19) and (2.20) of Theo-
rem 2.1, is given in Section 3. The remaining proof of the regularity bounds is given in Section 4
for a fixed A. Real-analytic dependence on A and the bounds (2.25) are established in Section 5.

3. Construction of the finite range decomposition

In this section we prove the existence part of Theorem 2.1 via an extension and adaption of
the methods in [3] to our case. The proof of the estimates is given in Sections 4 and 5.

The existence of a finite range decomposition is contained in Propositions 3.8 and 3.9 below
and their proofs are built on the following auxiliary results.

First, for the construction of the decomposition we consider the discrete cube

Q = {1, . . . , l − 1}d (3.1)

for some l ∈ N, l � 3. We can identify Q with a subset of TN once l − 1 < LN . Similarly, any
shift Q + x ⊂ TN . For any x ∈ TN , consider the subspace

H(Q + x) = {
ϕ ∈H: ϕ = 0 in TN \ (Q + x)

}
. (3.2)

We write H+(Q+x) and H−(Q+x) for the same space equipped with the scalar products (·,·)+
and (·,·)−, respectively. We denote by Πx the (·,·)+-orthogonal projection H+ → H+(Q + x)

and set Px = id − Πx . Thus Πxϕ ∈ H+(Q + x) and

(Πxϕ,ψ)+ = (ϕ,ψ)+ for all ψ ∈H+(Q + x). (3.3)

For any set M ⊂ ΛN , we define its closure by

M = {
x ∈ ΛN : dist∞(x,M) � 1

}
, dist∞(x,M) := min

{
ρ∞(x, y): y ∈ M

}
. (3.4)

In particular,

Q = {0, . . . , l}d . (3.5)

We also define

Q− := {0,1, . . . , l − 1}d . (3.6)

Lemma 3.1. For any ϕ ∈ H+ we have

(i) A(Pxϕ) = const in Q + x,
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(ii) Pxϕ = ϕ in TN \ (Q + x),
(iii) Πxϕ = ϕ1Q+x if ϕ = 0 on (Q + x) \ (Q + x).

Remark 3.2. This shows that Pxϕ is essentially the A-harmonic extension in Q + x. Thus we
would expect that Px is (locally) smoothing and suppresses locally high frequency oscillations,
while Πx suppresses locally low frequencies. This will be made precise in Lemma 4.1 below
where we show the corresponding estimates for the averaged operators T = l−d

∑
x∈TN

Πx and
R = id − T.

Proof of Lemma 3.1. (i): By (3.3) we have for all ψ ∈ H+(Q + x) the relation (Pxϕ,ψ)+ = 0
and hence 〈A(Pxϕ),ψ〉 = 0. Taking ψ = δv − δz for any pair of points v, z ∈ Q + x we get
A(Pxϕ)(v) =A(Pxϕ)(z). This proves (i).

(ii): This follows from the fact that Πxϕ belongs to H+(Q + x) and hence vanishes outside
Q + x.

(iii): It suffices to consider the case x = 0 and we write Π for Π0. Let ϕ̃ = ϕ1Q. Then
ϕ̃ ∈ H+(Q) and hence Πϕ̃ = ϕ̃. Moreover ϕ − ϕ̃ vanishes in Q. Thus ∇(ϕ − ϕ̃) vanishes
in Q−. Hence (ϕ − ϕ̃,ψ)+ = 0 for all ψ ∈ H+(Q) since ∇ψ is supported in Q−. Therefore
Π(ϕ − ϕ̃) = 0 which yields the assertion. �
Lemma 3.3.

(i) ΠxΠy = 0 whenever (Q− + x) ∩ (Q− + y) =∅,
(ii) Πxϕ = 0 whenever suppϕ ∩ (Q + x) =∅.

Proof. (i): For any ϕ,ψ ∈ H+, the functions Πxϕ and Πyψ vanish on TN \ (Q + x) and TN \
(Q+y), respectively. Hence, ∇Πxψ and ∇Πyϕ vanish on TN \(Q− +x) and on TN \(Q− +y),
respectively. Assuming now that Q− + x and Q− + y are disjoint and taking into account (2.5)
we get

(ψ,ΠxΠyϕ)+ = (Πxψ,Πyϕ)+ =
∑
z∈TN

〈
A(∇Πxψ)(z), (∇Πyϕ)(z)

〉
Rm×d = 0. (3.7)

(ii): For ψ ∈ H+(Q + x) we have Aψ = 0 in TN \ (Q + x). Thus for any ϕ ∈ H+ with
suppϕ ∩ (Q+ x) =∅ we get (ϕ,ψ)+ = 〈ϕ,Aψ〉 = 0. In view of (3.3) this yields Πxϕ = 0. �

Next, consider the symmetric operator

T = 1

ld

∑
x∈TN

Πx (3.8)

on H+. The following result is the key estimate for the finite range decomposition construction.
Our proof is a slight modification of the argument in [3].

Lemma 3.4. For any ϕ ∈H+ we have

(i) 0 � (Πxϕ,ϕ)+ � 〈1Q−+xA∇ϕ,∇ϕ〉,
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(ii) 0 � (Tϕ,ϕ)+ � (ϕ,ϕ)+ and the inequalities are strict if ϕ �= 0,
(iii) (Tϕ,Tϕ)+ � (Tϕ,ϕ)+.

Proof. (i): We have (Πxϕ,ϕ)+ = (ϕ,Πxϕ)+ = (Πxϕ,Πxϕ)+ � 0. For the other inequality we
use that ∇Πxϕ is supported in Q− + x. Thus

(Πxϕ,ϕ)+ = 〈A∇Πxϕ,∇ϕ〉 = 〈A∇Πxϕ,1Q−+x∇ϕ〉. (3.9)

Since A is symmetric and positive definite the expression (F,G)A := 〈AF,G〉 is a scalar product
on functions Zd →Rm×d . Thus the Cauchy–Schwarz inequality yields

〈A∇Πxϕ,1Q−+x∇ϕ〉 � 〈A∇Πxϕ,∇Πxϕ〉1/2〈A1Q−+x∇ϕ,1Q−+x∇ϕ〉1/2

= (Πxϕ,Πxϕ)
1/2
+ 〈1Q−+xA∇ϕ,∇ϕ〉1/2. (3.10)

Together with (3.9) this yields the assertion since (Πxϕ,ϕ)+ = (Πxϕ,Πxϕ)+.
(ii): Since

∑
x∈TN

1Q−+x(y) = ld for all y ∈ TN the inequalities follow by summing (i) over
x ∈ TN . If (Tϕ,ϕ)+ = 0 then (Πxϕ,ϕ)+ = 0 for all x ∈ TN and thus Πxϕ = 0 and Pxϕ = ϕ.
Lemma 3.1 implies that there exist constants cx such that (Aϕ)(y) = cx for all y ∈ Q + x. Since
l � 3 the cubes Q + x and Q + (x + ei ) overlap and this yields cx = cx+ei

for all i = 1, . . . , d .
Thus cx is independent of x. Since Aϕ ∈ XN this implies c = 0. Hence Aϕ = 0 and therefore
ϕ = 0.

Now suppose that (Tϕ,ϕ)+ = (ϕ,ϕ)+. This implies that for all x ∈ TN we have (Πxϕ,ϕ)+ =
〈1Q−+xA∇ϕ,∇ϕ〉. We claim that the last identity implies that ∇ϕ(x) = 0. Indeed, if
1Q−+x∇ϕ = 0 we are done. Otherwise the identity can only hold if the inequality in (3.10) is an
identity. In particular we must have ∇Πxϕ = λ1Q−+x∇ϕ and λ = 1. Now Πxϕ vanishes outside
Q + x and in particular at the points x and x + ei . Thus ∇Πxϕ(x) = 0 and hence ∇ϕ(x) = 0. It
follows that ϕ is constant on TN and hence ϕ = 0 since ϕ has mean zero.

(iii): It follows from (ii) that (ϕ,ψ)∗ := (Tϕ,ψ)+ defines a scalar product on H+. Thus the
Cauchy–Schwarz inequality and (ii) yield

(Tϕ,ψ)+ � (Tϕ,ϕ)
1/2
+ (Tψ,ψ)

1/2
+ � (Tϕ,ϕ)

1/2
+ (ψ,ψ)

1/2
+ . (3.11)

Taking ψ = Tϕ we obtain the desired estimate. �
Consider the operator T′ :H− → H− dual with respect to T and defined by〈

T′ϕ,ψ
〉 = 〈ϕ,Tψ〉, ϕ ∈ H−, ψ ∈ H+. (3.12)

Notice that

T′ =ATA−1,
(
T′ϕ,ψ

)
− = (

ϕ,T′ψ
)
−, and(

T′ϕ,ϕ
)
− = (

TA−1ϕ,A−1ϕ
)
+. (3.13)

Indeed, for any ϕ ∈ H+, we have〈
T′Aϕ,ψ

〉 = 〈Aϕ,Tψ〉 = (ϕ,Tψ)+ = (Tϕ,ψ)+ = 〈ATϕ,ψ〉, (3.14)
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and this yields the first identity in (3.13). Now

(
T′ϕ,ψ

)
− = 〈

A−1ATA−1ϕ,ψ
〉 = 〈

TA−1ϕ,AA−1ψ
〉 = (

TA−1ϕ,A−1ψ
)
+. (3.15)

Since the last expression is symmetric in ϕ and ψ we get the second identity in (3.13) and taking
ψ = ϕ we obtain the third identity. Similarly, we have Π ′

x =AΠxA
−1 for the dual of Πx . Notice

that

Π ′
xϕ = 0 whenever suppϕ ∩ (Q + x) =∅. (3.16)

Indeed, considering any test function ψ ∈ XN , we have 〈Π ′
xϕ,ψ〉 = 〈ϕ,Πxψ〉 = 0. We also

consider the operator

R := id − T and its dual R′ = id − T′. (3.17)

It follows from Lemma 3.4(ii) and (3.13) that

(
T′ϕ,ϕ

)
− > 0,

(
R′ϕ,ϕ

)
− > 0,(

T′ϕ,T′ϕ
)
− �

(
T′ϕ,ϕ

)
− for all ϕ ∈ H− \ {0}. (3.18)

We next discuss the locality properties of translation invariant bilinear forms, operators and the
corresponding kernels. These properties would be obvious if we consider bilinear forms on VN

since then we can use the Dirac masses δx as test functions. Dirac masses, however, do not belong
to XN and hence we need to use test functions with broader support which makes the conclusion
of Lemma 3.6 below nontrivial. We begin by recalling the relation between bilinear forms, oper-
ators and kernels. The translation operator τa, a ∈ TN , is defined by τaϕ(y) = ϕ(y − a), so that
τaδy = δa+y . Recall that MN denotes the space of all matrix-valued, LN periodic maps with
zero mean.

Lemma 3.5. Let B be a translation invariant bilinear form on XN , i.e.,

B(τaϕ, τaψ) = B(ϕ,ψ) for all ϕ,ψ ∈XN, for all a ∈ TN. (3.19)

Then the following assertions hold.

(i) There exists a unique linear operator B :XN → XN such that

〈Bϕ,ψ〉 = B(ϕ,ψ) for all ϕ,ψ ∈XN. (3.20)

Moreover B is translation invariant, i.e., Bτa = τaB.
(ii) There exists a unique matrix-valued kernel B ∈ MN such that

(Bϕ)(x) =
∑

B(x − y)ϕ(y) for all x ∈ TN, for all ϕ ∈ XN. (3.21)

y∈TN
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Moreover for B̃ : TN →Rm×m we have

(Bϕ)(x) =
∑

y∈TN

B̃(x − y)ϕ(y) for all x ∈ TN, for all ϕ ∈ XN (3.22)

if and only if

B̃ −B = C (3.23)

with a constant m × m matrix C.
(iii) If B′ ∈XN denotes the kernel of the dual operator B′ then

B′(z) = B(−z). (3.24)

(iv) If B1 and B2 are translation invariant operators on XN and B3 = B1B2 then B3 is trans-
lation invariant and the corresponding kernels Bi ∈MN , i = 1,2,3, are related by discrete
convolution, i.e.,

B3(x) = (B1 ∗B2)(x) :=
∑

y∈TN

B1(x − y)B2(y) for all x ∈ TN. (3.25)

Proof. We include the elementary proof for the convenience of the reader.
(i): Existence and uniqueness of B follows from the Riesz representation theorem. To prove

translation invariance let D := Bτa − τaB. We have

〈Dϕ, τaψ〉 = 〈Bτaϕ, τaψ〉 − 〈τaBϕ, τaψ〉. (3.26)

Since τa is an isometry with respect to the scalar product 〈·,·〉 we get

〈Dϕ, τaψ〉 = B(τaϕ, τaψ) − 〈Bϕ,ψ〉 = B(τaϕ, τaψ) − B(ϕ,ψ) = 0. (3.27)

This holds for all ϕ,ψ ∈XN . Hence D = 0.
(ii): To show the existence of B note that (δ0 − 1

LNd )a ∈XN with any a ∈Rm and define

B(x)a := B

[
a

(
δ0 − 1

LNd

)]
(x). (3.28)

Using that τy(δ0) = δy , we get

B(x − y)a = B

[
a

(
δ0 − 1

LNd

)]
(x − y) = τy

(
B

[
a

(
δ0 − 1

LNd

)])
(x)

= Bτy

[
a

(
δ0 − 1

Nd

)]
(x) = B

[
a

(
δy − 1

Nd

)]
(x). (3.29)
L L
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Observing, further, that for any ϕ ∈XN , we have

ϕ =
∑

y∈TN

ϕ(y)

(
δy − 1

LNd

)
, (3.30)

we get

(Bϕ)(x) =
∑

y∈TN

B

[
ϕ(y)

(
δy − 1

LNd

)]
(x) =

∑
y∈TN

B(x − y)ϕ(y). (3.31)

This shows the existence of B. Suppose now that Bϕ(x) = ∑
y∈TN

B̃(x −y)ϕ(y) for all ϕ ∈XN

and set C(z) = B̃(z) −B(z). The choice ϕ = (δei
− δ0)a with an arbitrary a ∈ Rm yields

C(x − ei ) = C(x) for all x ∈ TN, for all i = 1, . . . , d. (3.32)

Thus B̃−B = C with a constant m×m matrix C. If in addition B̃ ∈MN then this implies B̃ = B.
Conversely if B̃ = B + C then B̃ and B generate the same operator since

∑
x∈TN

ϕ(x) = 0 for
ϕ ∈ XN .

(iii): We have〈
B′ϕ,ψ

〉 = 〈ϕ,Bψ〉 =
∑

x,y∈TN

〈
ϕ(x),B(x − y)ψ(y)

〉
Rm =

∑
x,y∈TN

〈
ϕ(y),B(y − x)ψ(x)

〉
Rm

=
∑

x,y∈TN

〈
B
(−[x − y])ϕ(y),ψ(x)

〉
Rm. (3.33)

Hence (B′ϕ)(x) = ∑
y∈TN

B(−[x−y])ϕ(y) and the uniqueness result in (ii) implies that B′(z) =
B(−z).

(iv): One easily verifies that B1 ∗B2 ∈MN and that

(B1B2ϕ)(x) =
∑

y∈TN

B1 ∗B2(x − y)ϕ(y). (3.34)

Thus the assertion follows from the uniqueness result in (ii). �
For two sets M1,M2 ⊂ TN we define

dist∞(M1,M2) := min
{
ρ∞(x, y): x ∈ M1, y ∈ M2

}
. (3.35)

Lemma 3.6. Let B be a translation invariant bilinear form on XN and let B and B ∈ MN be
the associated operator and the associated kernel, respectively. Let n be an integer and suppose
that LN > 2n + 3. Then the following three statements are equivalent.

(i) B(ϕ,ψ) = 0 whenever dist∞(suppϕ, suppψ) > n.
(ii) There exists an m × m matrix C such that B(z) = C whenever ρ∞(z,0) > n.

(iii) suppBϕ ⊂ suppϕ + {−n, . . . , n}d for all ϕ ∈XN .



S. Adams et al. / Journal of Functional Analysis 264 (2013) 169–206 181
Proof. The implication (ii) �⇒ (iii) is easy. Set B̃(z) = B(z) − C. Then B̃(z) = 0 if ρ∞(z) > n

with ρ∞(z) = ρ∞(z,0) and by Lemma 3.5(ii) we have

(Bϕ)(x) =
∑

y∈TN

B̃(x − y)ϕ(y). (3.36)

If x /∈ suppϕ + {−n, . . . , n}d then either y /∈ suppϕ or y ∈ suppϕ and ρ∞(x − y,0) > n. In
either case Bϕ(x) = 0.

The implication (iii) �⇒ (i) is also easy. Suppose that dist∞(suppϕ, suppψ) > n. Then (iii)
implies that dist∞(suppBϕ, suppψ) > 0, i.e., Bϕ and ψ have disjoint support. Thus B(ϕ,ψ) =
〈Bϕ,ψ〉 = 0.

To prove the implication (i) �⇒ (ii), consider the torus TN with the fundamental domain

ΛN = {−LN−1
2 , . . . , LN−1

2 }d and set

M := {−n, . . . , n}d, (3.37)

M− := {−n, . . . , n + 1}d, and the closure of M, (3.38)

M = {−(n + 1),−n, . . . , n + 1
}d

. (3.39)

Note that by the assumption LN > 2n + 3 the set TN \ M is nonempty.
We first show that for all i, j ∈ {1, . . . , d} we have

∇i∇∗
j B = 0 in TN \ M. (3.40)

To see this let ξ ∈ TN \ M and consider

ψ = (δξ+ei
− δξ )a, ϕ = (δej

− δ0)b with a, b ∈Rm. (3.41)

Since |ei − ej |∞ � 1 we have

dist∞(suppϕ, suppψ)� ρ∞(0, ξ) − 1 � n + 1. (3.42)

Hence

0 = B(ϕ,ψ) = 〈(
B(ξ + ei − ej ) −B(ξ + ei ) − (

B(ξ − ej ) −B(ξ)
))

a, b
〉

= 〈∇i∇∗
j B(ξ)a, b

〉
(3.43)

for every a, b ∈Rm and thus

∇i∇∗
j B(ξ) = 0. (3.44)

Next we show that for j ∈ {1, . . . , d} there exists a matrix Cj such that

∇∗B = Cj in TN \ M. (3.45)
j



182 S. Adams et al. / Journal of Functional Analysis 264 (2013) 169–206
Fix j and set f = ∇∗
j B. Using the shorthand I = {−n − 1, . . . , n + 1}, let

x1 ∈
{
−LN − 1

2
, . . . ,

LN − 1

2

}
\ I,

x′ := (x2, . . . , xd) ∈
{
−LN − 1

2
, . . . ,

LN − 1

2

}d−1

. (3.46)

Then x = (x1, x
′) ∈ TN \ M and hence for i �= 1 we have (∇if )(x1, x

′) = 0. Thus there exists a
matrix-valued function g1 on {−LN−1

2 , . . . , LN−1
2 } \ I such that

f (x) = g1(x1) if x1 /∈ I. (3.47)

In the same manner, there exists a function g2 such that f (x) = g2(x2) if x2 /∈ I . This eventually
implies (3.45).

Further,

∇∗
j B

(−n − 1, x′) − ∇∗
j B

(−n − 2, x′) = (∇1∇∗
j B

)(−n − 2, x′) = 0. (3.48)

Hence we also have ∇∗
j B(x) = Cj if x1 = −n − 1. Arguing similarly for the other components

of x we get

∇∗
j B = Cj in TN \ M−. (3.49)

We now show that Cj = 0. Assume without loss of generality j �= 1. For x1 /∈ (I \ {−n − 1}) we
have

∇∗
j B

(
x1, x

′) = Cj for all x′ ∈
{
−LN − 1

2
, . . . ,

LN − 1

2

}d−1

. (3.50)

On the other hand
∑

x′∈{− LN −1
2 ,..., LN −1

2 }d−1 ∇∗
j B(x1, x

′) = 0 since B is periodic and j �= 1. Thus

Cj = 0.
Arguing as in the derivation of (3.45) we conclude from (3.49) and the fact that Cj = 0 that

there exists a matrix C such that

B = C in TN \ M−. (3.51)

In addition we have

B
(
n + 1, x′) −B

(
n + 2, x′) = (∇∗

1B
)(

n + 2, x′) = 0. (3.52)

Hence B(x) = C for x1 = n + 1. Arguing similarly for the other components of x we get B = C

in TN \ M . This finishes the proof of Lemma 3.6(ii). �
Lemma 3.7. Suppose that dist∞(suppϕ, suppψ) > l − 1. Then

〈Tϕ,ψ〉 = 0,
〈
T′ϕ,ψ

〉 = 0, 〈Rϕ,ψ〉 = 0,
〈
R′ϕ,ψ

〉 = 0. (3.53)
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Proof. It suffices to prove the first identity. The second follows by exchanging ϕ and ψ and the
third and fourth follow since R= id − T and R′ = id − T′. By Lemma 3.3 we have

Πxϕ = 0 if suppϕ ∩ (Q + x) =∅ (3.54)

and it follows from the definition of Πx that suppΠxϕ ⊂ Q+x. Assume 〈Tϕ,ψ〉 �= 0. Then there
exist x ∈ TN such that 〈Πxϕ,ψ〉 �= 0. Thus suppψ ∩ (Q + x) �= ∅ and suppϕ ∩ (Q + x) �= ∅.
Therefore there exist ξ ∈ Q and ζ ∈ Q such that x + ξ ∈ suppϕ, x + ζ ∈ suppψ . Thus

x + ξ − (x + ζ ) = ξ − ζ ∈ {−(l − 1), . . . , l − 1
}d

. (3.55)

Hence dist∞(suppϕ, suppψ)� l − 1. �
Consider now the inverse C =A−1. (For time being, we omit the reference to the matrix A in

the notation for C. We will reinstate it in Section 5, where we explicitly discuss the smoothness
with respect to A.) The main step toward the decomposition, is to subtract a positive definite
operator from C in such a way that the remnant is positive definite and of finite range. We define

C1 := C−RCR′, which yields C1 = C −R ∗ C ∗R′. (3.56)

Proposition 3.8. Both C1 and RCR′ are positive definite and C1 has finite range, i.e.,

〈C1ϕ,ψ〉 = 0 if dist∞(suppϕ, suppψ) > 2l − 3. (3.57)

In particular, there exists an m × m matrix C such that

C1(z) = C if ρ∞(z,0) > 2l − 3. (3.58)

Proof. For any ϕ,ψ ∈XN , we use (2.14) to get〈
RCR′ϕ,ϕ

〉 = (
R′ϕ,R′ϕ

)
− � 0. (3.59)

If R′ϕ = 0 then (3.18) implies that ϕ = 0. Thus RCR′ is positive definite. Furthermore,

〈C1ϕ,ψ〉 = 〈Cϕ,ψ〉 − 〈
CR′ϕ,R′ψ

〉 = (ϕ,ψ)− − (
R′ϕ,R′ψ

)
−

= (
T′ϕ,ψ

)
− + (

ϕ,T′ψ
)
− − (

T′ϕ,T′ψ
)
−. (3.60)

Thus (3.18) implies that C1 is positive definite.
To evaluate the range of the quadratic form 〈C1ϕ,ψ〉, we inspect the terms on the right hand

side of (3.60). For the first (and similarly the second) term, we have

(
T′ϕ,ψ

)
− = 1

ld

∑
x∈TN

(
Π ′

xϕ,ψ
)
− = 1

ld

∑
x∈TN

(
Π ′

xϕ,Π ′
xψ

)
−. (3.61)

In view of (3.16), a term in the sum vanishes at x except when the supports of ϕ and ψ both
intersect Q + x. Therefore, the scalar product is zero whenever the distance of the supports is
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strictly greater than l − 1. The second term of the bilinear form G1(ϕ,ψ) := 〈C1ϕ,ψ〉 is the
double sum

(
T′ϕ,T′ψ

)
− = 1

ld

∑
y∈TN

1

ld

∑
x∈TN

(
Π ′

yϕ,Π ′
xψ

)
−. (3.62)

By Lemma 3.3 we have Π ′
xΠ

′
y = AΠxΠyA

−1 = 0 whenever (Q− + x) ∩ (Q− + y) = ∅, i.e.,
if ρ∞(x, y) > l − 1. Hence the double sum only contains a non-zero contribution if there exist x

and y such that ρ∞(x, y) � l − 1, suppϕ ∩ Q + x �= ∅, and suppψ ∩ Q + y �= ∅. Hence there
must exist ξ, ζ ∈ Q such that x + ξ ∈ suppϕ and y + ζ ∈ suppψ . Hence

dist∞(suppϕ, suppψ)� ρ∞
(
x + ξ − (y + ζ ),0

)
� ρ∞(x − y,0) + ρ∞(ξ − ζ,0)

� l − 1 + l − 2 � 2l − 3. (3.63)

This proves (3.57), and (3.58) follows from Lemma 3.6. �
We construct a finite range decomposition by an iterated application of Proposition 3.8. Let

L � 16 and consider

Qj = {1, . . . , lj − 1}d with lj =
⌊

1

8
Lj

⌋
+ 1 for j = 1, . . . ,N. (3.64)

Here �a� denotes the integer part of a, the largest integer not greater than a. In particular we
have

1

8
Lj < lj �

1

8
Lj + 1. (3.65)

We define Tj ,T
′
j , and R′

j as before with Q replaced by Qj and set

Ck := (R1 . . .Rk−1)C
(
R′

k−1 . . .R′
1

)
− (R1 . . .Rk−1Rk)C

(
R′

kR
′
k−1 . . .R′

1

)
, k = 1, . . . ,N, (3.66)

and

CN+1 := (R1 . . .RN−1 . . .RN)C
(
R′

NR′
N−1 . . .R′

1

)
. (3.67)

With these definitions, we show that the sequence {Ck}k=1,...,N+1 yields a finite range decompo-
sition.

Proposition 3.9. Suppose that L� 16. Then the operators Ck satisfy

(i) C = ∑N+1
k=1 Ck .

(ii) Ck is positive definite for k = 1, . . . ,N + 1.
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(iii) For k = 1, . . . ,N the range of Ck is bounded by 1
2Lk , i.e.,

〈Ckϕ,ψ〉 = 0 if dist∞(suppϕ, suppψ) >
1

2
Lk (3.68)

and there exist m × m matrices Ck such that

Ck(z) = Ck if ρ∞(z,0) >
1

2
Lk. (3.69)

Remark 3.10. (i) Let δ ∈ (0,1/2). Then we can obtain the sharper conclusion Ck(z) = Ck if
ρ(z,0) > δLk , provided that L is large enough and we choose the integers lj sufficiently small,
e.g. we may take lj = �δLj/4� + 1 if L � 8/δ. Of course the regularity estimates (2.21) then
depend on δ and degenerate for δ → 0.

(ii) The restriction L � 16 can be removed. If 6 � L � 15 we can take l1 = 3 and for j � 2
define lj as before. One can easily check that in this case we still have −1 + 2

∑k
j=1(lj − 1) �

Lk/2 and this yields the desired assertion (see the proof below). If 3 � L � 5 one can skip the
first few renormalisation steps. Formally one can take l1 = l2 = 2 and define lj as before for
j � 3. Then T1 = T2 = 0, R1 =R2 = id, C1 = C2 = 0 and −1 + 2

∑k
j=3(lj − 1)� Lk/2.

Proof of Proposition 3.9. Assertion (i) follows directly from the definition. To prove (ii), set

ϕk := R′
k−1 . . .R′

1ϕ, ψk := R′
k−1 . . .R′

1ψ, k = 1, . . . ,N + 1. (3.70)

Inductive application of (3.18) shows that ϕk = 0 implies ϕ = 0. Now, directly from definitions,
〈CN+1ϕ,ϕ〉 = (ϕN+1, ϕN+1)−. Thus CN+1 is positive definite. For k = 1, . . . ,N we have

〈Ckϕ,ϕ〉 = 〈(
C−RkCR

′
k

)
ϕk,ϕk

〉
. (3.71)

Hence by Proposition 3.8 we get 〈Ckϕ,ϕ〉 � 0 with equality only holding if ϕk = 0, which im-
plies ϕ = 0. Thus Ck is positive definite.

(iii): In view of the equation 〈Ckϕ,ψ〉 = 〈(C−RkCR
′
k)ϕk,ψk〉, Proposition 3.8 implies that

〈Ckϕ,ψ〉 = 0 if dist∞(suppϕk, suppψk) > 2lk − 3. (3.72)

Iterative application of Lemmas 3.7 and 3.6 yields

suppϕk ⊂ suppϕ + {−nk, . . . , nk}d, suppψk ⊂ suppψ + {−nk, . . . , nk}d,

nk =
k−1∑
j=1

(lj − 1). (3.73)

Thus

〈Ckϕ,ψ〉 = 0 if dist∞(suppϕk, suppψk) > −1 + 2
k∑

(lj − 1). (3.74)

j=1
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Now since lj − 1 � 1
8Lj and

∑∞
n=0 L−n � 2 we get 2

∑k
j=1(lj − 1) � 1

2Lk . This finishes the
proof. �
4. Estimates for fixed A

To prove the regularity bounds of Theorem 2.1 and Theorem 2.2 we derive estimates for the
Fourier multipliers of the relevant operators. To this end, we first extend the space VN to the set
VN = (Cm)L

Nd
of complex-valued vectors with the subspace XN defined, again, as the subset

of functions ϕ ∈ VN with vanishing sum,
∑

x∈TN
ϕ(x) = 0. Various scalar products and norms

are extended to complex-valued functions in the usual way, 〈ϕ,ψ〉 := ∑
x∈TN

〈ϕ(x),ψ∗(y)〉Cm ,
ϕ,ψ ∈VN , with ψ∗(x) denoting the complex conjugate of ψ(x).

To introduce the discrete Fourier transform, consider the set of (scalar) functions fp(x) =
ei〈p,x〉,p ∈ T̂N , labelled by the dual torus

T̂N =
{
p = (p1, . . . , pd): pj ∈

{
(−LN + 1)π

LN
,
(−LN + 3)π

LN
, . . . ,0, . . . ,

(LN − 1)π

LN

}
,

j = 1, . . . , d

}
. (4.1)

The family of functions {L− Nd
2 fp}p∈T̂N

forms an orthonormal basis of CLNd
. For any ψ ∈ VN ,

we can define the Fourier transform component-wise,

ψ̂(p) :=
∑

x∈TN

fp(−x)ψ(x) for p ∈ T̂N. (4.2)

For ψ ∈XN , we get ψ̂(0) = ∑
x∈Tn

ψ(x) = 0 with the inverse

ψ(x) = L−Nd
∑

p∈T̂N\{0}
fp(x)ψ̂(p) (4.3)

and

〈ϕ,ψ〉 = L−Nd
∑

p∈T̂N\{0}

〈
ϕ̂(p), ψ̂(p)

〉
Cm. (4.4)

In the same way (component-wise) we get the Fourier transform for a matrix-valued kernel
K ∈ MN ,

K̂(p) :=
∑

x∈TN

fp(−x)K(x). (4.5)

For a translation invariant operator K : XN → XN with the kernel K ∈MN , we get

K̂ψ(p) = K̂(p)ψ̂(p). (4.6)
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Indeed,

K̂ψ(p) =
∑

x∈TN

∑
y∈TN

K(x − y)ψ(y)fp(−x) =
∑

x∈TN

∑
y∈TN

K(x − y)ψ(y)fp

(−(x − y)
)
fp(−y)

=
∑
z∈TN

K(z)fp(−z)
∑

y∈TN

ψ(y)fp(−y) = K̂(p)ψ̂(p). (4.7)

Henceforth, we call K̂ the Fourier multiplier of K. Applying the equality (4.6) with ψ = afp ,
p �= 0, we get

Kafp = K̂(p)afp. (4.8)

Indeed, taking into account that f̂p(p′) = LNdδp,p′ , we have K̂afp(p′) = K̂(p′)âfp(p′) =
LNdδp,p′K̂(p′)a = LNdδp,p′K̂(p)a and thus

Kafp(x) = L−Nd
∑

p′∈T̂N \{0}
fp′(x)K̂afp

(
p′) =

∑
p′∈T̂N \{0}

fp′(x)δp,p′K̂(p)a

= K̂(p)afp. (4.9)

Notice also that, by Lemma 3.5, the kernel of a product of two translation invariant operators is
given by the discrete convolution of the kernels and thus

K̂1 ∗K2(p) = K̂1(p)K̂2(p). (4.10)

Now, we will study the Fourier multipliers of the operators A = ∇∗A∇ as well as the operators
T and R introduced in the previous section. Given that ∇j fp = qj (p)fp with qj (p) = eipj − 1
and ∇∗

j fp = q∗
j (p)fp , j = 1, . . . , d , we have

(Aafp)r =
∑
j,k,s

q∗
j (p)Ar,j ;s,kasqk(p)fp for any a ∈ Rm, (4.11)

where Ar,j ;s,k are matrix elements of A, (A(a ⊗ q))r,j = ∑m
s=1

∑d
k=1 Ar,j ;s,kasqk . In view of

(4.8), we get, for the Fourier multiplier Â(p) of the operator A, the expression

(
Â(p)a

)
r
=

∑
j,s,k

q∗
j (p)Ar,j ;s,kasqk(p) for any a ∈ Rm. (4.12)

Alternatively, we can express this in terms of corresponding quadratic form,

〈
Â(p)a, b

〉
m = 〈

A
(
a ⊗ q(p)

)
, b ⊗ q(p)

〉
m×d for any a, b ∈Rm. (4.13)
C C
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It follows that the multiplier Â(p) is Hermitian and positive definite. More precisely, for any
p ∈ T̂N \ {0}, we have

∥∥Â(p)
∥∥� ‖A‖|p|2 and

∥∥Â(p)−1
∥∥� π2

4c0|p|2 . (4.14)

Indeed, the first bound follows directly from (4.13) and the definition of the operator norm ‖A‖
of the linear map A,

‖A‖ := max
{|AF |: F ∈ Cm×d, |F | � 1

}
. (4.15)

We also took into account that |q(p)|2 � |p|2 as follows from the upper bound in the estimate
4
π2 t2 � |eit − 1|2 � t2 valid for all t ∈ [−π,π]. To get the second inequality, we use the lower

bound (2.4) as well as the lower bound above, to get the estimate 〈Â(p)a, a〉Cm � 4
π2 c0|p|2|a|2

for any p ∈ T̂N .
For the Fourier multiplier of T defined in (3.8), we first recall that the translation operator

τx is defined by (τxψ)(y) = ψ(y − x). Hence we have Πxψ = τxΠ0(τ−xψ). Note also that
τ−xfp = ei〈x,p〉fp . Writing Π as a shorthand for Π0, we get

T̂ (p)a = l−dΠ̂(afp)(p) (4.16)

for any a ∈Cm. Indeed, applying T to afp , we get

ldT(afp)(y) =
∑

x∈TN

Πx(afp)(y) =
∑

x∈TN

Π(τ−xafp)(y − x)

=
∑

x∈TN

Π
(
ei〈p,x〉afp

)
(y − x) =

∑
x∈TN

Π(afp)(y − x) ei〈p,x−y〉ei〈p,y〉

=
∑
z∈TN

Π(afp)(z)e−i〈p,z〉 ei〈p,y〉 = Π̂(afp)(p)fp(y). (4.17)

Thus, T(afp) = l−dΠ̂(afp)(p)fp implying the claim by comparing with (4.8).
We now use the symmetry and boundedness of T, with respect to the scalar product (·,·)+, to

deduce the corresponding properties for T̂ (p). According to (4.8), we have

(
T(afp), bfp

)
+ = 〈

AT(afp), bfp

〉 = LNd
〈
Â(p)T̂ (p)a, b

〉
Cm (4.18)

for any a, b ∈ Cm. Combining this with the fact that T is Hermitian with respect to (·,·)+ and
with Lemma 3.4(ii), we infer that

〈
Â(p)T̂ (p)a, b

〉
Cm = 〈

a, Â(p)T̂ (p)b
〉
Cm and

0 �
〈
Â(p)T̂ (p)a, a

〉
m �

〈
Â(p)a, a

〉
m (4.19)
C C



S. Adams et al. / Journal of Functional Analysis 264 (2013) 169–206 189
for all a, b ∈ Cm. Since Â(p) is Hermitian and positive definite, it has a unique Hermitian posi-
tive definite square root Â(p)1/2 with inverse Â(p)−1/2. Applying (4.14), we get

∥∥Â(p)1/2
∥∥� ‖A‖1/2|p| and

∥∥Â(p)−1/2
∥∥� π

2
√

c0

1

|p| . (4.20)

Setting, finally

T̃ (p) := Â(p)1/2T̂ (p)Â(p)−1/2 = Â(p)−1/2(Â(p)T̂ (p)
)
Â(p)−1/2 (4.21)

and

R̃(p) := Â(p)1/2R̂(p)Â(p)−1/2 = 1 − T̃ (p), (4.22)

we get the following bounds.

Lemma 4.1. The operators T̃ (p) and R̃(p) are Hermitian (with respect to the standard scalar
product on Cm) and satisfy, for any p ∈ T̂N \ {0}, the following bounds:

(i) there is a constant c < ∞ (which depends only on ‖A‖ and c0, and the dimension d) such
that ∥∥1 − R̃(p)

∥∥ = ∥∥T̃ (p)
∥∥� min

(
1, c

(|p|l)4)
, (4.23)

(ii) there is a constant c < ∞ (which depends only on ‖A‖, c0, and the dimension d) such that

∥∥R̃(p)
∥∥� min

(
1,

c

l

(
1

|p| + 1

))
. (4.24)

These estimates show that T suppresses low frequencies, while R suppresses high frequencies,
reflecting the idea that Px = id − Πx is a (locally) smoothing operator (cf. Remark 3.2).

Proof of Lemma 4.1. From (4.19), we get

〈
T̃ (p)a, b

〉
Cm = 〈

a, T̃ (p)b
〉
Cm and 0 �

〈
T̃ (p)a, a

〉
Cm � 〈a, a〉Cm (4.25)

for any a, b ∈ Cm. The operators T̃ (p) and R̃(p) are thus Hermitian and 0 � T̃ (p) � 1 and,
equivalently, 0 � R̃(p) � 1. This implies that∥∥T̃ (p)

∥∥� 1,
∥∥R̃(p)

∥∥� 1. (4.26)

(i): In view of (4.26) we may assume that |p|l � 1. We first estimate the norm of the Hermitian
matrix Â(p)T̂ (p). First, we show that

ld
〈
Â(p)T̂ (p)a, a

〉
m = ∥∥Π(afp)

∥∥2
. (4.27)
C +
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To see this, we start from the right hand side,

∥∥Π(afp)
∥∥2

+ = (
Π(afp), afp

)
+ = 〈

Π(afp),A(afp)
〉 = L−Nd

〈
Π̂(afp), Â(afp)

〉
= L−Nd

∑
p′∈T̂N\{0}

〈
Π̂(afp)

(
p′), Â(p)af̂p

(
p′)〉

Cm = 〈
Π̂(afp)(p), Â(p)a

〉
Cm

= ld
〈
Â(p)T̂ (p)a, a

〉
Cm. (4.28)

Here, we first used the fact that Π is an orthogonal projection with respect to (·,·)+, passing to the
second line we used the equation Â(afp)(p′) = Â(p)af̂p(p′) obtained as the Fourier transform
of (4.8) for A, then the fact that fp(p′) = LNdδp,p′ and, finally, we applied Eq. (4.16).

Applying (4.8) and using that afp ∈XN (for p �= 0) and thus also Π(afp) ∈ XN , we get

∥∥Π(afp)
∥∥2

+ = 〈
Π(afp),A(afp)

〉 = 〈
Π(afp), Â(p)afp

〉
= 〈

Π(afp), Â(p)a(fp − 1)
〉
. (4.29)

Further, given that Π(afp) is supported in Q and |fp(z) − 1| � √
d |p|l for z ∈ Q, we have

‖Π(afp)‖2 = ‖Π(afp)‖

2(Q)

and ‖(fp − 1)1Q‖2 = ‖fp − 1‖

2(Q)

�
√

d |p|ld/2+1. With the
help of Schwarz inequality and this observation, we get

∥∥Π(afp)
∥∥2

+ = 〈
Π(afp), Â(p)a(fp − 1)1Q

〉
�

∥∥Π(afp)
∥∥


2(Q)

∥∥Â(p)
∥∥|a|√d |p|ld/2+1. (4.30)

The Poincaré inequality [8,6] implies that

∥∥Π(afp)
∥∥


2(Q)
� cl

∥∥∇Π(afp)
∥∥


2(Q)
� c

c
1/2
0

l
∥∥Π(afp)

∥∥+ (4.31)

with a suitable constant c. Combining this with (4.30) and (4.14), we get

∥∥Π(afp)
∥∥+ �

√
d c

‖A‖
c

1/2
0

|p|3ld/2+2|a|. (4.32)

Given that Â(p)T̂ (p) is Hermitian, we get∥∥Â(p)T̂ (p)
∥∥ = max

|a|�1

〈
Â(p)T̂ (p)a, a

〉
Cm � d c2(‖A‖2/c0

)|p|6l4. (4.33)

The assertion follows using the second inequality in (4.14).
(ii): In view of (4.26), it suffices to consider the case |p|l � 1. Again, we first estimate

‖Â(p)R̂(p)‖. Since R̂(p) = 1 − T̂ (p) we get from (4.27)

ld
〈
Â(p)R̂(p)a, a

〉
m = ld

〈
Â(p)a, a

〉 − (
Π(afp), afp

)
. (4.34)
C +
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Let ω be a cut-off function such that

ω(z) = 1 if z ∈ Q \ Q, ω = 0 if dist(z,Q \ Q) � 1 + 1

|p| ,
0 � ω � 1 and |∇ω|� c|p| (4.35)

with a suitable constant c. By Lemma 3.1(ii) we have Π(1 − ω)(afp) = (1 − ω)1Qafp . Hence(
Π(afp), afp

)
+ = (

Π(aωfp), afp

)
+ + (

a(1 − ω)1Qfp,afp

)
+ (4.36)

and (
a(1 − ω)1Qfp,afp

)
+ = 〈

a(1 − ω)1Qfp,A(afp)
〉 = 〈

a(1 − ω)1Qfp, Â(p)afp

〉
=

∑
z∈Q−

(1 − ω)
〈
Â(p)a, a

〉
Cm. (4.37)

Here, in the last step, we used that
∑

z∈Q(1 − ω) = ∑
z∈Q−(1 − ω) since ω = 1 on Q− \ Q.

Using that |Q−| = ld , Eqs. (4.34) and (4.36) with (4.37) yield

ld
〈
Â(p)R̂(p)a, a

〉
Cm = −(

Π(aωfp), afp

)
+ +

∑
z∈Q−

ω
〈
Â(p)a, a

〉
Cm. (4.38)

Given that ω is supported in a neighbourhood of order 1 + 1/|p| around the boundary Q \ Q

of Q, the last term is easily estimated∣∣∣∣ ∑
z∈Q−

ω
〈
Â(p)a, a

〉
Cm

∣∣∣∣� 4dld−1
(

1 + 1

|p|
)∥∥Â(p)

∥∥|a|2

� 4dld−1
(

1 + 1

|p|
)

‖A‖|p|2|a|2. (4.39)

To bound the remaining term we introduce another cut-off function ω̃ that satisfies the following
conditions,

ω̃(z) = 1 if dist(z,Q \ Q) � 2 + 2

|p| , ω̃ = 0 if dist(z,Q \ Q) � 3 + 3

|p| ,
0 � ω̃ � 1 and |∇ω̃| � c|p|. (4.40)

Then(
Π(aωfp), afp

)
+ = (

aωfp,Π(afp)
)
+ = (

aωfp,Π(aω̃fp)
)
+ + (

aωfp, (1 − ω̃)1Qafp

)
+

= (
aωfp,Π(aω̃fp)

)
+ + 〈

A(aωfp), (1 − ω̃)1Qafp

〉
= (

aωfp,Π(aω̃fp)
)
+ (4.41)

since 1 − ω̃ and A(aωfp) have disjoint support. Thus
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∣∣(Π(aωfp), afp

)
+
∣∣� ‖aωfp‖+

∥∥Π(aω̃fp)
∥∥+ � ‖aωfp‖+‖aω̃fp‖+

� c

4
‖A‖|p|2ld−1

(
3 + 3

|p|
)

|a|2, (4.42)

where we used that ω and ω̃ are supported in a strip of size 3+3/|p| around Q\Q, that 1/|p| � l,
and that the gradients of ω, ω̃ and fp are bounded by c|p| and the constant c in (4.42) is suitably
chosen in dependence on c and d . The combination of (4.38), (4.39) and (4.42) now yields the
estimate

∥∥Â(p)R̂(p)
∥∥�

(
3

4
c + 4d

)
‖A‖|p|2 1

l

(
1 + 1

|p|
)

. (4.43)

In view of (4.14) this finishes the proof of (ii). �
As in the previous section assume that L � 16 and consider

Qj = {1, . . . , lj − 1}d with lj =
⌊

1

8
Lj

⌋
+ 1 for j = 1, . . . ,N. (4.44)

Also operators Tj ,T
′
j , and R′

j , as well as Ck , k = 1, . . . ,N + 1, are defined as before (cf. (3.66)
and (3.67)).

We define A1/2 via the action of the corresponding Fourier symbol, Â1/2ϕ(p) = Â1/2(p)ϕ̂(p).
Similarly we define A−1/2. Then the operators R̃k := A1/2RkA

−1/2 and T̃k := A1/2TkA
−1/2 are

Hermitian. For k = 1, . . . ,N define

M̃k := R̃1 . . . R̃k−1R̃k and M̃0 := id. (4.45)

Since R̃k = id − T̃k and C =A−1 =A−1/2A−1/2 we have for k = 1, . . . ,N

Ck =A−1/2[M̃k−1M̃
′
k−1 − M̃kM̃

′
k

]
A−1/2

=A−1/2[(̃TkM̃k−1)M̃
′
k−1 + M̃k−1(̃TkM̃k−1)

′ − T̃kM̃k−1(̃TkM̃k−1)
′]A−1/2 (4.46)

and

CN+1 =A−1/2M̃NM̃′
NA−1/2. (4.47)

To estimate the corresponding kernels Ck and their derivatives we use formula (4.3) for the
inverse Fourier transform. This yields

sup
x∈TN

∥∥Ck(x)
∥∥� 1

LNd

∑
p∈T̂N\{0}

∥∥Ĉk(p)
∥∥ (4.48)

and for any multiindex α = (α1, . . . , αd),
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sup
x∈TN

∥∥∇αCk(x)
∥∥� 1

LNd

∑
p∈T̂N\{0}

∥∥Ĉk(p)qα
∥∥

� 1

LNd

∑
p∈T̂N\{0}

∥∥Ĉk(p)
∥∥|p||α|, (4.49)

where qj = eipj − 1 and qα = ∏d
j=1 q

αj

j .

Finally, a bound on ‖Ĉk(p)‖ will be based on (4.46) (respectively, (4.47)) combined with
bounds on ‖M̃k(p)‖ and ‖T̃k+1(p)M̃k(p)‖.

The estimate of the latter will depend on |p|. Namely, slicing the dual torus into the annuli

Aj := {
p ∈ T̂N \ {0}: πL−j � |p| < πL−j+1}, j = 1, . . . ,N, (4.50)

with the complement

A0 := {
p ∈ T̂N \ {0}: |p|� π

}
, (4.51)

and defining, for any c � 1 and j, k = 0,1, . . . ,N , the step functions

Mk,c,L(p) :=
{

1, if p ∈ Aj , j � k,

ck−j

L(k−j)(k−j+1)/2 , if p ∈ Aj , j < k,
(4.52)

and

M̃k,c,L(p) :=
{

cL8L4(k−j), if p ∈ Aj , j � k,
ck−j

L(k−j)(k−j+1)/2 , if p ∈ Aj , j < k,
(4.53)

we have the following estimates.

Lemma 4.2. There exists a constant c (depending only on c0, ‖A‖, and d) such that for any odd
L� 16 and any N ∈N,N � 1,∥∥M̃k(p)

∥∥� Mk,c,L(p) for k = 0, . . . ,N, (4.54)

and ∥∥T̃k+1(p)M̃k(p)
∥∥� M̃k,c,L(p) for k = 0, . . . ,N − 1. (4.55)

Proof. Let p ∈ Aj . For k � j both bounds follow from the bounds ‖R̃n(p)‖ � 1 for n =
0,1, . . . , k and ‖T̃k+1(p)‖ � c(Lk+1|p|)4. Now, assume that k > j and recall that (after increas-
ing the constant c from (4.24) by a constant factor)

∥∥R̃n(p)
∥∥� c

n

(
1 + 1

)
� c

n−j
, for n = j + 1, . . . ,N. (4.56)
L |p| L
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Thus

k∏
n=1

∥∥R̃n(p)
∥∥�

k∏
n=j+1

∥∥R̃n(p)
∥∥�

k∏
n=j+1

c

Ln−j
= ck−j

L(k−j)(k+1−j)/2
. (4.57)

The first estimate for k > j follows, with the second estimate implied since ‖T̃k+1(p)‖ � 1. �
To combine these bounds for an estimate on the Fourier multipliers Ĉk(p), we use the follow-

ing lemma.

Lemma 4.3. Let n be a nonnegative integer and c � 1. Then there exists a constant c′ (depending
on parameters c, n, and the dimension d) such that with

η = max

(
1

4
(d + n − 1)2, d + n + 6

)
+ 2 (4.58)

and for all integers L� 3, N � 1, and all k = 1, . . . ,N + 1, we have

1

LdN

∑
p∈T̂N\{0}

Mk−1,c,L(p)M̃k−1,c,L(p)|p|n−2 � c′LηL−(k−1)(d+n−2), (4.59)

1

LdN

∑
p∈T̂N\{0}

M̃k−1,c,L(p)M̃k−1,c,L(p)|p|n−2 � cc′Lη+8L−(k−1)(d+n−2), (4.60)

1

LdN

∑
p∈T̂N\{0}

MN,c,L(p)MN,c,L(p)|p|n−2 � c′LηL−N(d + n − 2). (4.61)

Proof. It suffices to prove the first bound for k = 1, . . . ,N + 1. The second and third bounds
follow employing the inequalities M̃k−1,c,L � cL8Mk−1,c,L and MN,c,L � M̃N,c,L, respectively.

To prove the first estimate we split the sum into the sum of contributions over the annuli Aj .
For p ∈ Aj , we have

|p|n−2 � πn−2dn/2L2L(−j+1)(n−2). (4.62)

Indeed, for j �= 0, we get

|p|n−2 � Lmax((2−n),0)L(−j+1)(n−2)πn−2 � πn−2L2L(−j+1)(n−2). (4.63)

The expression (2 − n) in the term max((2 − n),0) stems from the fact that for n = 0 and
n = 1, we actually employ the lower bound on |p| from (4.50). For j = 0, we have π � |p| �√

d |p|∞ �
√

d π and thus |p|n−2 � πn−2dn/2 � πn−2dn/2Ln. The size of the annuli can be
bounded as

|Aj | � πdL(−j+1)d . (4.64)

LdN
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As a result, for j � k − 1,

1

LdN

∑
p∈Aj

Mk−1,c,L(p)M̃k−1,c,L(p)|p|n−2

� cπn+d−2dn/2L2L(−j+1)(d+n−2)L8L4(k−1−j)

� cπn+d−2dn/2L8+d+nL−(k−1)(d+n−2)L−(j−(k−1))(d+n+2) (4.65)

and

1

LdN

N∑
j=k−1

∑
p∈Aj

Mk−1,c,L(p)M̃k−1,c,L(p)|p|n−2 � c̃L8+d+nL−(k−1)(d+n−2) (4.66)

with c̃ = 2cπn+d−2dn/2 since

N∑
j=k−1

L−(j−(k−1))(d+n+2) =
N−k+1∑
j ′=0

L−j ′(d+n+2) � 1

1 − L−(d+n+2)
. (4.67)

Now consider j < k − 1. We get

1

LdN

∑
p∈Aj

Mk−1,c,L(p)M̃k−1,c,L(p)|p|n−2

� πn+d−2dn/2L2L(−j+1)(d+n−2) c2(k−1−j)

L(k−1−j)(k−j)

� πn+d−2dn/2L2L(−k+1)(d+n−2)L(k−j)(d+n−2) c2(k−1−j)

L(k−1−j)(k−j)
. (4.68)

Setting j ′ = k − 1 − j we get

1

LdN

k−2∑
j=0

∑
p∈Aj

Mk−1,c,L(p)M̃k−1,c,L(p)|p|n−2

� c̃L2L−(k−1)(d+n−2)
k−1∑
j ′=1

c2j ′

Lj ′(j ′+1)−(d+n−2)(j ′+1)
. (4.69)

Consider the integer 
 = � log(2c2)
log 3 � + 1 and split the sum above into terms with j ′ � j and the

rest with j ′ > j , where j = d + n − 2 + 
. We get,

k−2∑
j ′=1

c2j ′

Lj ′(j ′+1)−(d+n−2)(j ′+1)
� c2j

j∑
j ′=1

L(d+n−2−j ′)(j ′+1) +
∞∑

′

c2j ′

L(j ′+1)


j =j+1
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� jc2jL
1
4 (d+n−1)2 + ( 1

2 )j+1

L
(1 − 1
2 )

� jc2jL
1
4 (d+n−1)2 + 1. (4.70)

Here, in the first sum, we bounded (d + n − 2 − j ′)(j ′ + 1) (with maximum at j ′ = d+n−3
2 ) by

1
4 (d + n − 1)2 and, in the second sum, we took into account that L� 3 and thus c2L−
 � 1

2 .
Combining (4.66) and (4.69) with (4.70), we get the sought bound for (4.59) and (4.61) with

constants c′ = c̃(2 + jc2j ) and η = max( 1
4 (d + n− 1)2 + 2, d + n+ 8). For (4.60), the constants

must be increased by adding 8 to η and multiplying c′ by c. �
Proof of Theorem 2.1. By (4.46), Lemma 4.2, and the bound (4.20) we have∥∥Ĉk(p)

∥∥� 2cMk−1,c,L(p)M̃k−1,c,L(p)|p|−2 + cM̃k−1,c,L(p)M̃k−1,c,L(p)|p|−2. (4.71)

Now, for k = 1, . . . ,N , the desired bounds follow from Lemma 4.3 and (4.49). For k = N + 1
we use (4.47) to get ‖ĈN+1(p)‖ � cMN,c,L(p)2|p|−2 and the assertion follows again from
Lemma 4.3 and (4.49). �
5. Analytic dependence on A and proof of Theorem 2.2

We now study the dependence of the finite range decomposition on the map A which appears
in the operator A = ∇∗A∇ . To this end we will show that the operators Πx , T and R can be
locally extended to holomorphic functions of A and the bounds derived previously for fixed A

can be extended to a small complex ball. Then the Cauchy integral formula immediately yields
bounds on all derivatives with respect to A. We do not claim that the extensions of Πx , T, R to
complex A yield a finite range decomposition for complex A (indeed positivity is meaningless if
A is not Hermitian). The extension is merely a convenient tool to show that the relevant quantities
are real-analytic as functions of real, symmetric, positive definite A.

Let A be a linear map from Cm×d to Cm×d such that

A = A0 + A1 (5.1)

with A0 and A1 satisfying the following conditions

〈A0F,G〉Cm×d = 〈F,A0G〉Cm×d , 〈A0F,F 〉Cm×d � c0|F |2, for all F,G ∈ Cm×d, (5.2)

and

‖A1‖� c0

2
. (5.3)

Here, c0 > 0 is a fixed constant and, as before, 〈·,·〉Cm×d and | · | denote the standard scalar
product and norm on Cm×d and ‖A1‖ is the corresponding operator norm of A1.

Again, we consider the operator

A := ∇∗A∇, (5.4)
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on XN , i.e.,

(Aϕ)r :=
d∑

j=1

∇∗
j (A∇ϕ)j,r , where (∇ϕ)j,r = ∇j ϕr . (5.5)

With operator A we associate the sesquilinear form

(ϕ,ψ)A := 〈A∇ϕ,∇ψ〉 (5.6)

where 〈·,·〉 is the 
2-scalar product on XN , defining the adjoint A∗ by

〈Aϕ,ψ〉 = (ϕ,ψ)A = 〈
ϕ,A∗ψ

〉
, with A∗ = ∇∗A∗∇, (5.7)

where A∗ is the adjoint of A. Note that for real, symmetric A the form (·,·)A is a scalar product
and agrees with (·,·)+. In the following, we use the previous notation H+ for the Hilbert space
with the scalar product (·,·)A0 and define ‖ϕ‖A0 := (ϕ,ϕ)

1/2
A0

.
Using �z and z∗ to denote the real part and the complex conjugate of a complex number z,

we summarise the main properties of the sesquilinear form (·,·)A.

Lemma 5.1. Assume that an operator A satisfies the conditions (5.1), (5.2), and (5.3).
Then the sesquilinear form (·,·)A on XN satisfies

�(ϕ,ϕ)A � 1

2
‖ϕ‖2

A0
, (5.8)

∣∣(ϕ,ψ)A
∣∣� 3

2
‖ϕ‖A0‖ψ‖A0, (5.9)

(ψ,ϕ)A = (ϕ,ψ)∗A∗ . (5.10)

Proof. The first claim follows using the definition of the form (·,·)A and the lower bound

�〈AF,F 〉Cm×d � 〈A0F,F 〉Cm×d − c0

2
|F |2 � 1

2
〈A0F,F 〉Cm×d (5.11)

implied by (5.2) and (5.3).
Using (5.3), the Cauchy–Schwarz inequality for the scalar product 〈A0F,G〉Cm×d , and the

bound from (5.2), we also get

∣∣〈AF,G〉Cm×d

∣∣� 〈A0F,G〉Cm×d + c0

2
|F ||G| � 〈A0F,F 〉1/2

Cm×d 〈A0G,G〉1/2
Cm×d

+ 1

2
〈A0F,F 〉1/2

Cm×d 〈A0G,G〉1/2
Cm×d

� 3

2
〈A0F,F 〉1/2

Cm×d 〈A0G,G〉1/2
Cm×d (5.12)

implying the second claim.
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The last identity follows from the relation

〈AG,F 〉Cm×d = 〈
G,A∗F

〉
Cm×d = 〈

A∗F,G
〉∗
Cm×d . �

In view of the above lemma, the complex version of the Lax–Milgram theorem can be used
to ensure the existence of the bounded inverse operator CA =A−1.

In the following, similarly as in the case of the Hilbert space H+, we use H+(Q + x) to
denote the corresponding Hilbert space (of functions from XN with support in Q + x) with the
scalar product (·,·)A0 .

Next, we define an extension of the operators Πx for a general complex A.

Lemma 5.2. Assume that A satisfies (5.1), (5.2), and (5.3). Then, for each ϕ ∈ XN , there exists
a unique v ∈H+(Q + x) such that

(v,ψ)A = (ϕ,ψ)A for all ψ ∈H+(Q + x). (5.13)

Proof. The assertion follows from Lemma 5.1 and the Lax–Milgram theorem. �
Lemma 5.3. Assume that A satisfies (5.1), (5.2), and (5.3). For any ϕ ∈ XN , we set

ΠA,xϕ := v, ΠA := ΠA,0, (5.14)

with v ∈ H+(Q + x) defined by (5.13). Using, as before, τx to denote the translation by x, 1Q

for the characteristic function of a set Q, and D for the open unit disc D = {w ∈ C: |w| < 1},
we have

(i) ΠA,xτxϕ = τxΠAϕ,
(ii) ‖ΠAϕ‖A0 � 3‖ϕ‖A0 ,

(iii) ΠAϕ = ϕ for all ϕ ∈H+(Q), ΠAΠA = ΠA,
(iv) ΠAϕ = ϕ1Q if ϕ = 0 on Q \ Q,
(v) (ΠAϕ,ψ)A = (ϕ,ΠA∗ψ)A,

(vi) The map z �→ ΠA0+zA1ϕ is holomorphic for z in the open unit disc D.

Proof. (i): Given that the shift τ−x is an isometry with respect to (·,·)A0 and maps H+(Q + x)

onto H+(Q), we have the identities (τxΠAϕ,ψ)A = (ΠAϕ, τ−xψ)A = (ϕ, τ−xψ)A = (τxϕ,ψ)A
for all ψ ∈ H+(Q + x). As τxΠAϕ ∈H+(Q + x), this yields the assertion.

(ii): Taking ψ = ΠAϕ in the definition (5.13) of v = ΠAϕ and using Lemma 5.1, we get

1

2
‖ΠAϕ‖2

A0
� �(ΠAϕ,ΠAϕ)A = �(ϕ,ΠAϕ)A � 3

2
‖ϕ‖A0‖ΠAϕ‖A0 . (5.15)

(iii): The second assertion follows from the first. By definition, we have (ΠAϕ − ϕ,ψ)A = 0
for all ψ ∈ H+(Q). In particular, by the assumption ϕ ∈ H+(Q) we may take ψ = ΠAϕ − ϕ

inferring that ΠAϕ = ϕ.
(iv): Let ϕ̃ = ϕ1Q. By (iii) we have ΠAϕ̃ = ϕ̃. Moreover ϕ − ϕ̃ vanishes in Q. Thus ∇(ϕ − ϕ̃)

vanishes in Q−. Hence (ϕ − ϕ̃,ψ)A = 0 for all ψ ∈ H+(Q) since ∇ψ is supported in Q−.
Therefore ΠA(ϕ − ϕ̃) = 0 which yields the assertion.
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(v): Since ΠA∗ψ ∈H+(Q) we have

(ϕ,ΠA∗ψ)A = (ΠAϕ,ΠA∗ψ)A = (ΠA∗ψ,ΠAϕ)∗A∗

= (ψ,ΠAϕ)∗A∗ = (ΠAϕ,ψ)A, (5.16)

where we used the relation (ϕ,ψ)A = (ψ,ϕ)∗A∗ and the definition of ΠA∗ .
(vi): This follows from the complex inverse function theorem. Fix ϕ and consider the map R

from D ×H+(Q) into the dual of H+(Q) given by

R(z, v)(ψ) = (v − ϕ,ψ)A0+zA1 = 〈
(A0 + zA1)(∇v − ∇ϕ),∇ψ

〉
. (5.17)

Then R is complex linear in z and v and hence complex differentiable. By the definition of
ΠA we have R(z, v) = 0 if and only if v = ΠA0+zA1ϕ. Finally the derivative of R with respect
to the second argument is given by the map Lz from H+(Q) into its dual with Lz(v̇)(ψ) =
(v̇,ψ)A0+zA1 . By the Lax–Milgram theorem, Lz is invertible for z ∈ D. Hence the map z �→
ΠA0+zA1ϕ is complex differentiable in z. �

Note that for a real symmetric A the above definition of ΠA,x agrees with the definition of
Πx in Section 3. We define, as before,

TA := l−d
∑

x∈TN

ΠA,x, RA = id − TA. (5.18)

Then the following weaker version of Lemma 3.4 holds.

Lemma 5.4. Assume that A satisfies (5.1), (5.2), and (5.3). Then

‖TAϕ‖A0 � 9‖ϕ‖A0 for all ϕ ∈XN. (5.19)

Proof. This is an adaptation of the argument from [3] to the complex case. For the convenience,
we include the details. We have

l2d‖TAϕ‖2
A0

� 2 l2d
∣∣(TAϕ,TAϕ)A

∣∣� 2
∑

x,y∈TN

∣∣(ΠA,xϕ,ΠA,yϕ)A
∣∣. (5.20)

Set Tx := ∇ΠA,xϕ. Then Tx vanishes outside Q− + x since ΠA,xϕ vanishes outside Q + x.
Thus, in view of (5.6) and (5.9), we get, similarly as in (5.12),∣∣(ΠA,xϕ,ΠA,yϕ)A

∣∣ = ∣∣〈ATx,Ty〉
∣∣ = ∣∣〈A1Q−+xTx,1Q−+yTy〉

∣∣
= ∣∣〈A1Q−+yTx,1Q−+xTy〉

∣∣
� 3

2
〈A01Q−+yTx,1Q−+yTx〉1/2〈A01Q−+xTy,1Q−+xTy〉1/2

� 3

4
〈A01Q−+yTx,1Q−+yTx〉 + 3

4
〈A01Q−+xTy,1Q−+xTy〉

= 3 〈A01Q−+yTx, Tx〉 + 3 〈A01Q−+xTy, Ty〉. (5.21)

4 4



200 S. Adams et al. / Journal of Functional Analysis 264 (2013) 169–206
Now
∑

y∈TN
1Q+y is the constant function ld and thus

∑
x,y∈TN

∣∣(ΠA,xϕ,ΠA,yϕ)A
∣∣� 3

2
ld

∑
x∈TN

〈A0Tx,Tx〉 = 3

2
ld

∑
x∈TN

(ΠA,xϕ,ΠA,xϕ)A0

� 3ld
∑

x∈TN

�(ΠA,xϕ,ΠA,xϕ)A = 3ld
∑
x∈TN

�(ϕ,ΠA,xϕ)A

= 3l2d�(ϕ,TAϕ)A � 9

2
l2d‖ϕ‖A0‖TAϕ‖A0 .

Combined with (5.20), this yields the assertion. �
Next, we bound the Fourier multipliers of operators TA and RA. Using the relation ΠA,x =

τxΠAτ−x we get, as before,

TA(afp) = l−d
∑
z∈TN

e−i〈p,z〉ΠA(afp)(z)fp (5.22)

and thus, the Fourier multiplier T̂A(p) is given by

T̂A(p)a = l−d
∑
z∈TN

e−i〈p,z〉ΠA(afp)(z). (5.23)

Also, the operator A = ∇∗A∇ satisfies again the equation

A(afp) = (
Â(p)a

)
fp (5.24)

with

〈
Â(p)a, b

〉
Cm = 〈

A
(
a ⊗ q(p)

)
, b ⊗ q(p)

〉
Cm×d , q(p)j = eipj − 1. (5.25)

Hence,

∥∥Â(p)
∥∥� 3

2
‖A0‖|p|2 and

∥∥Â(p)−1
∥∥� π2

2c0|p|2 . (5.26)

Lemma 5.5. Assume that A satisfies (5.1), (5.2), and (5.3). Then, there is a constant c < ∞
(depending only on ‖A0‖, c0, and d) such that, for all p ∈ T̂N \ {0},

(i) ‖Â0(p)1/2T̂A(p)Â0(p)−1/2‖� 9, ‖Â0(p)1/2R̂A(p)Â0(p)−1/2‖� 10.
(ii) ‖T̂A(p)‖ � c min(1, (|p|l)4).

(iii) ‖R̂A(p)‖ � c min(1, 1
l
(1 + 1

|p| )).
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Proof. The proof is largely parallel to the proof of Lemma 4.1 for real symmetric A, but the
constants are slightly worse since (·,·)A is no longer a scalar product.

(i): The second bound follows from the first since R̂A(p) = 1 − T̂A(p). For the first estimate,
we apply Lemma 5.4 with ϕ = afp , a ∈Cm. This yields

〈
Â0(p)T̂A(p)a, T̂A(p)a

〉
Cm � 81

〈
Â0(p)a, a

〉
Cm. (5.27)

Taking a = Â0(p)−1/2b, we deduce that

〈
Â0(p)1/2T̂A(p)Â0(p)−1/2b, Â0(p)1/2T̂A(p)Â0(p)−1/2b

〉
Cm � 81〈b, b〉Cm (5.28)

and this finishes the proof of (i).
(ii): First, we assume that |p|l � 1. It follows from (i) that∥∥T̂A(p)

∥∥� 9
∥∥Â0(p)−1/2

∥∥∥∥Â0(p)1/2
∥∥.

By (4.20) we have ‖Â0(p)1/2‖� ‖A0‖1/2|p| and ‖Â0(p)−1/2‖� π
2
√

c0

1
|p| , yielding (ii).

Now, assume that |p|l � 1. We first estimate the norm of Â(p)T̂A(p). Note that

ld
〈
Â(p)T̂A(p)a, b

〉
Cm =

〈
Â(p)

∑
z∈TN

ΠA(afp)(z), bfp(z)

〉
Cm

= 〈
ΠA(afp),A∗(bfp)

〉
= (

ΠA(afp), bfp

)
A
. (5.29)

Thus by Lemma 5.3(iii), (v), and (5.9), we get

ld
∣∣〈Â(p)T̂A(p)a, b

〉
Cm

∣∣ = ∣∣(ΠAΠA(afp), bfp

)
A

∣∣ = ∣∣(ΠA(afp),ΠA∗(bfp)
)
A

∣∣
� 3

2

∥∥ΠA(afp)
∥∥

A0

∥∥ΠA∗(bfp)
∥∥

A0
. (5.30)

To estimate ‖ΠA(afp)‖A0 we use (5.8) and the fact that (ΠA(ϕ),ΠA(ϕ))A = (ϕ,ΠA(ϕ))A ac-
cording to (5.13) since ΠA(ϕ) ∈H+(Q), yielding

1

2

∥∥ΠA(afp)
∥∥2

A0
�

∣∣(ΠA(afp),ΠA(afp)
)
A

∣∣ = ∣∣(afp,ΠA(afp)
)
A

∣∣ = ∣∣〈A(afp),ΠA(afp)
〉∣∣

= ∣∣〈(Â(p)a
)
fp,ΠA(afp)

〉∣∣ = ∣∣〈(Â(p)a
)
(fp − 1),ΠA(afp)

〉∣∣. (5.31)

In the last step we used the fact that functions in XN have average zero. Now ΠA(afp) is
supported in Q and |fp(z) − 1| �√

d |p|l for z ∈ Q. In combination with (5.26) this yields

1

2

∥∥ΠA(afp)
∥∥2

A0
�

∥∥(Â(p)a
)
(fp − 1)1Q

∥∥∥∥ΠA(afp)
∥∥

� 3‖A0‖|p|2√d |a|(|p|l)ld/2
∥∥ΠA(afp)

∥∥. (5.32)

2



202 S. Adams et al. / Journal of Functional Analysis 264 (2013) 169–206
The Poincaré inequality [8,6] implies that

∥∥ΠA(afp)
∥∥


2(Q)
� cl

∥∥∇ΠA(afp)
∥∥


2(Q)
� c

c
1/2
0

l
∥∥ΠA(afp)

∥∥
A0

. (5.33)

Combining the inequalities above we get

∥∥ΠA(afp)
∥∥

A0
� 3

√
d c

‖A0‖
c

1/2
0

|p|3l2 ld/2|a|. (5.34)

The same estimate holds for ΠA∗. Hence, from (5.30),

ld
∣∣〈Â(p)T̂A(p)a, b

〉
Cm

∣∣� 27

2
d

c2‖A0‖2

c0
|p|6l4 ld |a||b|. (5.35)

With the help of (5.26), this yields the claim for a suitable constant c.
(iii): For |p|l � 1 the estimate follows from (i). Thus, we assume |p|l � 1. Again we first

estimate Â(p)R̂A(p). Since R̂A(p) = 1 − T̂A(p) we get from (5.29)

ld
〈
Â(p)R̂A(p)a, b

〉
Cm = ld

〈
Â(p)a, b

〉
Cm − (

ΠA(afp), bfp

)
A
. (5.36)

Let ω be a cut-off function such that

ω(z) = 1 if z ∈ Q \ Q, ω = 0 if dist(z,Q \ Q) � 1 + 1

|p| ,
0 � ω � 1, |∇ω| � c|p|. (5.37)

By Lemma 5.3(iii), we have ΠA(1 − ω)(afp) = (1 − ω)1Qafp . Hence

(
ΠA(afp), bfp

)
A

= (
ΠA(aωfp), bfp

)
A

+ (
a(1 − ω)1Qfp,bfp

)
A

(5.38)

and

(
a(1 − ω)1Qfp,bfp

)
A

= (
a(1 − ω)1Qfp,A∗(bfp)

)
A

= 〈
a(1 − ω)1Qfp,

(
Â(p)∗b

)
fp

〉
=

∑
z∈Q

(1 − ω)
〈
Â(p)a, b

〉
Cm =

∑
z∈Q−

(1 − ω)
〈
Â(p)a, b

〉
Cm. (5.39)

In the last step we used that ω = 1 on Q− \ Q. Since |Q−| = ld , this yields

ld
〈
Â(p)R̂A(p)a, b

〉
Cm = −(

ΠA(aωfp), bfp

)
A

+
∑

z∈Q−
ω
〈
A(p)a, b

〉
Cm. (5.40)

Given that ω is supported in a neighbourhood of the order 1 + 1/|p| around Q \ Q, the last term
is bounded by
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∣∣∣∣ ∑
z∈Q−

ω
〈
Â(p)a, b

〉
Cm

∣∣∣∣� 4dld−1
(

1 + 1

|p|
)∥∥Â(p)

∥∥|a||b|

� 6dld−1
(

1 + 1

|p|
)

‖A0‖|p|2|a||b|. (5.41)

To estimate the remaining term we introduce again an additional cut-off function ω̃ for which

ω̃(z) = 1 if dist(z,Q \ Q) � 2 + 2

|p| , ω̃ = 0 if dist(z,Q \ Q) � 3 + 3

|p| ,
0 � ω̃ � 1, |∇ω̃|� c|p|. (5.42)

Then, taking into account that 1 − ω̃ and A(aωfp) have disjoint support,(
ΠA(aωfp), bfp

)
A

= (
aωfp,ΠA∗(bfp)

)
A

= (
aωfp,ΠA∗(bω̃fp)

)
A

+ (
aωfp, (1 − ω̃)1Qbfp

)
A

= (
aωfp,ΠA∗(bω̃fp)

)
A

+ 〈
A(aωfp), (1 − ω̃)1Qbfp

〉
= (

aωfp,ΠA∗(bω̃fp)
)
A
. (5.43)

Hence,

∣∣(ΠA(aωfp), bfp

)
A

∣∣� 3

2
‖aωfp‖A0

∥∥ΠA∗(bω̃fp)
∥∥

A0
� 9

2
‖aωfp‖A0‖bω̃fp‖A0

� C‖A0‖|p|2ld−1
(

1 + 1

|p|
)

|a||b|, (5.44)

where we used that ω and ω̃ are supported in a strip of order 1 + 1/|p| around Q \ Q, that
1/|p|� l and that the gradients of ω, ω̃ and fp are bounded by c|p|. The combination of (5.40),
(5.41) and (5.44) now yields the estimate

∥∥Â(p)R̂A(p)
∥∥� C‖A0‖|p|2 1

l

(
1 + 1

|p|
)

. (5.45)

In view of (5.26) this finishes the proof of (iii). �
We now define and estimate the operators CA,k . Assuming again that L� 16, we use

Qj = {1, . . . , lj − 1}d with lj =
⌊

1

8
Lj

⌋
+ 1 for j = 1, . . . ,N, (5.46)

to define TA,j ,T
′
A,j , RA,j , and R′

A,j , in the same way as before. Introducing

MA,k := RA,1 . . .RA,k−1RA,k, for k = 1, . . . ,N, and MA,0 := id, (5.47)

we set

CA,k := MA,k−1CAM
′ −MA,kCAM

′ , (5.48)
A,k−1 A,k
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for k = 1, . . . ,N and

CA,N+1 := MA,NCAM
′
A,N (5.49)

for k = N + 1.
Considering the same annuli Aj , j = 0,1, . . . ,N , introduced in (4.50) and (4.51), as well

as the functions Mk,c,L(p) and M̃k,c,L(p) defined in (4.52) and (4.53), we have the following
bound.

Lemma 5.6. Assume that A satisfies (5.1), (5.2), and (5.3). Then there exists a constant c

(depending only on ‖A0‖, c0 and the dimension d) such that for all L � 16, all N , and all
j = 1, . . . ,N , we have

∥∥M̂A,k(p)
∥∥� cMk,c,L(p) (5.50)

for k = 0, . . . ,N and

∥∥T̂A,k+1(p)M̂A,k(p)
∥∥� cM̃k,c,L(p) (5.51)

for k = 0, . . . ,N − 1.

Proof. This is similar to Lemma 4.2 for the case of real symmetric A. However, the bound
‖R̃(p)‖ � 1 for k � j has to be replaced by

∥∥R̂A,k(p)
∥∥� 1 + ∥∥T̂A,k(p)

∥∥� 1 + c
(|p|Lk

)4
. (5.52)

This yields

j∏
k=0

∥∥R̂A,k(p)
∥∥�

j∏
k=0

(
1 + c

(|p|Lk
)4)� c, (5.53)

resulting in the additional factor c in the claim. �
With the help of Lemma 4.3, we can now bound ‖CA,k‖ in the same way as in the proof of

Theorem 2.1, starting from (5.49) for k = N + 1 and from the equality

CA,k = (TA,kMA,k−1)CAM
′
A,k−1 +MA,k−1CA(TA,kMA,k−1)

′

− TA,kMA,k−1CA(TA,kMA,k−1)
′ (5.54)

for k = 1, . . . ,N . The latter follows from (5.48) using the equation RA,k = id − TA,k .
We can now use the Cauchy integral formula to control the derivatives with respect to A.
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Lemma 5.7. Let D = {z ∈ C: |z| < 1}.

(i) Suppose that f : D → Cm×m is holomorphic and

sup
z∈D

∥∥f (z)
∥∥� M. (5.55)

Then the j -th derivative satisfies ∥∥f (j)(0)
∥∥� Mj !. (5.56)

(ii) Suppose that f : D → Cm×m and g : D → Cm×m are holomorphic and

sup
z∈D

∥∥f (z)
∥∥� M1, sup

z∈D

∥∥g(z)
∥∥� M2. (5.57)

Then the function h(t) = f (t)g∗(t) is real-analytic in (−1,1) and∥∥h(j)(0)
∥∥� M1M2j !. (5.58)

Here g∗(t) denotes the adjoint matrix of g(t).

Proof. Assertion (i) follows directly from the Cauchy integral formula. To show (ii), we note
that g(z) = ∑

j aj z
j with aj ∈ Cm×m. Define G(z) := ∑

j a∗
j zj . Then G(z) = g(z∗)∗. Hence

‖G(z)‖ = ‖g(z∗)‖. Thus H := f G is holomorphic in D and satisfies supD ‖H‖� M1M2. Hence
H(k)(0) � k!M1M2. For t ∈ (−1,1) we have H(t) = h(t) and the assertion follows. �
Proof of Theorem 2.2. It only remains to show the claim (iii). Let A0 and A1 be as before and
assume in addition that A0 and A1 are real and symmetric. Set

A(z) := A0 + zA1. (5.59)

Then the maps

z �→ M̂A(z),k(p), z �→ T̂A(z),k(p)M̂A(z),k(p), z �→ M̂A(z),k(p)ĈA(z)(p),

z �→ T̂A(z),k(p)M̂A(z),k(p)ĈA(z)(p) (5.60)

are holomorphic in D. Moreover ∥∥M̂A(z),k(p)
∥∥� cMk,c,L(p),∥∥T̂A(z),k(p)M̂A(z),k(p)
∥∥� cM̃k,c,L(p),∥∥M̂A(z),k(p)ĈA(z)(p)
∥∥� c

|p|2 Mk,c,L(p),

∥∥T̂A(z),k(p)M̂A(z),k(p)ĈA(z)(p)
∥∥� c

2
M̃k,c,L(p), (5.61)
|p|
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again with the functions Mk,C,L and M̃k,C,L defined in (4.52) and (4.53), respectively. Hence it
follows from Lemma 5.7 that∥∥∥∥ dj

dt j |t=0
ĈA0+tA1,k(p)

∥∥∥∥� cj !
|p|2

(
2Mk−1,c,L(p)M̃k−1,c,L(p) + M̃2

k−1,c,L(p)
)

(5.62)

for k = 1, . . . ,N (with the obvious modification for k = N + 1). Thus Lemma 4.3 and the esti-
mate (4.49) for the inverse Fourier transform yield

sup
x∈TN

∥∥∇αD
j
ACA0,k(x)(A1, . . . ,A1)

∥∥� Cα(d)j !L−(k−1)(d−2+|α|)Lη(α,d). (5.63)

Finally suppose that ‖Ȧ‖ � 1 and set A0 = c0
2 Ȧ. Then the desired estimate (2.25) follows from

(5.63). �
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