A Meshalkin theorem for projective geometries

Matthias Beck and Thomas Zaslavsky ${ }^{1}$
Department of Mathematical Sciences, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA

Received 23 January 2003
Communicated by Bruce Rothschild
Dedicated to the memory of Lev Meshalkin

Abstract

Let \mathscr{M} be a family of sequences $\left(a_{1}, \ldots, a_{p}\right)$ where each a_{k} is a flat in a projective geometry of rank n (dimension $n-1$) and order q, and the sum of ranks, $r\left(a_{1}\right)+\cdots+r\left(a_{p}\right)$, equals the rank of the join $a_{1} \vee \cdots \vee a_{p}$. We prove upper bounds on $|\mathscr{M}|$ and corresponding LYM inequalities assuming that (i) all joins are the whole geometry and for each $k<p$ the set of all a_{k} 's of sequences in \mathscr{M} contains no chain of length l, and that (ii) the joins are arbitrary and the chain condition holds for all k. These results are q-analogs of generalizations of Meshalkin's and Erdős's generalizations of Sperner's theorem and their LYM companions, and they generalize Rota and Harper's q-analog of Erdős's generalization.

© 2003 Elsevier Science (USA). All rights reserved.
MSC: Primary 05D05; 51E20; Secondary 06A07
Keywords: Sperner's theorem; Meshalkin's theorem; LYM inequality; Antichain; r-family; r-chain-free

1. Introducing the players

We present a theorem that is at once a q-analog of a generalization, due to Meshalkin, of Sperner's famous theorem on antichains of sets and a generalization

[^0]of Rota and Harper's q-analog of both Sperner's theorem and Erdős's generalization.

Sperner's theorem [12] concerns a subset \mathscr{A} of $\mathscr{P}(S)$, the power set of an n-element set S, that is an antichain: no member of \mathscr{A} contains another. It is part (b) of the following theorem. Part (a), which easily implies (b) (see, e.g., [1, Section 1.2]) was found later by Lubell [9], Yamamoto [13], and Meshalkin [10] (and Bollobás independently proved a generalization [4]); consequently, it and similar inequalities are called LYM inequalities.

Theorem 1. Let \mathscr{A} be an antichain of subsets of S. Then:
(a) $\sum_{A \in \mathscr{A}} \frac{1}{|A|} \leqslant 1$ and
(b) $|\mathscr{A}| \leqslant\binom{ n}{\lfloor n / 2\rfloor}$.
(c) Equality occurs in (a) and (b) if \mathscr{A} consists of all subsets of S of size $\lfloor n / 2\rfloor$, or all of size $\lceil n / 2\rceil$.

The idea of Meshalkin's insufficiently well known generalization ${ }^{2}$ (an idea he attributes to Sevast'yanov) is to consider ordered p-tuples $A=\left(A_{1}, \ldots, A_{p}\right)$ of pairwise disjoint sets whose union is S. We call these weak compositions of S into p parts.

Theorem 2. Let \mathscr{M} be a family of weak compositions of S into p parts such that each set $\mathscr{M}_{k}=\left\{A_{k}: A \in \mathscr{M}\right\}$ is an antichain.
(a) $\sum_{A \in \mathscr{M}} \frac{1}{\binom{n}{\left|A_{1}\right|, \ldots,\left|A_{p}\right|}} \leqslant 1$.
(b) $|\mathscr{M}| \leqslant \max _{\alpha_{1}+\cdots+\alpha_{p}=n}\binom{n}{\alpha_{1}, \ldots, \alpha_{p}}=\binom{n}{\left\lceil\frac{n}{p}\right\rceil, \ldots,\left\lceil\frac{n}{p}\right\rceil,\left\lfloor\frac{n}{p}\right\rfloor, \ldots,\left\lfloor\frac{n}{p}\right\rfloor}$.
(c) Equality occurs in (a) and (b) if, for each k, \mathscr{M}_{k} consists of all subsets of S of size $\left\lceil\frac{n}{p}\right\rceil$, or all of size $\left\lfloor\frac{n}{p}\right\rfloor$.

Part (b) is Meshalkin's theorem [10]; the corresponding LYM inequality (a) was subsequently found by Hochberg and Hirsch [7]. (In expressions like the multinomial coefficient in (b), since the lower numbers must sum to n, the number of them that equal $\left\lceil\frac{n}{p}\right\rceil$ is the least nonnegative residue of n modulo $p+1$.)

In [2] Wang and we generalized Theorem 2 in a way that simultaneously also generalizes Erdős's theorem on l-chain-free families: subsets of $\mathscr{P}(S)$ that contain no chain of length l. (Such families have been called " r-families" and " k families", where r or k is the forbidden length. We believe a more suggestive name is needed.)

[^1]Theorem 3 (Beck et al. [2, Corollary 4.1]). Let \mathscr{M} be a family of weak compositions of S into p parts such that each \mathscr{M}_{k}, for $k<p$, is l-chain-free. Then:
(a) $\sum_{A \in \mathscr{M}} \frac{1}{\left(\left|A_{1}\right|, \ldots,\left|A_{p}\right|\right)} \leqslant l^{p-1}$, and
(b) $|\mathscr{M}|$ is no greater than the sum of the l^{p-1} largest multinomial coefficients of the form $\binom{n}{\alpha_{1}, \ldots, \alpha_{p}}$.

Erdős's theorem [6] is essentially the case $p=2$, in which $A_{2}=S \backslash A_{1}$ is redundant. The upper bound is then the sum of the l largest binomial coefficients $\binom{n}{j}, 0 \leqslant j \leqslant n$, and is attained by taking a suitable subclass of $\mathscr{P}(S)$. In general the bounds in Theorem 3 cannot be attained [2, Section 5].

Rota and Harper began the process of q-analogizing by finding versions of Sperner's and Erdős's theorems for finite projective geometries [11]. We think of a projective geometry $\mathbb{P}^{n-1}=\mathbb{P}^{n-1}(q)$ of order q and rank n (i.e., dimension $n-1$) as a lattice of flats, in which $\hat{0}=\emptyset$ and $\hat{1}$ is the whole set of points. The rank of a flat a is $r(a)=\operatorname{dim} a+1$. The q-Gaussian coefficients (usually the " q " is omitted) are the quantities

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{n!_{q}}{k!_{q}(n-k)!_{q}} \quad \text { where } n!_{q}=\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots(q-1) \text {. }
$$

They are the q-analogs of the binomial coefficients. Again, a family of projective flats is l-chain-free if it contains no chain of length l. Let \mathscr{L}_{k} be the set of all flats of rank k in $\mathbb{P}^{n-1}(q)$.

Theorem 4 (Rota and Harper [11, p. 200]). Let \mathscr{A} be an l-chain-free family of flats in $\mathbb{P}^{n-1}(q)$.
(a) $\sum_{a \in \mathscr{A}} \frac{1}{\left[\begin{array}{c}n \\ r(a)\end{array}\right]} \leqslant l$.
(b) $|\mathscr{A}|$ is at most the sum of the 1 largest Gaussian coefficients $\left[\begin{array}{c}n \\ j\end{array}\right]$ for $0 \leqslant j \leqslant n$.
(c) There is equality in (a) and (b) when \mathscr{A} consists of the l largest classes \mathscr{L}_{k}, if $n-l$ is even, or the $l-1$ largest classes and one of the two next largest classes, if $n-l$ is odd.

Our q-analog theorem concerns the projective analogs of weak compositions of a set. A Meshalkin sequence of length p in $\mathbb{P}^{n-1}(q)$ is a sequence $a=\left(a_{1}, \ldots, a_{p}\right)$ of flats whose join is $\hat{1}$ and whose ranks sum to n. The submodular law implies that, if
$a_{J}:=\bigvee_{j \in J} a_{j}$ for an index subset $J \subseteq[p]=\{1,2, \ldots, p\}$, then $a_{I} \wedge a_{J}=\hat{0}$ for any disjoint $I, J \subseteq[p]$; so the members of a Meshalkin sequence are highly disjoint.

To state the result we need a few more definitions. If \mathscr{M} is a set of Meshalkin sequences, then for each $k \in[p]$ we define $\mathscr{M}_{k}:=\left\{a_{k}:\left(a_{1}, \ldots, a_{p}\right) \in \mathscr{M}\right\}$. If $\alpha_{1}, \ldots, \alpha_{p}$ are nonnegative integers whose sum is n, we define the Gaussian (or q-Gaussian) multinomial coefficient to be

$$
\left[\begin{array}{c}
n \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
n \\
\alpha_{1}, \ldots, \alpha_{p}
\end{array}\right]=\frac{n!_{q}}{\alpha_{1}!_{q} \cdots \alpha_{p}!_{q}},
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$. We write

$$
s_{2}(\alpha)=\sum_{i<j} \alpha_{i} \alpha_{j}
$$

for the second elementary symmetric function of α. If a is a Meshalkin sequence, we write

$$
r(a)=\left(r\left(a_{1}\right), \ldots, r\left(a_{p}\right)\right)
$$

for the sequence of ranks. We define $\mathbb{P}^{n-1}(q)$ to be empty if $n=0$, a point if $n=1$, and a line of $q+1$ points if $n=2$.

Theorem 5. Let $n \geqslant 0, l \geqslant 1, p \geqslant 2$, and $q \geqslant 2$. Let \mathscr{M} be a family of Meshalkin sequences of length p in $\mathbb{P}^{n-1}(q)$ such that, for each $k \in[p-1], \mathscr{M}_{k}$ contains no chain of length l. Then
(a) $\sum_{a \in \mathscr{M}} \frac{1}{\left[\begin{array}{c}n \\ r(a)\end{array}\right] q^{s_{2}(r(a))}} \leqslant l^{p-1}$, and
(b) $|\mathscr{M}|$ is at most equal to the sum of the l^{p-1} largest amongst the quantities $\left[\begin{array}{c}n \\ \alpha\end{array}\right]^{s_{2}(\alpha)}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ with all $\alpha_{k} \geqslant 0$ and $\alpha_{1}+\cdots+\alpha_{p}=n$.

The antichain case (where $l=1$), the analog of Meshalkin's and Hochberg and Hirsch's theorems, is captured in

Corollary 6. Let \mathscr{M} be a family of Meshalkin sequences of length $p \geqslant 2$ in $\mathbb{P}^{n-1}(q)$ such that each \mathscr{M}_{k} for $k<p$ is an antichain. Then
(a) $\sum_{a \in \mathscr{M}} \frac{1}{\left[\begin{array}{c}n \\ r(a)\end{array}\right] q^{s_{2}(r(a))}} \leqslant 1$, and
(b) $|\mathscr{M}| \leqslant \max _{\alpha}\left[\begin{array}{c}n \\ \alpha\end{array}\right] q^{s_{2}(r(a))}=\left[\begin{array}{c}n \\ \left\lceil\frac{n}{p}\right\rceil, \ldots,\left\lceil\frac{n}{p}\right\rceil,\left\lfloor\frac{n}{p}\right\rfloor, \ldots,\left\lfloor\frac{n}{p}\right\rfloor\end{array}\right] q^{s_{2}(\lceil n / p\rceil, \ldots,\lceil n / p\rceil,\lfloor n / p\rfloor, \ldots,\lfloor n / p\rfloor)}$.
(c) Equality holds in (a) and (b) if, for each k, \mathscr{M}_{k} consists of all flats of rank $\left\lceil\frac{n}{p}\right\rceil$ or all of $\operatorname{rank}\left\lfloor\frac{n}{p}\right\rfloor$.

We believe-but without proof-that the largest families \mathscr{M} described in (c) are the only ones.

Notice that we do not place any condition in either the theorem or its corollary on \mathscr{M}_{p}.

Our theorem is not exactly a generalization of that of Rota and Harper because a flat in a projective geometry has a variable number of complements, depending on its rank. Still, our result does imply this and a generalization, as we shall demonstrate in Section 4.

2. Proof of Theorem 5

The proof of Theorem 5 is adapted from the short proof of Theorem 3 in [3]. It is complicated by the multiplicity of complements of a flat, so we require the powerful lemma of Harper et al. ([8, Lemma 3.1.3], improving on [11, p. 199, Lemma]; for a short proof see [2, Lemmas 3.1 and 5.2]) and a count of the number of complements.

Lemma 7. Suppose given real numbers $m_{1} \geqslant m_{2} \geqslant \cdots \geqslant m_{N} \geqslant 0$, other real numbers $q_{1}, \ldots, q_{N} \in[0,1]$, and an integer P with $1 \leqslant P \leqslant N$. If $\sum_{k=1}^{N} q_{k} \leqslant P$, then

$$
\begin{equation*}
q_{1} m_{1}+\cdots+q_{N} m_{N} \leqslant m_{1}+\cdots+m_{P} \tag{1}
\end{equation*}
$$

Let $m_{P^{\prime}+1}$ and $m_{P^{\prime \prime}}$ be the first and last m_{k} 's equal to m_{P}. Assuming $m_{P}>0$, there is equality in (1) if and only if

$$
q_{k}=1 \text { for } m_{k}>m_{P}, \quad q_{k}=0 \text { for } m_{k}<m_{P}, \quad \text { and } \quad q_{P^{\prime}+1}+\cdots+q_{P^{\prime \prime}}=P-P^{\prime}
$$

Lemma 8. A flat of rank k in $\mathbb{P}^{n-1}(q)$ has $q^{k(n-k)}$ complements.
Proof. The number of ways to extend a fixed ordered basis $\left(P_{1}, \ldots, P_{k}\right)$ of the flat to an ordered basis $\left(P_{1}, \ldots, P_{n}\right)$ of $\mathbb{P}^{n-1}(q)$ is

$$
\frac{q^{n}-q^{k}}{q-1} \frac{q^{n}-q^{k+1}}{q-1} \cdots \frac{q^{n}-q^{n-1}}{q-1}
$$

Then $P_{k+1} \vee \cdots \vee P_{n}$ is a complement and is generated by the last $n-k$ points in

$$
\frac{q^{n-k}-1}{q-1} \frac{q^{n-k}-q}{q-1} \cdots \frac{q^{n-k}-q^{n-k-1}}{q-1}
$$

of the extended ordered bases. Dividing the former by the latter, there are

$$
q\left(\binom{n}{2}-\binom{k}{2}\right)-\binom{n-k}{2}=q^{k(n-k)}
$$

complements.
Proof of Theorem 5(a). We proceed by induction on p. For a flat f, define

$$
\mathscr{M}(f):=\left\{\left(a_{2}, \ldots, a_{p}\right):\left(f, a_{2}, \ldots, a_{p}\right) \in \mathscr{M}\right\}
$$

and also, letting c be another flat, define

$$
\mathscr{M}^{c}(f):=\left\{\left(a_{2}, \ldots, a_{p}\right) \in \mathscr{M}(f): a_{2} \vee \cdots \vee a_{p}=c\right\}
$$

For $a \in \mathscr{M}$, we write $r_{1}=r\left(a_{1}\right)$. Finally, $\mathscr{C}\left(a_{1}\right)$ is the set of complements of a_{1}. If $p>2$, then

$$
\begin{aligned}
\sum_{a \in \mathscr{M}} \frac{1}{\left[\begin{array}{c}
n \\
r(a)
\end{array}\right] q^{s_{2}(r(a))}} & =\sum_{a_{1} \in \mathscr{M}_{1}} \frac{1}{\left[\begin{array}{c}
n \\
r_{1}
\end{array}\right] q^{r_{1}\left(n-r_{1}\right)}} \sum_{a^{\prime} \in \mathscr{M}\left(a_{1}\right)} \frac{1}{\left[\begin{array}{c}
n-r_{1} \\
r\left(a^{\prime}\right)
\end{array}\right] q^{s_{2}\left(r\left(a^{\prime}\right)\right)}} \\
& =\sum_{a_{1} \in \mathscr{M}_{1}} \frac{1}{\left[\begin{array}{c}
n \\
r_{1}
\end{array}\right] q^{r_{1}\left(n-r_{1}\right)}} \sum_{c \in \mathscr{C}\left(a_{1}\right)} \sum_{a^{\prime} \in \mathscr{M}^{c}\left(a_{1}\right)} \frac{1}{\left[\begin{array}{c}
n-r_{1} \\
r\left(a^{\prime}\right)
\end{array}\right] q^{s_{2}\left(r\left(a^{\prime}\right)\right)}} \\
& \leqslant \sum_{a_{1} \in \mathscr{M}_{1}} \frac{1}{\left[\begin{array}{c}
n \\
r_{1}
\end{array}\right] q^{r_{1}\left(n-r_{1}\right)}} \sum_{c \in \mathscr{C}\left(a_{1}\right)} p^{p-2}
\end{aligned}
$$

by induction, because $\mathscr{M}^{c}\left(a_{1}\right)$ is a Meshalkin family in $c \cong \mathbb{P}^{r(c)-1}=\mathbb{P}^{n-r_{1}-1}$ and each $\mathscr{M}_{k}^{c}\left(a^{\prime}\right)$ for $k<p-1$, being a subset of \mathscr{M}_{k+1}, is l-chain-free,

$$
=\sum_{a_{1} \in M_{1}} \frac{1}{\left[\begin{array}{c}
n \\
r_{1}
\end{array}\right] q^{r_{1}\left(n-r_{1}\right)}} q^{r_{1}\left(n-r_{1}\right)} l^{p-2}
$$

by Lemma 8,

$$
\leqslant l \cdot l^{p-2}
$$

by the theorem of Rota and Harper.
The initial case, $p=2$, is similar except that the innermost sum in the second step equals 1 .

Lemma 9. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ with all $\alpha_{k} \geqslant 0$ and $\alpha_{1}+\cdots+\alpha_{p}=n$. The number of all Meshalkin sequences a in \mathbb{P}^{n-1} with $r(a)=\alpha$ is $\left.\left[\begin{array}{c}n \\ \alpha\end{array}\right]\right]^{s_{2}(\alpha)}$.

Proof. If $p=1$, then $a=\hat{1}$ so the conclusion is obvious. If $p>1$, we get a Meshalkin sequence of length p in \mathbb{P}^{n-1} with rank sequence $r(a)=\alpha$ by choosing a_{1} to have rank α_{1}, then a complement c of a_{1}, and finally a Meshalkin sequence a^{\prime} of length $p-1$ in $c \cong \mathbb{P}^{r(c)-1}=\mathbb{P}^{n-\alpha_{1}-1}$ whose rank sequence is $\alpha^{\prime}=\left(\alpha_{2}, \ldots, \alpha_{p}\right)$. The first choice can be made in $\left[\begin{array}{c}n-\alpha_{1} \\ \alpha_{1}^{\prime}\end{array}\right]$ ways, the second in $q^{\alpha_{1}\left(n-\alpha_{1}\right)}$ ways, and the third, by induction, in $\left[\begin{array}{c}n-\alpha_{1} \\ \alpha^{\prime}\end{array}\right] q^{s_{2}\left(\alpha^{\prime}\right)}$ ways. Multiply.

Proof of Theorem $\mathbf{5}(\mathbf{b})$. Let $N(\alpha)$ be the number of $a \in \mathscr{M}$ for which $r(a)=\alpha$. In Lemma 7 take

$$
q_{\alpha}=\frac{N(\alpha)}{\left[\begin{array}{l}
n \\
\alpha
\end{array}\right] q^{s_{2}(\alpha)}} \quad \text { and } \quad m_{\alpha}=\left[\begin{array}{l}
n \\
\alpha
\end{array}\right] q^{s_{2}(\alpha)}
$$

and number all possible α so that $m_{\alpha^{1}} \geqslant m_{\alpha^{2}} \geqslant \cdots$.
Lemma 9 shows that all $q_{\alpha} \leqslant 1$ so Lemma 7 does apply. The conclusion is that

$$
|\mathscr{M}|=\sum_{i=1}^{N} q_{\alpha^{i}} m_{\alpha^{i}} \leqslant\left[\begin{array}{c}
n \\
\alpha^{1}
\end{array}\right] q^{s_{2}\left(\alpha^{1}\right)}+\cdots+\left[\begin{array}{c}
n \\
\alpha^{P}
\end{array}\right] q^{s_{2}\left(\alpha^{P}\right)}
$$

where $N=\binom{n+p-1}{p-1}$, the number of sequences α, and $P=\min \left(l^{p-1}, N\right)$.

3. Strangeness of the LYM inequality

There is something odd about the LYM inequality in Theorem 5(a). A normal LYM inequality would be expected to have denominator $\left[\begin{array}{c}n \\ r(a)\end{array}\right]$ without the extra factor $q^{s_{2}(r(a))}$. Such an LYM inequality does exist; it is a corollary of Theorem 5(a); but it is not strong enough to give the upper bound on $|\mathscr{M}|$. We prove this weaker inequality here.

Proposition 10. Assume the hypotheses of Theorem 5; that is, $n \geqslant 0, l \geqslant 1, p \geqslant 2$, and $q \geqslant 2$, and \mathscr{M} is a family of Meshalkin sequences of length p in $\mathbb{P}^{n-1}(q)$ such that, for each $k \in[p-1]$, \mathscr{M}_{k} contains no chain of length l. Then $\sum_{a \in \mathscr{M}}\left[\begin{array}{c}n \\ r(a)\end{array}\right]^{-1}$ is bounded above by the sum of the l^{p-1} largest expressions $q^{s_{2}(\alpha)}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ with all $\alpha_{k} \geqslant 0$ and $\alpha_{1}+\cdots+\alpha_{p}=n$.

Proof. Again we apply Lemma 7, this time with $q_{\alpha}=N(\alpha) /\left[\begin{array}{c}n \\ \alpha\end{array}\right] q^{s_{2}(\alpha)}$ and $M_{\alpha}=q^{s_{2}(\alpha)}$.

4. A "partial" corollary

We deduce Theorem 4(a) from the case $p=2$ of Theorem 5(a). Our purpose is not to give a new proof of Theorem 4 but to show that we have a generalization of it.

The key to the proof is that \mathscr{M}_{2} in our theorem is not required to be l-chain-free. Therefore if we have an l-chain-free set \mathscr{A} of flats in \mathbb{P}^{n-1}, we can define

$$
\mathscr{M}=\{(a, c): a \in \mathscr{A} \text { and } c \in \mathscr{C}(a)\}
$$

and \mathscr{M} will satisfy the requirements of Theorem 5. The LYM sum in Theorem 5(a) then equals the LYM sum in Theorem 4(a), and we are done.

The same argument gives a general corollary. A partial Meshalkin sequence of length p is a sequence $a=\left(a_{1}, \ldots, a_{p}\right)$ of flats in $\mathbb{P}^{n-1}(q)$ such that $r\left(a_{1} \vee \cdots \vee a_{p}\right)=$ $r\left(a_{1}\right)+\cdots+r\left(a_{p}\right)$. We simply do not require the join $\hat{a}=a_{1} \vee \cdots \vee a_{p}$ to be $\hat{1}$. The generalized Rota-Harper theorem is:

Corollary 11. Let $p \geqslant 1, l \geqslant 1, q \geqslant 2$, and $n \geqslant 0$. Let \mathscr{M} be a family of partial Meshalkin sequences of length p in $\mathbb{P}^{n-1}(q)$ such that, for each $k \in[p], \mathscr{M}_{k}$ contains no chain of length l. Then
(a) $\sum_{a \in \mathcal{M}} \frac{1}{\left[\begin{array}{c}n \\ r(\hat{a})\end{array}\right]\left[\begin{array}{c}r(\hat{a}) \\ r(a)\end{array}\right] q^{s_{2}(r(a))}} \leqslant l^{p}$ and
(b) $|\mathscr{M}|$ is at most equal to the sum of the l^{p} largest amongst the quantities $\left[\begin{array}{c}n \\ \alpha\end{array}\right] q^{s_{2}(\alpha)}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p+1}\right)$ with all $\alpha_{k} \geqslant 0$ and $\alpha_{1}+\cdots+\alpha_{p+1}=n$.

As a special case we generalize the q-analog of Sperner's theorem. (The q-analog is the case $p=1$.)

Corollary 12. Let \mathscr{M} be a family of partial Meshalkin sequences of length $p \geqslant 1$ in \mathbb{P}^{n-1} such that each \mathscr{M}_{k} is an antichain. Then:
(a) $\sum_{a \in \mathscr{M}} \frac{1}{\left[\begin{array}{c}n \\ r(\hat{a})\end{array}\right]\left[\begin{array}{c}r(\hat{a}) \\ r(a)\end{array}\right] q^{s_{2}(r(a))}} \leqslant 1$.
(b) $|\mathscr{M}| \leqslant \begin{gathered}n \\ \alpha\end{gathered} q^{s_{2}(\alpha)}$, in which $\alpha=\left(\left\lceil\frac{n}{p+1}\right\rceil, \ldots,\left\lceil\frac{n}{p+1}\right\rceil,\left\lfloor\frac{n}{p+1}\right\rfloor, \ldots,\left\lfloor\frac{n}{p+1}\right\rfloor\right)$ where the number of terms equal to $\left\lceil\frac{n}{p+1}\right\rceil$ is the least nonnegative residue of n modulo $p+1$.
(c) Equality holds in (a) and (b) if, for each k, \mathscr{M}_{k} consists of all flats of rank $\left\lceil\frac{n}{p+1}\right\rceil$ or all flats of rank $\left\lfloor\frac{n}{p+1}\right\rfloor$.

We conjecture that the largest families \mathscr{M} described in (c) are unique.

References

[1] I. Anderson, Combinatorics of Finite Sets, Clarendon Press, Oxford, 1987 (Corr. repr., Dover, Mineola, NY, 2002).
[2] M. Beck, Xueqin Wang, T. Zaslavsky, A unifying generalization of Sperner's theorem, submitted.
[3] M. Beck, T. Zaslavsky, A shorter, simpler, stronger proof of the Meshalkin-Hochberg-Hirsch bounds on componentwise antichains, J. Combin. Theory Ser. A 100 (2002) 196-199.
[4] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hung. 16 (1965) 447-452.
[5] K. Engel, Sperner Theory, Encyclopedia of Mathematics and Its Applications, Vol. 65, Cambridge University Press, Cambridge, 1997.
[6] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945) 898-902.
[7] M. Hochberg, W.M. Hirsch, Sperner families, s-systems, and a theorem of Meshalkin, Ann. New York Acad. Sci. 175 (1970) 224-237.
[8] D.A. Klain, G.-C. Rota, Introduction to Geometric Probability, Cambridge University Press, Cambridge, 1997.
[9] D. Lubell, A short proof of Sperner's theorem, J. Combin. Theory 1 (1966) 209-214.
[10] L.D. Meshalkin, Generalization of Sperner's theorem on the number of subsets of a finite set, Teor. Verojatnost. Primenen 8 (1963) 219-220 (in Russian) (English trans., Theor. Probab. Appl. 8 (1963) 203-204).
[11] G.-C. Rota, L.H. Harper, Matching theory, an introduction, in: P. Ney (Ed.), Advances in Probability and Related Topics, Vol. 1, Marcel Dekker, New York, 1971, pp. 169-215.
[12] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544-548.
[13] K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954) 343-353.

[^0]: E-mail addresses: matthias@math.binghamton.edu (M. Beck), zaslav@math.binghamton.edu (T. Zaslavsky).
 ${ }^{1}$ Research supported by National Science Foundation grant DMS-0070729.

[^1]: ${ }^{2}$ We do not find it in books on the subject [1,5] but only in [8].

