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Abstract

Let .# be a family of sequences (i, ...,a,) where each ay is a flat in a projective geometry
of rank n (dimension n — 1) and order ¢, and the sum of ranks, r(a;) + --- +r(a,), equals
the rank of the join a@;v---va, We prove upper bounds on [.#| and corresponding
LYM inequalities assuming that (i) all joins are the whole geometry and for each k<p
the set of all a;’s of sequences in .# contains no chain of length /, and that (ii) the
joins are arbitrary and the chain condition holds for all k. These results are g-analogs
of generalizations of Meshalkin’s and Erdds’s generalizations of Sperner’s theorem and
their LYM companions, and they generalize Rota and Harper’s g-analog of Erdos’s
generalization.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introducing the players

We present a theorem that is at once a g-analog of a generalization, due to
Meshalkin, of Sperner’s famous theorem on antichains of sets and a generalization
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of Rota and Harper’s g-analog of both Sperner’s theorem and Erdds’s general-
ization.

Sperner’s theorem [12] concerns a subset .oZ of 2(S), the power set of an n-element
set S, that is an antichain: no member of .o/ contains another. It is part (b) of the
following theorem. Part (a), which easily implies (b) (see, e.g., [1, Section 1.2]) was
found later by Lubell [9], Yamamoto [13], and Meshalkin [10] (and Bollobas
independently proved a generalization [4]); consequently, it and similar inequalities
are called LYM inequalities.

Theorem 1. Let </ be an antichain of subsets of S. Then:

@) Ddew ﬁgl and

) /1< (1))
(¢) Equality occurs in (a) and (b) if </ consists of all subsets of S of size | n/2 |, or all
of size [n/21].

The idea of Meshalkin’s insufficiently well known generalization® (an idea he
attributes to Sevast’yanov) is to consider ordered p-tuples 4 = (A4i,...,4,) of
pairwise disjoint sets whose union is S. We call these weak compositions of S into p
parts.

Theorem 2. Let .4 be a family of weak compositions of S into p parts such that each
set My = {Ay: Ae .M} is an antichain.

@ Sy,
a) > e <\Al|”"1,,\Aﬂ|>
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n
b) |A4 <ma o4 Fo,=n " = n n n n .
(b) || <maxy ;... (a,‘,...,a) <[;]’ e LR s L;J)
(¢) Equality occurs in () and (b) if, for each k, 4. consists of all subsets of S of size

[21, or all of size | 7 ].

Part (b) is Meshalkin’s theorem [10]; the corresponding LYM inequality (a) was
subsequently found by Hochberg and Hirsch [7]. (In expressions like the multinomial
coefficient in (b), since the lower numbers must sum to n, the number of them that
equal [lﬂ]] is the least nonnegative residue of » modulo p + 1.)

In [2] Wang and we generalized Theorem 2 in a way that simultaneously
also generalizes Erdds’s theorem on [-chain-free families: subsets of 2(S) that
contain no chain of length /. (Such families have been called “‘r-families” and “k-
families”, where r or k is the forbidden length. We believe a more suggestive name is
needed.)

2We do not find it in books on the subject [1,5] but only in [8].
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Theorem 3 (Beck et al. [2, Corollary 4.1]). Let .4 be a family of weak compositions of
S into p parts such that each My, for k<p, is I-chain-free. Then:

1
@ > 4cu (‘Al |..'.1v7\A1’|>

<! and

(b) |-4| is no greater than the sum of the IP~" largest multinomial coefficients of the

n

form o )

Erdo6s’s theorem [6] is essentially the case p = 2, in which 4, = S\A4; is redundant.
The upper bound is then the sum of the / largest binomial coefficients (7), 0<j<n,
and is attained by taking a suitable subclass of #(S). In general the bounds in
Theorem 3 cannot be attained [2, Section 5].

Rota and Harper began the process of g-analogizing by finding versions of
Sperner’s and Erdos’s theorems for finite projective geometries [11]. We think of a
projective geometry P"~! = p ! (q) of order ¢ and rank n (i.e., dimension n — 1) as
a lattice of flats, in which 0 = @ and 1 is the whole set of points. The rank of a flat a is
r(a) =dima+ 1. The g-Gaussian coefficients (usually the “g” is omitted) are the
quantities

l,lj =k,1(:'_qk),1 where nly = (¢" = 1)(¢"' = 1) (¢ - 1).

They are the g-analogs of the binomial coefficients. Again, a family of projective flats
is [-chain-free if it contains no chain of length /. Let ¥ be the set of all flats of rank k

in P""!(gq).

Theorem 4 (Rota and Harper [11, p. 200]). Let .«/ be an l-chain-free family of flats in
P (g).

@ e {}1—}@.
r(a)

(b) || is at most the sum of the | largest Gaussian coefficients m for 0<j<n.

(c) There is equality in (a) and (b) when o/ consists of the | largest classes Ly, if n — 1
is even, or the | — 1 largest classes and one of the two next largest classes, if n — [
is odd.

Our g-analog theorem concerns the projective analogs of weak compositions of a
set. A Meshalkin sequence of length p in P"~'(q) is a sequence a = (ay, ..., ap) of flats
whose join is 1 and whose ranks sum to n. The submodular law implies that, if
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ay = \/jej a; for an index subset J<[p] = {1,2,...,p}, then a;ray =0 for any
disjoint I,J < |[p]; so the members of a Meshalkin sequence are highly disjoint.

To state the result we need a few more definitions. If .# is a set of Meshalkin
sequences, then for each ke[p| we define /%) = {ay : (a1, ...,ay)ed}. If oy, ..., 0,
are nonnegative integers whose sum is n, we define the Gaussian (or g-Gaussian)
multinomial coefficient to be

|
n . n . ny
- - )
o OC],...,OCP O(I!q"'ap!q

where o = («y, ..., 0,). We write
s2(0) = Z 00l
i<j
for the second elementary symmetric function of «. If @ is a Meshalkin sequence, we
write

r(a) = (r(ar), ..., r(ap))
for the sequence of ranks. We define P"~!(g) to be empty if n = 0, a point if n = 1,
and a line of ¢ + 1 points if n = 2.

Theorem 5. Letn>0,[/=1,p>=2, and q=2. Let .M be a family of Meshalkin sequences of
length p in P "~(q) such that, for each ke[p — 1], M}, contains no chain of length I. Then

1
@) Zae"ﬂ [(")} qsz(r(a))
rla

(b) || is at most equal to the sum of the IP~" largest amongst the quantities ["] ¢*>®
SJor o= (o1, ...,0p) with all 0 =0 and oy + -+ + o, = n.

<P and

The antichain case (where / = 1), the analog of Meshalkin’s and Hochberg and
Hirsch’s theorems, is captured in

Corollary 6. Let ./ be a family of Meshalkin sequences of length p=2 in P"~'(q) such
that each My for k<p is an antichain. Then

a y T
@ > e [Y&J g2 (@)

(c) Equality holds in (a) and (b) if, for each k, M consists of all flats of rank | ;ﬂ or
all of rank | % ].

We believe—but without proof—that the largest families .# described in (c) are
the only ones.
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Notice that we do not place any condition in either the theorem or its corollary
on M.

Our theorem is not exactly a generalization of that of Rota and Harper because a
flat in a projective geometry has a variable number of complements, depending on its
rank. Still, our result does imply this and a generalization, as we shall demonstrate in
Section 4.

2. Proof of Theorem 5

The proof of Theorem 5 is adapted from the short proof of Theorem 3 in [3]. It is
complicated by the multiplicity of complements of a flat, so we require the powerful
lemma of Harper et al. ([8, Lemma 3.1.3], improving on [11, p. 199, Lemma]; for a
short proof see [2, Lemmas 3.1 and 5.2]) and a count of the number of complements.

Lemma 7. Suppose given real numbers my=my>=--- =my =0, other real numbers
qi, .-, qn €0, 1], and an integer P with | <P<N. IfZ,iV:I qr < P, then

qimy + - +gvmy<my + - +mp. (1)

Let mp\ and mpr be the first and last my’s equal to mp. Assuming mp >0, there is
equality in (1) if and only if

qr = 1 for mg>mp, q =0 for my<mp, and qpii+ - +qp=P—P.

Lemma 8. A flat of rank k in P"~'(q) has ¢""=%) complements.

Proof. The number of ways to extend a fixed ordered basis (P, ..., P) of the flat to
an ordered basis (P, ..., P,) of P""!(g) is

qn _qkqn _ qk+1 qn _qn—l
g—1 ¢q-1 q—1

Then Py, qvVv -+ v P, is a complement and is generated by the last n — k points in

qn—k 1 qn—k —q qn—k _ qn—k—l
g—1 ¢q-1 q—1

of the extended ordered bases. Dividing the former by the latter, there are
n k n—k
q((z)*(z))*( ) gk =k

complements. [

Proof of Theorem 5(a). We proceed by induction on p. For a flat f, define
M) ={(az, ...,ay): (f, a2, ...,a,) €M}
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and also, letting ¢ be another flat, define

M(f) ={(ar,...,ap) e d(f) :arVv ---va, = c}.

For ae .4, we write r; = r(a;). Finally, (a;) is the set of complements of a;. If p> 2,
then

r(d")

N
N
1

r

by induction, because .#(a;) is a Meshalkin family in ¢ P")~! = p*="1-! and each
AMi(d) for k<p — 1, being a subset of .#y1, is [-chain-free,

_ Z 1 qu(nfrl)lp72
[ ‘| qu(nfrl)

ap 6.///1 n
r
by Lemma 8§,
-2
<[P

by the theorem of Rota and Harper.
The initial case, p = 2, is similar except that the innermost sum in the second step
equals 1. O

Lemma 9. Let o = (o, ...,0p) with all x>0 and oy + --- + o, = n. The number of all
Meshalkin sequences a in P"~" with r(a) = o is ["]¢=®.

Proof. If p =1, thena = 1 so the conclusion is obvious. If p>1, we get a Meshalkin
sequence of length p in P"~! with rank sequence r(a) = a by choosing a; to have rank
o1, then a complement ¢ of @y, and finally a Meshalkin sequence &' of length p — 1 in

cx= PO~ = pr=2=1 whose rank sequence is & = (22, ..., a,). The first choice can be
made in ["'] ways, the second in ¢* ") ways, and the third, by induction, in
["]¢%*) ways. Multiply. O
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Proof of Theorem 5(b). Let N(o) be the number of ae.# for which r(a) =a. In
Lemma 7 take

= N and my, = [n] g™,
o

and number all possible o so that m, =m,>---
Lemma 9 shows that all ¢, <1 so Lemma 7 does apply. The conclusion is that

N n o (] n
|ﬂ| :Z oMy < q32<°‘)_|_ e
i=1

of

. P
N g,

where N = (”;’:1>7 the number of sequences «, and P = min(/~', N). O

3. Strangeness of the LYM inequality

There is something odd about the LYM inequality in Theorem 5(a). A normal
LYM inequality would be expected to have denominator [r:a )} without the extra

factor ¢2((@). Such an LYM inequality does exist; it is a corollary of Theorem 5(a);
but it is not strong enough to give the upper bound on |.#|. We prove this weaker
inequality here.

Proposition 10. Assume the hypotheses of Theorem S; that is, n=0, =1, p=2, and
q=2, and M is a family of Meshalkin sequences of length p in P"~'(q) such that, for

-1
each kelp — 1], My contains no chain of length 1. Then %" ._ , [,,(:1)} is bounded

above by the sum of the I"~" largest expressions ¢**) for o = (a1, ..., ) with all o0y >0
and oy + -+ + o, = 1.

Proof. Again we apply Lemma 7, this time with ¢, = N(x)/[!]¢*® and
M, = qu(fx)_ 0

4. A ‘“‘partial” corollary

We deduce Theorem 4(a) from the case p = 2 of Theorem 5(a). Our purpose is not
to give a new proof of Theorem 4 but to show that we have a generalization of it.
The key to the proof is that .45 in our theorem is not required to be /-chain-free.

Therefore if we have an /-chain-free set .7 of flats in P"~', we can define
M ={(a,c):aeo/ and ce¥(a)},
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and .# will satisfy the requirements of Theorem 5. The LYM sum in Theorem 5(a)
then equals the LYM sum in Theorem 4(a), and we are done.

The same argument gives a general corollary. A partial Meshalkin sequence of
length p is a sequence a = (ay, ..., a,) of flats in P""!(¢) such that r(a;v --- va,) =
(@) + - 4 r(a,). We simply do not require the join d = a;v --- va, to be 1. The
generalized Rota—Harper theorem is:

Corollary 11. Letp=1,1=1,9=2, and n=0. Let . be a family of partial Meshalkin

sequences of length p in P"~'(q) such that, for each kelp|, .4 contains no chain of
length 1. Then

<P and

1
@) D TR
[r&)} m} g (@)
(b) |.4| is at most equal to the sum of the IP largest amongst the quantities [!] 7> for
o= (ot ..., 0pt1) With all =0 and oy + -+ + ap = n.

As a special case we generalize the g-analog of Sperner’s theorem. (The g-analog is
the case p = 1.)

Corollary 12. Let .4 be a family of partial Meshalkin sequences of length p=1 in P"~!
such that each My is an antichain. Then:

@ > pen ng.

) | #|<[2]q?™, in which o= (Il LEL - L) where the
number of terms equal to | pﬁ] is the least nonnegative residue of n modulo p + 1.

(c) Equality holds in (a) and (b) if, for each k, M. consists of all flats of rank [#] or
all flats of rank | ;1 |.

We conjecture that the largest families .# described in (c) are unique.
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