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Abstract

Let M be a family of sequences ða1;y; apÞ where each ak is a flat in a projective geometry

of rank n (dimension n � 1) and order q; and the sum of ranks, rða1Þ þ?þ rðapÞ; equals
the rank of the join a13?3ap: We prove upper bounds on jMj and corresponding

LYM inequalities assuming that (i) all joins are the whole geometry and for each kop

the set of all ak’s of sequences in M contains no chain of length l; and that (ii) the

joins are arbitrary and the chain condition holds for all k: These results are q-analogs

of generalizations of Meshalkin’s and Erd +os’s generalizations of Sperner’s theorem and

their LYM companions, and they generalize Rota and Harper’s q-analog of Erd +os’s

generalization.
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1. Introducing the players

We present a theorem that is at once a q-analog of a generalization, due to
Meshalkin, of Sperner’s famous theorem on antichains of sets and a generalization
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of Rota and Harper’s q-analog of both Sperner’s theorem and Erd +os’s general-
ization.
Sperner’s theorem [12] concerns a subsetA of PðSÞ; the power set of an n-element

set S; that is an antichain: no member of A contains another. It is part (b) of the
following theorem. Part (a), which easily implies (b) (see, e.g., [1, Section 1.2]) was
found later by Lubell [9], Yamamoto [13], and Meshalkin [10] (and Bollobás
independently proved a generalization [4]); consequently, it and similar inequalities
are called LYM inequalities.

Theorem 1. Let A be an antichain of subsets of S: Then:

(a)
P

AAA
1
jAjp1 and

(b) jAjp n
In=2m

� �
:

(c) Equality occurs in (a) and (b) if A consists of all subsets of S of size In=2m; or all

of size Jn=2n:

The idea of Meshalkin’s insufficiently well known generalization2 (an idea he
attributes to Sevast’yanov) is to consider ordered p-tuples A ¼ ðA1;y;ApÞ of

pairwise disjoint sets whose union is S: We call these weak compositions of S into p

parts.

Theorem 2. Let M be a family of weak compositions of S into p parts such that each

set Mk ¼ fAk : AAMg is an antichain.

(a)
P

AAM

1

n
jA1j;y;jApj

� �p1:

(b) jMjpmaxa1þ?þap¼n
n

a1;y;ap

� �
¼ n

Jn
p
n;y;Jn

p
n;In

p
m;y;In

p
m

� �
:

(c) Equality occurs in (a) and (b) if, for each k; Mk consists of all subsets of S of size

Jn
p
n; or all of size In

p
m:

Part (b) is Meshalkin’s theorem [10]; the corresponding LYM inequality (a) was
subsequently found by Hochberg and Hirsch [7]. (In expressions like the multinomial
coefficient in (b), since the lower numbers must sum to n; the number of them that
equal Jn

p
n is the least nonnegative residue of n modulo p þ 1:)

In [2] Wang and we generalized Theorem 2 in a way that simultaneously
also generalizes Erd +os’s theorem on l-chain-free families: subsets of PðSÞ that
contain no chain of length l: (Such families have been called ‘‘r-families’’ and ‘‘k-
families’’, where r or k is the forbidden length. We believe a more suggestive name is
needed.)

2We do not find it in books on the subject [1,5] but only in [8].
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Theorem 3 (Beck et al. [2, Corollary 4.1]). Let M be a family of weak compositions of

S into p parts such that each Mk; for kop; is l-chain-free. Then:

(a)
P

AAM

1

n
jA1j;y;jApj

� �plp�1; and

(b) jMj is no greater than the sum of the lp�1 largest multinomial coefficients of the

form n
a1;y;ap

� �
:

Erd +os’s theorem [6] is essentially the case p ¼ 2; in which A2 ¼ S\A1 is redundant.

The upper bound is then the sum of the l largest binomial coefficients n
j

� �
; 0pjpn;

and is attained by taking a suitable subclass of PðSÞ: In general the bounds in
Theorem 3 cannot be attained [2, Section 5].
Rota and Harper began the process of q-analogizing by finding versions of

Sperner’s and Erd +os’s theorems for finite projective geometries [11]. We think of a

projective geometry Pn�1 ¼ P n�1ðqÞ of order q and rank n (i.e., dimension n � 1) as

a lattice of flats, in which #0 ¼ | and #1 is the whole set of points. The rank of a flat a is
rðaÞ ¼ dim a þ 1: The q-Gaussian coefficients (usually the ‘‘q’’ is omitted) are the
quantities

n

k

" #
¼ n!q

k!qðn � kÞ!q
where n!q ¼ ðqn � 1Þðqn�1 � 1Þ?ðq � 1Þ:

They are the q-analogs of the binomial coefficients. Again, a family of projective flats
is l-chain-free if it contains no chain of length l: LetLk be the set of all flats of rank k

in Pn�1ðqÞ:

Theorem 4 (Rota and Harper [11, p. 200]). Let A be an l-chain-free family of flats in

P n�1ðqÞ:

(a)
P

aAA

1

n
rðaÞ

h ipl:

(b) jAj is at most the sum of the l largest Gaussian coefficients n
j

h i
for 0pjpn:

(c) There is equality in (a) and (b) when A consists of the l largest classes Lk; if n � l

is even, or the l � 1 largest classes and one of the two next largest classes, if n � l

is odd.

Our q-analog theorem concerns the projective analogs of weak compositions of a

set. A Meshalkin sequence of length p in P n�1ðqÞ is a sequence a ¼ ða1;y; apÞ of flats
whose join is #1 and whose ranks sum to n: The submodular law implies that, if
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aJ :¼
W

jAJ aj for an index subset JD½p
 ¼ f1; 2;y; pg; then aI4aJ ¼ #0 for any

disjoint I ; JD½p
; so the members of a Meshalkin sequence are highly disjoint.
To state the result we need a few more definitions. If M is a set of Meshalkin

sequences, then for each kA½p
 we define Mk :¼ fak : ða1;y; apÞAMg: If a1;y; ap

are nonnegative integers whose sum is n; we define the Gaussian (or q-Gaussian)
multinomial coefficient to be

n

a

" #
¼

n

a1;y; ap

" #
¼ n!q

a1!q?ap!q
;

where a ¼ ða1;y; apÞ: We write

s2ðaÞ ¼
X
ioj

aiaj

for the second elementary symmetric function of a: If a is a Meshalkin sequence, we
write

rðaÞ ¼ ðrða1Þ;y; rðapÞÞ
for the sequence of ranks. We define P n�1ðqÞ to be empty if n ¼ 0; a point if n ¼ 1;
and a line of q þ 1 points if n ¼ 2:

Theorem 5. Let nX0; lX1; pX2; and qX2: Let M be a family of Meshalkin sequences of

length p in P n�1ðqÞ such that, for each kA½p � 1
; Mk contains no chain of length l: Then

(a)
P

aAM

1

n
rðaÞ

h i
qs2ðrðaÞÞ

plp�1; and

(b) jMj is at most equal to the sum of the lp�1 largest amongst the quantities n
a

� 

qs2ðaÞ

for a ¼ ða1;y; apÞ with all akX0 and a1 þ?þ ap ¼ n:

The antichain case (where l ¼ 1), the analog of Meshalkin’s and Hochberg and
Hirsch’s theorems, is captured in

Corollary 6. Let M be a family of Meshalkin sequences of length pX2 in P n�1ðqÞ such

that each Mk for kop is an antichain. Then

(a)
P

aAM

1

n
rðaÞ

h i
qs2ðrðaÞÞ

p1; and

(b) jMjpmaxa
n
a

� 

qs2ðrðaÞÞ¼ n

Jn
p
n;y;Jn

p
n;In

p
m;y;In

p
m

� �
qs2ðJn=pn;y;Jn=pn;In=pm;y;In=pmÞ:

(c) Equality holds in (a) and (b) if, for each k; Mk consists of all flats of rank Jn
p
n or

all of rank In
p
m:

We believe—but without proof—that the largest families M described in (c) are
the only ones.
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Notice that we do not place any condition in either the theorem or its corollary
on Mp:

Our theorem is not exactly a generalization of that of Rota and Harper because a
flat in a projective geometry has a variable number of complements, depending on its
rank. Still, our result does imply this and a generalization, as we shall demonstrate in
Section 4.

2. Proof of Theorem 5

The proof of Theorem 5 is adapted from the short proof of Theorem 3 in [3]. It is
complicated by the multiplicity of complements of a flat, so we require the powerful
lemma of Harper et al. ([8, Lemma 3.1.3], improving on [11, p. 199, Lemma]; for a
short proof see [2, Lemmas 3.1 and 5.2]) and a count of the number of complements.

Lemma 7. Suppose given real numbers m1Xm2X?XmNX0; other real numbers

q1;y; qNA½0; 1
; and an integer P with 1pPpN: If
PN

k¼1 qkpP; then

q1m1 þ?þ qNmNpm1 þ?þ mP: ð1Þ

Let mP0þ1 and mP00 be the first and last mk’s equal to mP: Assuming mP40; there is

equality in (1) if and only if

qk ¼ 1 for mk4mP; qk ¼ 0 for mkomP; and qP0þ1 þ?þ qP00 ¼ P � P0:

Lemma 8. A flat of rank k in Pn�1ðqÞ has qkðn�kÞ complements.

Proof. The number of ways to extend a fixed ordered basis ðP1;y;PkÞ of the flat to
an ordered basis ðP1;y;PnÞ of Pn�1ðqÞ is

qn � qk

q � 1

qn � qkþ1

q � 1
?

qn � qn�1

q � 1
:

Then Pkþ13?3Pn is a complement and is generated by the last n � k points in

qn�k � 1

q � 1

qn�k � q

q � 1
?

qn�k � qn�k�1

q � 1

of the extended ordered bases. Dividing the former by the latter, there are

q
n
2ð Þ�

k
2

� �� �
� n�k

2

� �
¼ qkðn�kÞ

complements. &

Proof of Theorem 5(a). We proceed by induction on p: For a flat f ; define

Mð f Þ :¼ fða2;y; apÞ : ð f ; a2;y; apÞAMg

Note / Journal of Combinatorial Theory, Series A 102 (2003) 433–441 437



and also, letting c be another flat, define

Mcð f Þ :¼ fða2;y; apÞAMð f Þ : a23?3ap ¼ cg:

For aAM; we write r1 ¼ rða1Þ: Finally, Cða1Þ is the set of complements of a1: If p42;
then

X
aAM

1

n

rðaÞ

" #
qs2ðrðaÞÞ

¼
X

a1AM1

1

n

r1

" #
qr1ðn�r1Þ

X
a0AMða1Þ

1

n � r1

rða0Þ

" #
qs2ðrða0ÞÞ

¼
X

a1AM1

1

n

r1

" #
qr1ðn�r1Þ

X
cACða1Þ

X
a0AMcða1Þ

1

n � r1

rða0Þ

" #
qs2ðrða0ÞÞ

p
X

a1AM1

1

n

r1

" #
qr1ðn�r1Þ

X
cACða1Þ

lp�2

by induction, becauseMcða1Þ is a Meshalkin family in cDPrðcÞ�1 ¼ Pn�r1�1 and each
Mc

kða0Þ for kop � 1; being a subset of Mkþ1; is l-chain-free,

¼
X

a1AM1

1

n

r1

" #
qr1ðn�r1Þ

qr1ðn�r1Þlp�2

by Lemma 8,

pl � lp�2

by the theorem of Rota and Harper.
The initial case, p ¼ 2; is similar except that the innermost sum in the second step

equals 1. &

Lemma 9. Let a ¼ ða1;y; apÞ with all akX0 and a1 þ?þ ap ¼ n: The number of all

Meshalkin sequences a in Pn�1 with rðaÞ ¼ a is n
a

� 

qs2ðaÞ:

Proof. If p ¼ 1; then a ¼ #1 so the conclusion is obvious. If p41; we get a Meshalkin

sequence of length p in Pn�1 with rank sequence rðaÞ ¼ a by choosing a1 to have rank
a1; then a complement c of a1; and finally a Meshalkin sequence a0 of length p � 1 in

cDPrðcÞ�1 ¼ Pn�a1�1 whose rank sequence is a0 ¼ ða2;y; apÞ: The first choice can be
made in n�a1

a0
� 


ways, the second in qa1ðn�a1Þ ways, and the third, by induction, in
n�a1
a0

� 

qs2ða0Þ ways. Multiply. &
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Proof of Theorem 5(b). Let NðaÞ be the number of aAM for which rðaÞ ¼ a: In
Lemma 7 take

qa ¼
NðaÞ
n

a

" #
qs2ðaÞ

and ma ¼
n

a

" #
qs2ðaÞ;

and number all possible a so that ma1Xma2X?:
Lemma 9 shows that all qap1 so Lemma 7 does apply. The conclusion is that

jMj ¼
XN

i¼1
qai maip

n

a1

" #
qs2ða1Þ þ?þ

n

aP

" #
qs2ðaPÞ;

where N ¼ nþp�1
p�1

� �
; the number of sequences a; and P ¼ minðlp�1;NÞ: &

3. Strangeness of the LYM inequality

There is something odd about the LYM inequality in Theorem 5(a). A normal

LYM inequality would be expected to have denominator n
rðaÞ

h i
without the extra

factor qs2ðrðaÞÞ: Such an LYM inequality does exist; it is a corollary of Theorem 5(a);
but it is not strong enough to give the upper bound on jMj: We prove this weaker
inequality here.

Proposition 10. Assume the hypotheses of Theorem 5; that is, nX0; lX1; pX2; and

qX2; and M is a family of Meshalkin sequences of length p in Pn�1ðqÞ such that, for

each kA½p � 1
; Mk contains no chain of length l: Then
P

aAM
n

rðaÞ

h i�1
is bounded

above by the sum of the lp�1 largest expressions qs2ðaÞ for a ¼ ða1;y; apÞ with all akX0

and a1 þ?þ ap ¼ n:

Proof. Again we apply Lemma 7, this time with qa ¼ NðaÞ= n
a

� 

qs2ðaÞ and

Ma ¼ qs2ðaÞ: &

4. A ‘‘partial’’ corollary

We deduce Theorem 4(a) from the case p ¼ 2 of Theorem 5(a). Our purpose is not
to give a new proof of Theorem 4 but to show that we have a generalization of it.
The key to the proof is that M2 in our theorem is not required to be l-chain-free.

Therefore if we have an l-chain-free set A of flats in Pn�1; we can define

M ¼ fða; cÞ : aAA and cACðaÞg;
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and M will satisfy the requirements of Theorem 5. The LYM sum in Theorem 5(a)
then equals the LYM sum in Theorem 4(a), and we are done.
The same argument gives a general corollary. A partial Meshalkin sequence of

length p is a sequence a ¼ ða1;y; apÞ of flats in Pn�1ðqÞ such that rða13?3apÞ ¼
rða1Þ þ?þ rðapÞ: We simply do not require the join â ¼ a13?3ap to be #1: The

generalized Rota–Harper theorem is:

Corollary 11. Let pX1; lX1; qX2; and nX0: Let M be a family of partial Meshalkin

sequences of length p in Pn�1ðqÞ such that, for each kA½p
; Mk contains no chain of

length l: Then

(a)
P

aAM

1

n
rðâÞ

h i
rðâÞ
rðaÞ

h i
qs2ðrðaÞÞ

plp and

(b) jMj is at most equal to the sum of the lp largest amongst the quantities n
a

� 

qs2ðaÞ for

a ¼ ða1;y; apþ1Þ with all akX0 and a1 þ?þ apþ1 ¼ n:

As a special case we generalize the q-analog of Sperner’s theorem. (The q-analog is
the case p ¼ 1:)

Corollary 12. Let M be a family of partial Meshalkin sequences of length pX1 in Pn�1

such that each Mk is an antichain. Then:

(a)
P

aAM

1

n
rðâÞ

h i
rðâÞ
rðaÞ

h i
qs2ðrðaÞÞ

p1:

(b) jMjp n
a

� 

qs2ðaÞ; in which a ¼ ðJ n

pþ1n;y;J n
pþ1n;I

n
pþ1m;y;I n

pþ1mÞ where the

number of terms equal to J n
pþ1n is the least nonnegative residue of n modulo p þ 1:

(c) Equality holds in (a) and (b) if, for each k;Mk consists of all flats of rank J n
pþ1n or

all flats of rank I n
pþ1m:

We conjecture that the largest families M described in (c) are unique.
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