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1. Introduction

The main classes of singularities in the Minimal Model Program are: terminal, canonical, log
terminal, and log canonical. It is well known that the singularities in the first three classes are Cohen–
Macaulay and rational, and in the last class they are neither, in general. The main aim of this paper is
to establish several general tools for measuring how far a particular log canonical singularity is from
being CM (Cohen–Macaulay) or rational. (We note that [KK10] takes a different approach, and proves
that all log canonical singularities are Du Bois.)

Let X be an algebraic variety over an algebraically closed field of characteristic zero and let f :
Y → X be a resolution of singularities. It is well known that the sheaves Ri f∗OY are coherent on X
and do not depend on the choice of the resolution. We make the following definition.

Definition 1.1. Let X be a normal algebraic variety. The centers of non-rational singularities of X (or
simply non-rational centers) are the subvarieties Zi defined by the associated primes of the sheaves
Ri f∗OY , i > 0.

Thus, each non-rational center Zi is an irreducible subvariety of X , by definition.
Let (X, B) be a klt pair (see Section 2 below for all standard definitions). Then Ri f∗OY = 0 for

i > 0 and X has rational singularities, hence X is CM. As mentioned above, log canonical does not
imply rational or CM: the simplest example is provided by the cone over an abelian surface in which
case R1 f∗OY is supported at the vertex and X is also not CM. Our first main theorem is the following:

Theorem 1.2. Let (X, B) be a log canonical pair. Then every non-rational center of X is a non-klt center of
(X, B).

Remark 1.3. A similar result was independently proven in [Kov11]. Note that in [Kov11] the terminol-
ogy “irrational centers” is used instead of non-rational centers.

Note that the closed set of non-rational singularities is a subset of the closed set of non-klt singu-
larities, but (1.2) is far from being obvious.

It is natural to assume that the failure of log canonical pairs to be CM can be described in terms
of the non-rational centers. There are several ways to measure this failure. A variety is CM if and only
if it satisfies Serre’s condition Sdim X or, equivalently, if and only if it is Sdim X at every closed point.
Thus, the conditions Sn generalize the CM property. But there is another logical generalization:

Definition 1.4. We say that a coherent sheaf F on a scheme X satisfies condition Cn (or simply is Cn)
if for every closed point x ∈ Supp F one has depth Fx � n. (Here, “C” stands for a “closed point”.) If
F = 0 then we say that F is Cn for all n. We say that X is Cn if so is OX .

It turns out that for projective varieties the Cn condition is frequently easier to work with than
the Sn condition because it admits a simple cohomological criterion, see Lemma 2.3. Our second main
result is the following theorem, generalizing the C3 case contained in [Ale08, 3.1 and 3.2]. (Recently,
O. Fujino communicated to us another proof of the C3 case [Fuj09, 4.21 and 4.27].)

Theorem 1.5. Let X be a normal variety of dim X � d + 2. Assume that the pair (X, B) is log canonical and
that every non-klt center of (X, B) has dimension � d. Then:

(1) For each i > 0, the sheaf Ri f∗OY is Cd+1−i .
(2) X is Cd+2 .

Remark 1.6. It would be interesting to know if a similar result is true when “non-klt centers” are
replaced by “non-rational centers”.
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2. Preliminaries

We work over the field of complex numbers C.

2.1. Singularities of the MMP and non-klt centers

Let X be a normal variety. A boundary is a Q-divisor B = ∑
bi Bi on X such that 0 � bi � 1. If

K X + B is Q-Cartier, then (X, B) is a log pair. A log resolution of a log pair (X, B) is a projective
birational morphism f : Y → X such that Y is smooth and Exc( f ) ∪ f −1(B) is a divisor with simple
normal crossings. We may then uniquely write

KY + f −1∗ B ≡ f ∗(K X + B) +
∑

aE(X, B)E

where E ⊂ Y are all the f -exceptional divisors. The numbers aE (X, B) are the discrepancies of (X, B)

along E . They do not depend on the choice of a log resolution f . A pair (X, B) is

(1) log canonical, abbreviated lc, if bi � 1 and aE(X, B)� −1,
(2) kawamata log terminal (klt) if bi < 1 and aE (X, B) > −1

for some (or equivalently for all) log resolution.
A non-klt place is a component of �B� or a divisor of discrepancy aE (X, B)� −1. A non-klt center

is the image in X of a non-klt place (note that often in the literature non-klt places and centers are
called lc places and centers).

A pair (X, B) such that bi � 1 is divisorially log terminal (dlt for short) if there is a log resolution
f : Y → X such that aE (X, B) > −1 for any f -exceptional divisor E ⊂ Y . Equivalently, by [Sza94]
(X, B) is dlt if there is an open subset U ⊂ X such that U is smooth, B|U has simple normal crossings
and aE(X, B) > −1 for any divisor E over X with center contained in X − U .

2.2. CM, Sn, and Cn

Definition 2.1. A coherent sheaf F on a Noetherian scheme X is Cohen–Macaulay if for every scheme
point x ∈ Supp F one has depth Fx = dimx Supp F . The sheaf F satisfies Serre’s condition Sn if one has
depth Fx � min(n,dimx Supp F ).

Note that some authors (e.g. [KM98]), define Sn by the condition depth Fx � min(n,dimx X). We
follow [EGA4, 5.7.1 and 5.7.2]. This should not lead to confusion in the settings of this paper.

Compare the condition Sn with our condition Cn . One obvious difference is that in Definition 1.4
we did not ask for min(n,dimx Supp F ). Hence, a CM variety satisfies Sdim X+1 but not Cdim X+1.
A more subtle difference is provided by the following example.

Example 2.2. Let Y be the cone over an abelian surface and let X = Y × P1. Then X is not S3 at the
generic point of Z = (vertex) × P1. However, X is S3 at every closed point x ∈ X : OX,x is S3 if and
only if the hyperplane section OY ,x is S2, which is true since Y is normal. Thus X is C3 but not S3.

Thus, assuming n � dim X , the property Sn is stronger than Cn . On the other hand, knowing that
a certain class of varieties satisfies Cn allows to conclude the property Sn for this class indirectly, as
follows. (See e.g. [Ale08] for an application of this principle.) If X is not Sn at the generic point of
a subvariety Z then a general hyperplane section H is not Sn at the generic points of Z ∩ H . Cutting
down this way, we get to a variety which is not Cn , and this process preserves other nice properties
of X , such as being log canonical.

The reason why the condition Cn is so convenient to work with for projective varieties is the
following simple cohomological criterion:
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Lemma 2.3. Let F be a coherent sheaf on a projective scheme X with an ample invertible sheaf L, over an
algebraically closed field. Then F is Cn if and only if Hi(X, F (−sL)) = 0 for any i < n and s 	 0.

Proof. This is basically proved in [Har77, III.7.6], although it is not stated there in this way. We give
the proof here for clarity.

We embed X into P = PN by some power of L. Then the cohomology group Hi(X, F (−q)) =
Hi(P , F (−q)) is dual to the group ExtN−i

P (F ,ωP (q)) which equals Γ (P ,ExtN−i
P (F ,ωP (q))) if q 	 0

(where ωP = OP (−N − 1) is the dualizing sheaf). Thus, one has Hi(X, F (−sL)) = 0 for i < n and
s 	 0 if and only if the sheaf ExtN−i

P (F ,ωP ) is zero for i < n or, equivalently, if ExtN−i
P (F ,OP ) = 0 for

i < n.
This sheaf is zero if and only if its stalks are zero at every closed point x ∈ Supp F . Denote A =OP ,x

for short, it is a regular local ring. The stalk at x is ExtN−i
A (Fx, A) and it is zero for i < n if and only if

the projective dimension pdA Fx � N −n (see [Har77, Ex. 6.6]). The latter is equivalent to depth Fx � n
since pdA Fx + depth Fx = dim A = N (cf. [Har77, 6.12A]). �
Example 2.4. Let Y be a projective klt variety such that N KY ∼ 0 for some N ∈ N. Let L be an
ample invertible sheaf on Y . Then the cone X = Spec

⊕
k�0 H0(Y , Lk) is lc, and its vertex P is the

unique non-klt center. Indeed, for the blowup f : X ′ → X at P which inserts an exceptional divi-
sor E = Y , one has K X ′ + E = f ∗K X , (X ′, E) is dlt, and so E is the only divisor with discrepancy
aE (X, B) = −1.

Assuming n � dim X , the cone X satisfies condition Cn if and only if Hi(OY ) = 0 for 0 < i � n − 2.
This follows from the interpretation of the depth in terms of the local cohomology groups Hi

P (OX ) =⊕
k∈Z Hi(OY (Lk)) and the fact that Hi(OY (Lk)) = 0 for k �= 0 by the Kawamata–Viehweg vanishing

and Serre duality.
In particular, if Y is an abelian surface then X is not C3 at the vertex P , but if Y is a K3 or

Enriques surface then Y is C3. Since for i > 0 one has Ri f∗OX ′ = Hi(OY ), we see that P is a non-
rational center if Y is abelian or K3, and there are no non-rational centers if Y is an Enriques
surface.

By a theorem of Kempf, a variety X has rational singularities if and only if X is CM and f∗ωY = ωX

(see e.g. [KM98, 5.12]). We conclude this section with the following result which we will need below.

Theorem 2.5. Let (X, B) be a dlt pair, then X has rational singularities.

Proof. See [KM98, 5.22]. �
2.3. Ambro’s and Fujino’s results on quasi log varieties

In this section we recall some definitions and results concerning quasi-log-canonical pairs
(qlc pairs for short).

Definition 2.6. Let Y ⊂ M be a simple normal crossings (reduced) divisor Y on a smooth variety and
D be a divisor on M whose support contains no components of Y and such that D + Y has simple
normal crossings support. The pair (Y , B = D|Y ) is a global embedded simple normal crossings pair.
Let ν : Y ν → Y be the normalization and KY ν + Θ = ν∗(KY + D). A stratum of (Y , B) is a compo-
nent of Y or the image of a non-klt center of (Y ν,Θ). Thus, the strata of (Y , B) are irreducible by
definition.

We have the following torsion-freeness and vanishing theorems of F. Ambro cf. [Fuj09, 2.47]:

Theorem 2.7. Let (Y , B) be a global embedded simple normal crossings pair. Assume that B is a boundary
Q-divisor L is a Cartier divisor and f : Y → X is a proper morphism. Then
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(1) If L − (KY + B) is semiample over X, then every non-zero local section of Rq f∗OY (L) contains in its
support the image of some stratum of (Y , B).

(2) If π : X → Z is a projective morphism and there is a Q-Cartier divisor H on X such that f ∗H ∼Q

L − (KY + B), and such that H is big and nef on the image of every stratum of (Y , B), then
R pπ∗(Rq f∗OY (L)) = 0 for any p > 0 and q � 0.

Proof. See [Amb03, 3.2], [Fuj09, 2.47]. �
Corollary 2.8. Let OY (L) be as in part (1) of the above Theorem 2.7. Then for any q � 0, each associated prime
of the sheaf Rq f∗OY (L) is the generic point of the image of a stratum of (Y , B).

Proof. Since the question is local on the base, we can assume that X = Spec R is affine. Let P ⊂ R be
an associated prime of Rq f∗OY (L). By definition, there exists a non-zero section s ∈ Γ (X, Rq f∗OY (L))

whose support is Z(P ).
We claim that Z(P ) is the image of a stratum of (Y , B). Suppose it is not. Let Z(Q i) be all the

(finitely many) images of strata of (Y , B) that are contained in Z(P ). We have Z(Q i) �= Z(P ). Over
the open subset U = X \ ⋃

Z(Q i) the support of the section s|U is Z(P ) ∩ U �= ∅. But by (2.7)(1) we
must have s|U = 0. Contradiction. �

We will also need the following weak form of the above theorem:

Theorem 2.9. In the settings of the above theorem, in part (2) assume instead that H is nef and that there
exists an ample divisor M on X such that for every image V of a stratum of (Y , B) with dim V � c, one has
V · Mc · Hdim V −c > 0.

Then R pπ∗(Rq f∗OY (L)) = 0 for any p > c and q � 0.

Proof. Let D X be a general element in the linear system |nM|, with nM very ample. Denote DY :=
f −1 D X and LDY = (L + DY )|DY . Consider the short exact sequence

0 → OY (L) → OY (L + DY ) → ODY (LDY ) → 0.

In this sequence the line bundle LDY is Q-linearly equivalent to (KY + DY + B + f ∗H)|DY = K DY + B ∩
DY + f ∗H|DY , and so is of the same nature as L but for the smaller global embedded simple normal
crossing pair (DY , B ∩ DY ).

The images of the strata of (DY , B ∩ DY ) are strictly smaller than the images of the strata of (Y , B).
Part (1) of the above Theorem 2.7 implies that in the long exact sequence the connecting homomor-
phisms Rq f∗ODY (LDY ) → Rq+1 f∗OY (L) are zero. Indeed, the sections in the image are generically
zero at the image of every stratum of (Y , B). Thus, for every q we have a short exact sequence

0 → Rq f∗OY (L) → Rq f∗OY (L + DY ) → Rq f∗ODY (LDY ) → 0.

Since H + D X is ample, for the middle term we have R pπ∗(Rq f∗OY (L + DY )) = 0 for p > 0 by (2.7)(2).
Thus, R pπ∗(Rq f∗ODY (LDY )) = 0 for p > k implies R pπ∗(Rq f∗OY (L)) = 0 for p > k + 1.

Cutting c times by general divisors in |nM|, we arrive at the situation of (2.7)(2), which gives
vanishing of R pπ∗ for p > 0. For the original sheaves Rq f∗OY (L), this gives vanishing of R pπ∗ for
p > c. �
Definition 2.10. A qlc variety is a variety X , a Q-Cartier divisor ω on X and a finite collection {C} of
irreducible reduced subvarieties of X such that there is a proper morphism f : Y → X from a global
embedded simple normal crossings pair (Y , B) such that:
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(1) f ∗ω ∼Q KY + B and B is a boundary divisor,
(2) OX ∼= f∗OY (�−(B<1

Y )�),
(3) {C} is given by the images of the strata of (Y ,�B�).

The elements of {C} are the qlc centers of the qlc pair [X,ω].

Proposition 2.11. If (X, B) is a lc pair, then X is a qlc pair with ω = K X + B and {C} is given by X and the
non-klt centers of (X, B).

Proof. See [Fuj09, 3.31]. �
Proposition 2.12. Let [X,ω] be a qlc pair, X ′ be a union of qlc centers of [X,ω] with the reduced scheme
structure and IX ′ ⊂OX the corresponding ideal. Then

(1) [X ′,ω′ = ω|X ′ ] is a qlc pair whose centers are the centers of [X,ω] contained in X ′ .
(2) If X is projective and L is a Cartier divisor on X such that L − ω is ample, then

Hq(OX (L)
) = Hq(IX ′ ⊗OX (L)

) = 0 for q > 0.

In particular Hq(OX ′(L)) = 0 for q > 0 as [X ′,ω′] is a qlc pair and L|X ′ − ω′ is ample.

Proof. See [Amb03, 4.4], [Fuj09, 3.39]. �
3. Non-rational centers

3.1. The “Get rid of the A” trick

Let f : Y → X be a log resolution of (X, B). We write

KY + E − A + � = f ∗(K X + B)

where E � 0 is reduced, A � 0 is integral and exceptional, and ��� = 0. Here, E has no common
components with either A or �, but A and � may have common components.

Theorem 3.1. Let (X, B) be a lc pair. Then there exist morphisms f ′ : Y ′ → X and ν : Y → Y ′ such that:

(1) f = f ′ ◦ ν is a log resolution of (X, B),
(2) Y ′ is normal, E ′ = ν∗E, �′ = ν∗�, and A′ = ν∗ A = 0,
(3) (Y ′, E ′ + �′) is dlt,
(4) ν is an isomorphism at the generic point of each non-klt center of (Y , E + �) and in particular there is

a bijection between the non-klt centers of (Y , E + �) and the non-klt centers of (Y ′, E ′ + �′).

Proof.

Claim 3.2. For any resolution Y1 → X, there exists a rational map α : Y1 ��	 Y ′ and a morphism f ′ : Y ′ → X
such that α∗ A1 = 0, KY ′ + ν∗(E1 + �1) is dlt and KY ′ + ν∗(E1 + �1) = ( f ′)∗(K X + B).

Proof. By [BCHM] we may run a (KY1 + �1)-MMP over X say β : Y1 ��	 Y2. Let f2 : Y2 → X be the
corresponding morphism, E2 = β∗E1, A2 = β∗ A1 and �2 = β∗�1. Since

E2 − A2 + (KY2 + �2) = ( f2)
∗(K X + B),
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KY2 + �2 is nef over X and ( f2)∗(E2 − A2) � 0, by the Negativity Lemma, E2 − A2 � 0. As A2 and E2
have no common components, A2 = 0. Therefore

KY2 + E2 + �2 = ( f2)
∗(K X + B),

(Y2, E2 + �2) is lc with the same non-klt places as (X, B) and Y2 is Q-factorial.
Let γ : Y3 → Y2 be a log resolution of (Y2, E2 + �2). We write

KY3 + Γ = γ ∗(KY2 + E2 + �2) + F

where Γ and F are effective with no common components, γ∗(Γ ) = E2 + �2 and γ∗ F = 0. Let C be
an effective γ -exceptional divisor such that −C is ample over Y2 and ‖C‖ � 1. Let H ∼Q,Y2 −C be
a general ample Q-divisor such that KY3 + Γ + H is dlt. We have that

Γ + H ∼Q,Y2 Γ − C ∼Q,Y2 Ξ

where (Y3,Ξ) is klt. After running a (KY3 + Ξ)-MMP over Y2, we obtain μ : Y ′ → Y2 such that
KY ′ + Ξ ′ is γ -nef, where Ξ ′ denotes the strict transform of Ξ on Y ′ and similarly for other divisors.
Since

C ′ − F ′ + (
KY ′ + Ξ ′) ∼Q,Y2 0

and μ∗(C ′ − F ′) � 0, then by the Negativity Lemma, we have that C ′ − F ′ � 0. Since ‖C‖ � 1, this
implies that F ′ = 0 so that KY ′ + Γ ′ = μ∗(KY2 + E2 + �2). Since a (KY3 + Ξ)-MMP over Y2 is auto-
matically a (KY3 + Γ + H)-MMP over Y2, it follows that KY ′ + Γ ′ + H ′ is dlt. In particular KY ′ + Γ ′
is dlt. �
Claim 3.3. There exists a resolution ν : Y → Y ′ which is an isomorphism at the generic point of any non-klt
center of (Y , E + �).

Proof. This follows from the characterization of dlt singularities given in [Sza94]. �
Theorem 3.1 now follows. �

Remark 3.4. Note that variants of (3.2) appear in [KK10, 3.1] and [Fuj11, 10.4], where they are referred
to as an unpublished theorem of Hacon.

Corollary 3.5. Let Y be as in Theorem 3.1. Then one has Ri f∗OY = Ri f∗OY (A) for all i � 0.

Proof. We have ν∗OY (A) = OY ′ , and for i > 0 one has Riν∗OY (A) = 0 at the generic point of any
non-klt center of (Y ′, E ′ + �′) and so by (2.7), Riν∗OY (A) = 0. Therefore, R•ν∗OY (A) =OY ′ .

Since (Y ′, B ′) is dlt, by (2.5) Y ′ has rational singularities, so R•ν∗OY = OY ′ . It follows that
R• f∗OY (A) = R• f∗OY and so Ri f∗OY = Ri f∗OY (A) for all i. �
Proof of Theorem 1.2. Let f : (Y , E + �) → X be a log resolution of (X, B), as in Theorem 3.1. Thus,
(Y , E + �) is a normal crossing pair, and the f -images of the strata of (Y , E + �) are the non-klt
centers of (X, B).

By (2.8), the zero locus of any associated prime of Ri f∗OY (A) is a non-klt center. We are now
done by the above Corollary 3.5. �
Theorem 3.6. For any log resolution f : Y → X one has R• f∗OY (A) = R• f∗OY .
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Proof. Let f1 : Y1 → X , f2 : Y2 → X be two log resolutions. First, we are going to construct modifi-
cations g1 : Y ′

1 → Y1, g2 : Y ′
2 → Y2 by blowing up the strata of E1 , resp. E2 , only. If g1 is a sequence of

such blowups then

R•(g1)∗OY ′
1

(
A′

1

) = OY1(A1) and R•(g1)∗OY ′
1
= OY1 .

The second equality follows because Y1 is nonsingular. For the first equality, note that over the generic
point of each stratum of E1 one has OY ′

1
(A′

1) = OY ′
1
. Indeed, in this case A′

1 is the strict preimage

of A1, and E1 ∪ Supp A1 is a normal crossing divisor. Therefore, Ri(g1)∗OY ′
1
(A′

1) = 0 for i > 0 at the

generic point of each stratum of E1. Hence, by (2.7), Ri(g1)∗OY ′
1
(A′

1) = 0 for i > 0.
By making such sequences of blowups g1, g2, we can assume that Y ′

1, Y ′
2 have the same places

of non-klt singularities of (X, B) and that the birational map φ : Y ′
1 ��	 Y ′

2 is an isomorphism at the
generic point of each stratum of E ′

1 and E ′
2.

Now by Hironaka there exists a sequence of blowups h1 : Ỹ → Y ′
1 and a regular map h2 : Ỹ → Y ′

2
resolving the indeterminacies of φ. If the blowups h1 are performed only inside the nonregular locus
of φ, as it can always be done, then h1, h2 are isomorphisms at the generic point of each stratum
of Ẽ . Applying (2.7) again, we get

R•(hk)∗OỸ ( Ã) = OY ′
k

(
A′

k

)
and R•(hk)∗OỸ = OY ′

k
for k = 1,2.

Putting this together, we get

R•( fk ◦ gk ◦ hk)∗OỸ ( Ã) = R•( fk)∗OYk (Ak) for k = 1,2.

Since f1 ◦ g1 ◦ h1 = f2 ◦ g2 ◦ h2, we get

R•( f1)∗OY1(A1) = R•( f2)∗OY2(A2) and R•( f1)∗OY1 = R•( f2)∗OY2 .

Now if we choose Y1 to be as in Corollary 3.5 then we get the same conclusion for any other resolu-
tion Y2. �
3.2. A resolution separated into levels

For any l � 0, let E ′
�l (resp. E ′

=l and E ′
�l) be the sum of the components of E ′ whose image via

f ′ : Y ′ → X has dimension at least (resp. equal to and less or equal to) l. We use a similar notation
for E .

Proposition 3.7. In Theorem 3.1 we may assume that the dimension of the image via f of any stratum of E�l
is at least l.

Proof. Let μ : Ỹ → Y be a log resolution of (Y , E + �) and of any non-klt center V of (X, B). We
then have that the dimension of the image via f̃ = f ◦ μ of any stratum of Ẽ�l is at least l. Notice
in fact that if this is not the case, then there are divisors F1, . . . , Fk given by components of Ẽ�l

such that W = F1 ∩ · · · ∩ Fk is a non-klt center of (Ỹ , Ẽ + �̃) with dim f̃ (W ) < l. But then as f̃ (W )

is a non-klt center, W is contained in a component of Ẽ different from F1, . . . , Fk . As Ẽ has simple
normal crossings, this is impossible.

We must now show that there are morphisms ν̃ : Ỹ → Ỹ ′ and η : Ỹ ′ → Y ′ such that ν ◦ μ = η ◦ ν̃ ,
ν̃∗(Ẽ + �̃) = Ẽ ′ + �̃′ where (Ỹ ′, Ẽ ′ + �̃′) is dlt, Ã′ = 0 and that ν̃ is an isomorphism at the generic
point of any non-klt center of (Ỹ , Ẽ + �̃).
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Let U be an open subset of Y ′ which is isomorphic to an open subset of Y such that (E ′ + �′)|U

has simple normal crossings support and for any divisor F exceptional over Y ′ with center contained
in Z = Y ′ − U , we have a(F , Y ′, E ′ + �′) > −1. We may assume that if G ⊂ Ỹ is a μ-exceptional
divisor such that a(G, Y , E + �) > −1, then μ(G) ⊂ Z . For any 0 < ε � 1, we write ν∗(KY ′ + (1 −
ε)(E ′ + �′)) + F = KY + Γ where F and Γ are effective with no common components and ν∗(Γ ) =
(1−ε)(E ′ +�′) and we let KỸ + Γ̃ = μ∗ν∗((KY ′ + (1−ε)(E ′ +�′))+ F )+ F̃ ′ . We now run a (KỸ + Γ̃ )-
MMP over Y ′ to obtain η : Ỹ ′ → Y ′ .

Since over U , F and F̃ ′ are zero, we have that ν̃ is an isomorphism over U . There is a neighborhood
of Z over which (Y ′, E ′ +�′) is klt. It follows that (Ỹ ′, Ẽ ′ + �̃′) is dlt. After blowing up centers over Z ,
we may assume that ν̃ is a morphism. �
4. The sheaves Ri f∗OY and the proof of the main theorem

4.1. Leray spectral sequence

Lemma 4.1. Let X be a projective normal variety of dimension � n and f : Y → X a resolution of singularities.
Assume that the sheaves Ri f∗OY , i > 0, are Cn−1−i . Then X is Cn.

Proof. Let L be an ample sheaf on X . Consider the Leray spectral sequence

E p,q
2 = H p(

Rq f∗OY (−sL)
) ⇒ H p+q(OY

(−sf ∗L
))

, for some s 	 0.

Since f ∗L is big and nef, the limit Ek∞ = Hk(OY (−sf ∗L)) is zero for k < n � dim X by the Kawamata–
Viehweg vanishing theorem.

By the assumption, we have E p,q
2 = 0 for p +q � n − 2 and q > 0. Inspecting this spectral sequence

we easily conclude that E p,0
2 = E p,0∞ for p � n − 1. On the other hand, we have E p,0∞ ⊂ E p∞ and the

latter is zero for p � n − 1. So H p(OX (−sL)) = 0 for p � n − 1 and OX is Cn by (2.3). �
Remark 4.2. For the C3 case, [Ale08, 3.1] gives a necessary and sufficient condition: X is C3 ⇔
R1 f∗OY is C1.

To prove Theorem 1.5, it is now sufficient to prove that H p(X, Rq f∗OY (−sL)) = 0 for q > 0, p +q �
d and s 	 0. The rest of this section will be devoted to establishing this fact.

4.2. Vanishing theorems for unions of centers

Let (X, B) be a lc pair and let f ′ : Y ′ → X and ν : Y → Y ′ be as in Section 3.2. In particular, we
may assume that Y and Y ′ satisfy (3.1) and (3.7).

Lemma 4.3. Let Z and W be unions of non-klt centers of (Y , E + �) and let Z ′ = ν(Z), W ′ = ν(W ). Then

R•ν∗OZ (−W ) = R•ν∗OZ (A − W ) = OZ ′
(−W ′),

where OZ ′(−W ′) is the ideal sheaf of W ′ ∩ Z ′ in Z ′ .

Proof. If Z is irreducible, then (Z , (KY + E +�)|Z ) is a global embedded simple normal crossings pair.
For j > 0, R jν∗OZ (A) = 0 at the generic point of any non-klt center of (Y ′, E ′ + �′) (cf. (3.1), (3.3))
and hence R jν∗OZ (A) = 0 by (2.7). Since [Z ′, (KY ′ + E ′ + �′)|Z ′ ] is a qlc variety cf. (2.12), we also
have ν∗OZ (A) =OZ ′ cf. (2) of (2.10).

We proceed by induction on d the maximum dimension of a component of Z , the case d = 0 being
obvious. For a fixed d, we proceed by induction on the number of components of Z . If Z is irreducible,
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then as (Y ′, E ′ + �′) is dlt, Z ′ is normal with rational singularities and R•ν∗OZ ∼= OZ ′ ∼= R•ν∗OZ (A).
By induction on d, R•ν∗OZ∩W ∼= R•ν∗OZ∩W (A) ∼=OZ ′∩W ′ . Pushing forward the short exact sequence

0 → OZ (A − W ) → OZ (A) → OZ∩W (A) → 0

and noticing that

ν∗OZ = ν∗OZ (A) ∼= OZ ′ → ν∗OZ∩W = ν∗OZ∩W (A) ∼= OZ ′∩W ′

is surjective, it follows that R•ν∗OZ (−W ) ∼= R•ν∗OZ (A − W ) ∼=OZ ′(−W ′).
If Z is not irreducible, then let Z0 be an irreducible component of Z and write Z = Z0 + Z1 where

Z1 is the union of the components of Z distinct from Z0. Consider the short exact sequence

0 → OZ0(A − W − Z1) → OZ (A − W ) → OZ1(A − W ) → 0.

By induction on d the number of components of Z , we have R•ν∗OZ1 (−W ) ∼= R•ν∗OZ1 (A − W )
∼= OZ ′

1
(−W ′). By what we have shown above, R•ν∗OZ0(−W − Z1) ∼= R•ν∗OZ0(A − W − Z1) ∼=

OZ ′
0
(−W ′ − Z ′

1). It follows that R•ν∗OZ (−W ) ∼= R•ν∗OZ (A − W ) ∼= OZ ′(−W ′). The assertion is
proved. �

Let L be an ample line bundle on X .

Lemma 4.4. If X is projective, then H j(OY ′ (−s( f ′)∗L)) = 0 for all j < n and s > 0.

Proof. Since (Y ′, ν∗(E +�) = E ′ +�′) is dlt, it has rational singularities and so R•ν∗OY ∼=OY ′ . There-
fore, by Serre duality,

H j(OY ′
(−s

(
f ′)∗

L
)) ∼= H j(OY

(−sf ∗L
)) ∼= Hn− j(OY

(
KY + sf ∗L

))∨

and the lemma follows from Kawamata–Viehweg vanishing cf. [Laz04, 4.3.7]. �
Lemma 4.5. Assume that X is projective. Let 0 � F � E be a reduced divisor such that the minimum of the di-
mension of the images of any stratum of F in X is � k. Let Z and W be unions of non-klt centers of (Y , F ). Then

Hl(OZ
(−W − sf ∗L

)) ∼= Hl(OZ
(

A − W − sf ∗L
)) ∼= Hl(OZ ′

(−W ′ − s
(

f ′)∗
L
)) = 0

for all l � k − 1 and any s > 0.

Proof. Since R•ν∗OZ (−W ) ∼= R•ν∗OZ (A − W ) ∼= OZ ′(−W ′) cf. (4.3), it suffices to prove that
Hl(OZ (−W − sf ∗L)) = 0. If Z is irreducible, then it is a smooth variety. We have ( f ∗L|Z )k �= 0 and
f ∗L|Z is nef so that by Kawamata–Viehweg vanishing (cf. [Laz04, 4.3.7]), we have

hl(OZ
(−sf ∗L

)) = 0 ∀l � k − 1.

In general, the proof is by induction on the maximal dimension of a component of Z and on the
number of components of Z . When dim Z = 0, there is nothing to prove. If Z is irreducible, then the
statement follows from the short exact sequence

0 → OZ (−W ) → OZ → OZ∩W → 0

and induction on dim Z ∩ W .
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If Z is not irreducible, then we let Z0 be an irreducible component of Z = Z0 ∪ Z1 and we consider
the short exact sequence

0 → OZ0(−W − Z1) → OZ (−W ) → OZ1(−W ) → 0.

The statement now follows by induction on the number of components and what we have shown
above. �
Lemma 4.6. If X is projective and K X + B is Cartier and every non-klt center of (X, B) has dimension � d,
then Hi(R j f∗OE=k (A − E + E�k − sf ∗L)) = 0 for i + j � d − 1 and s > 0 (resp. for i + j = d, j > 0 and
s > 0).

The proof given below is fairly technical. We use the prepared resolution of Section 3.2, previously
established vanishing results, and a multilevel induction. At the heart of the argument, however, is
the method of Kollár introduced in [Kol87], which gives vanishing and torsion free theorems for the
sheaves R j f∗ωY by using variation of pure Hodge structures, and the extension of this method to
variation of mixed Hodge structures in [Kaw02,Kaw09,Kaw11].

Proof of Lemma 4.6. We will begin by proving the required vanishing for i + j � d − 1 and s > 0. Let
V 1, . . . , Vτ be the irreducible non-klt centers of (X, B) of dimension k and let Zt be the union of the
components of E=k that dominate Vt . Note that E − E�k = E�k−1. Let Z�t = Zt + · · · + Zτ . We have
short exact sequences

0 → OZt (A − E�k−1 − Z�t+1) → OZ�t (A − E�k−1)

→ OZ�t+1(A − E�k−1) → 0. (�)

Note that by (3.7), Zt ∩ Z�t+1 = ∅, so that the sequences (�) are split and we have the equalities
(A − E�k−1 − Z�t+1)|Zt ∼X K Zt + E�k+1|Zt . Since the above short exact sequence (�) is split, it
remains exact (and split) after applying R j f∗ and twisting by −sL. Thus, it suffices to show that
Hi(R j f∗OZt (A − E�k−1 − Z�t+1 − sf ∗L)) = 0 for i + j � d − 1 and s > 0.

Let Z = Zt and V = Vt . We may assume that there are resolutions g : Z̃ → Z and h : Ṽ → V and
there is a snc divisor Ξ on Ṽ such that f̃ : Z̃ → Ṽ is a morphism which is smooth over Ṽ −Ξ and the
same holds for any stratum of g−1∗ (E�k+1|Z ) (cf. see for example the proof of [Kaw11, 2] for a similar
statement). We may also assume that g is an isomorphism at the generic point of the strata of
(Z , E�k+1|Z ) so that F := K Z̃ + g−1∗ (E�k+1|Z )− g∗(K Z + E�k+1|Z ) is effective and g-exceptional. Note
also that if W is any stratum of (Z , E�k+1|Z ), then by the same argument, F |W̃ is g|W̃ -exceptional.
We may further assume that g and h are given by sequences of blow ups along smooth centers and
thus that they are induced by morphisms which (by abuse of notation) we also denote by h : X̃ → X
and g : Ỹ → Y . We write KỸ + Ẽ − Ã = ( f ◦ g)∗(K X + B). Note that by construction Ỹ → X̃ is an
isomorphism over the complement of a proper closed subset of V and so it is easy to see that we
have Ẽ�k+1| Z̃ = g−1∗ (E�k+1|Z ).

Let M := (A − E�k−1)|Z and M̃ = g∗M + F ∼X K Z̃ + Ẽ�k+1| Z̃ . Since F is g-exceptional, g∗M̃ = M .
By (2.7), R• g∗O Z̃ (M̃) ∼= g∗O Z̃ (M̃) = OZ (M) and so it suffices to show that Hi(R j( f ◦ g)∗O Z̃ (M̃ −
s( f ◦ g)∗L)) = 0 for i + j � d − 1 and s > 0.

By (2.7) Rih∗R j f̃∗O Z̃ (M̃) = 0 for i > 0, and thus it suffices to show that Hi(R j f̃∗O Z̃ (M̃ −
s( f ◦ g)∗L)) = 0 for i + j � d − 1 and s > 0.

To this end, let Z̃ = Z̃ 1 + · · · + Z̃ p and for any multi-index I = {i1, . . . , il} ⊂ {1, . . . , p} let Z̃ I =
Z̃ i1 ∩ · · · ∩ Z̃ il and Z̃ [I] = Z̃ i1 + · · · + Z̃ il . Similarly let Ẽ�k+1 = G̃1 + · · · + G̃ρ and for any multi-index
I = {i1, . . . , il} ⊂ {1, . . . , ρ} let G̃ I = G̃ i1 ∩ · · · ∩ G̃ il and G̃[I] = G̃ i1 + · · ·+ G̃ il . We use a similar notation
for Z and E�k+1. It suffices to show that:
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(1) The sheaves R j f̃∗O Z̃ (M̃) admit filtrations whose quotients are direct sums of summands of

sheaves of the form R j f̃∗O Z̃ L∩G̃ N (M̃ − G̃[N̄] − Z̃ [L̄]) where N ⊂ {1, . . . , ρ}, L ⊂ {1, . . . , p}, N̄ =
{1, . . . , ρ} \ N and L̄ = {1, . . . , p} \ L.

(2) Hi(R j f̃∗O Z̃ L∩G̃ N (M̃ − G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L)) = 0 for i + j � d − 1 and s > 0.

To see the first statement, notice that (M̃ − G̃[N̄] − Z̃ [L̄])| Z̃ L∩G̃ N ∼X K Z̃ L∩G̃ N and hence the sheaves

R j f̃∗O Z̃ L∩G̃ N (M̃ − G̃[N̄] − Z̃ [L̄]) are obtained as upper canonical extensions of the bottom pieces in
the Hodge filtration of a variation of pure Hodge structures cf. [Kol87]. Since pure Hodge structures
are a semisimple category, these sheaves split as a direct sum of simple summands.

Consider now two disjoint sets I, J ⊂ {1, . . . , ρ}, I ∩ J = ∅, and an index α ∈ I ∪ J in the comple-
ment of I � J . Let I ′ = I ∪ α and J ′ = J ∪ α.

We have short exact sequences

0 → O Z̃∩G̃ I

(
M̃ − G̃

[
J ′]) → O Z̃∩G̃ I

(
M̃ − G̃[ J ]) → O Z̃∩G̃ I′

(
M̃ − G̃[ J ]) → 0. (�)

Proceeding by ascending induction on |I| + | J | we may assume that the claim (1) holds for R j f̃∗
of the right and left hand sides of the above short exact sequence. Note that (M̃ − G̃[ J ])| Z̃∩G̃ I ∼X

K Z̃∩G̃ I + G̃[ J + I]| Z̃∩G̃ I , and so by [Kaw09, 5.1] (see also [Kaw11, 15]), we have that the sheaves

R j f̃∗O Z̃∩G̃ I (M̃ − G̃[ J ]) are obtained as upper canonical extensions of the bottom pieces in the Hodge
filtration of a variation of mixed Hodge structures. Since pure Hodge structures are a semisimple cate-
gory, a morphism of mixed Hodge structures to a simple Hodge structure is either surjective or trivial.
Pushing forward (�) and using the filtration on R j f̃∗O Z̃∩G̃ I ′ (M̃ − G̃[ J ]) first and then the filtration on

R j f̃∗O Z̃∩G̃ I (M̃ − G̃[ J ′]) (both filtrations exist by our inductive hypothesis), we obtain the required

filtration on R j f̃∗O Z̃∩G̃ I (M̃ − G̃[ J ]). The claim now follows (once the base of the induction has been
verified).

We must now verify the base of the induction, i.e. that the claim holds for sheaves of the
form R j f̃∗O Z̃∩G̃ N (M̃ − G̃[N̄]) where N ⊂ {1, . . . , ρ}. Note that Z̃ = Z̃ [1,2, . . . , p]. Recall that (M̃ −
G̃[N̄])| Z̃∩G̃ N ∼X K Z̃∩G̃ N and so (M̃ − Z̃ [ Ī] − G̃[N̄])| Z̃ [I]∩G̃ N ∼X K Z̃ [I]∩G̃ N . Consider the short exact se-
quences

0 → OV (−V ∩ W ) → OV +W → OW → 0,

0 → OW → OW (V ) → OW ∩V → 0,

where V = Z̃α , W = Z̃ [I] ∩ Z̃ J ∩ G̃ N , and index sets I, J ,α, I ′, J ′ ⊂ {1, . . . , p} defined as above.
Tensoring the above sequences by the line bundles O Z̃ (M̃ − G̃[N̄]− Z̃ [I ′ + J ]) and O Z̃ (M̃ − G̃[N̄]−

Z̃ [I + J ]), we obtain (up to linear equivalence over X ) the following short exact sequences

0 → ω Z̃ [I]∩ Z̃ J ′ ∩G̃ N → ω Z̃ [I ′]∩ Z̃ J ∩G̃ N → ω Z̃ [I]∩ Z̃ J ∩G̃ N

(
Z̃α

) → 0,

0 → ω Z̃ [I]∩ Z̃ J ∩G̃ N → ω Z̃ [I]∩ Z̃ J ∩G̃ N

(
Z̃α

) → ω Z̃ [I]∩ Z̃ J ′ ∩G̃ N → 0.

By the above arguments, using the higher direct images of these exact sequences, and proceeding by
descending induction on |I|, we reduce to the case that |I| = 1 i.e. to the case K Z̃ J ∩G̃ N ∼X (M̃ − Z̃ [ J̄ ]−
G̃[N̄])| Z̃ J ∩G̃ N and the first statement follows.

We now prove the second statement. By (4.5) we have Hi(OZ L∩G N (M − G[N̄] − Z [L̄] − sf ∗L)) = 0
for i � d − 1 and s > 0. Notice that g is an isomorphism on an open subset of Z̃ L ∩ G̃ N , thus, by (2.7),

R•(g| Z̃ L∩G̃ N )∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄]) ∼= (g| Z̃ L∩G̃ N )∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄]).
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Moreover, since g| Z̃ L∩G̃ N is birational and F | Z̃ L∩G̃ N is g| Z̃ L∩G̃ N -exceptional, we have that

(g| Z̃ L∩G̃ N )∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄]) = OZ L∩G N

(
M − G[N̄] − Z [L̄]).

In particular Hi(O Z̃ L∩G̃ N (M̃ − G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L)) = 0 for i � d − 1 and s > 0.
By [Kol87], it follows that

R• f̃∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄]) =

∑
Ri f̃∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄])[−i]

and so Hi(R j f̃∗O Z̃ L∩G̃ N (M̃ − G̃[N̄] − Z̃ [L̄]) − s( f ◦ g)∗L) = 0 for i + j � d − 1.
We will now prove the required vanishing for i + j = d, k > d and s > 0. Note that in this case we

have a short exact sequence

0 → OZ L∩G N

(
M − G[N̄] − Z [L̄]) → OZ L∩G N

(
M + E=d − G[N̄] − Z [L̄])

→ OE=d∩Z L∩G N

(
M + E=d − G[N̄] − Z [L̄]) → 0.

By (4.5) we have Hi(OZ L∩G N (M + E=d − G[N̄] − Z [L̄] − sf ∗L)) = 0 for i � d and s > 0 and
Hi(OE=d∩Z L∩G N (M + E=d − G[N̄] − Z [L̄] − sf ∗L)) = 0 for i � d − 1 and s > 0. It follows that

Hi(OZ L∩G N (M − G[N̄] − Z [L̄] − sf ∗L)) = 0 for i � d and s > 0. The required vanishing now follows
from the proof of the previous case i + j � d − 1.

Finally, we will now prove the required vanishing for i + j = d, k = d and s > 0. It suffices to show
that Hd− j(R j f∗OZ (A − sf ∗L)) = 0 for j > 0 and s > 0. Following the above arguments, it suffices to
check that if (G̃[N̄] + Z̃ [L̄])| Z̃ L∩G̃ N �= 0, then

Hd(O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L

)) = 0 for s > 0

and if (G̃[N̄] + Z [̃L̄])| Z̃ L∩G̃ N = ∅, then

Hd(O Z̃ L∩G̃ N

(
M̃ − s( f ◦ g)∗L

)) ∼= Hd( f̃∗O Z̃ L∩G̃ N

(
M̃ − s( f ◦ g)∗L

))
for s > 0.

Note that as Z L ∩ G N ∩ (G[N̄] + Z [L̄]) is a union of non-klt centers, it is seminormal cf. [Fuj11, 9.1].
Similarly to what we have seen above, we have

R•g∗O Z̃ L∩G̃ N ∩(G̃[N̄]+ Z̃ [L̄])(M̃) = OZ L∩G N ∩(G[N̄]+Z [L̄])(M)

and so

R•g∗O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄]) = OZ L∩G N

(
M − G[N̄] − Z [L̄]).

We also have R• g∗O Z̃ L∩G̃ N (−G̃[N̄] − Z̃ [L̄]) =OZ L∩G N (−G[N̄] − Z [L̄]). Since M = A, by (4.3) we have

Hd(O Z̃ L∩G̃ N

(
M̃ − G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L

)) = Hd(OZ L∩G N

(
M − G[N̄] − Z [L̄] − sf ∗L

))

(4.3)∼= Hd(OZ L∩G N

(−G[N̄] − Z [L̄] − sf ∗L
))

∼= Hd(O Z̃ L∩G̃ N

(−G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L
))

.
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Let f = dim( Z̃ L ∩ G̃ N ) − dim Ṽ . We have

Hd(O Z̃ L∩G̃ N

(−G̃[N̄] − Z̃ [L̄] − s( f ◦ g)∗L
)) (Serre duality)∼= H f (ω Z̃ L∩G̃ N

(
G̃[N̄] + Z̃ [L̄] + s( f ◦ g)∗L

))∨

(2.7)∼= H0(R f f̃∗ω Z̃ L∩G̃ N

(
G̃[N̄] + Z̃ [L̄]) ⊗OṼ

(
sh∗L

))∨
.

If (G̃[N̄] + Z̃ [L̄])| Z̃ L∩G̃ N �= 0, then R f f̃∗ω Z̃ L∩G̃ N (G̃[N̄] + Z̃ [L̄]) is torsion free and generically 0 and

hence vanishes (cf. (2.7)). If, on the other hand, (G̃[N̄] + Z̃ [L̄])| Z̃ L∩G̃ N = ∅, then R f f̃∗ω Z̃ L∩G̃ N
∼= ωṼ

(cf. [Kol86]). By Serre duality and (2.7), we have

H0(ωṼ

(
sh∗L

))∨ S.D.∼= Hd(OṼ

(−sh∗L
)) (2.7)∼= Hd( f̃∗O Z̃ L∩G̃ N

(−s( f ◦ g)∗L
))

. �
4.3. The structure of the sheaves Ri f∗OY

By the Kawamata–Viehweg vanishing theorem, we have that Ri f∗OY (A − E) = 0 for i > 0 since
A − E = KY + � − f ∗(K X + B). We will now build up the sheaves Ri f∗OY ∼= Ri f∗OY (A), going from
Ri f∗OY (A − E) to Ri f∗OY (A) by adding the parts E=l defined in Section 3.2 one by one.

Proof of (1.5). By [HX11], we may assume that (X, B) is projective. Adding a sufficiently ample divisor
to B we may assume that K X + B is ample, and so we may assume that m(K X + B) ∼ H is a general
very ample divisor (for some integer m > 0). Let ν : X ′ → X be the corresponding normal cyclic cover
(cf. [KM98, 5.20]) and K X ′ + B ′ = ν∗(K X + B). Then (X ′, B ′) is log canonical, K X ′ + B ′ is Cartier and
the non-klt centers are given by the inverse images of the non-klt centers of (X, B) cf. [KM98, 5.20].
Note that if Y ′ = Y ×X X ′ , then f ′ : Y ′ → X ′ is a resolution and μ : Y ′ → Y is a finite map so that
Riμ∗OY ′ = 0 for i > 0 and OY is a direct summand of μ∗OY ′ . Thus it is easy to see that if X ′ is Cd+2
then so is X (similarly if Ri f ′∗OY ′ is Cd+1−i for i > 0, then so is Ri f∗OY ). Thus, replacing (X, B) by
(X ′, B ′), we may assume that K X + B is Cartier.

Recall that by (3.6), we have R j f∗OY ∼= R j f∗OY (A). For dim X − 1 � k � d, consider the short
exact sequences

0 → R j f∗OY (A − E + E�k+1) → R j f∗OY (A − E + E�k) → R j f∗OE=k(A − E + E�k) → 0.

(Note that these sequences are exact by (2.7); moreover E�dim X−1 = 0.) By (4.6) we have
Hi(R j f∗OE=k(A − E + E�k − sf ∗L)) = 0 for i + j � d, j > 0 and s > 0. Since R j f∗OY (A − E) = 0
for j > 0, it follows that 0 = Hi(R j f∗OY (A − E − sf ∗L)) → Hi(R j f∗OY (A − sf ∗L)) is surjective for
i + j � d and j > 0 and so R j f∗OY ∼= R j f∗OY (A) is Cd− j+1 for j > 0. By (4.1), X is Cd+2. �
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