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ABSTRACT 

We consider systems of equations of the form 

tu=r=b, 

where A is a sparse matrix having a small number of columns which are much denser 
than the other columns. These dense columns in A cause AAT to be very (or even 
completely) dense, which greatly limits the effectiveness of sparse-matrix techniques 
for directly solving the above system of equations. In the literature on interior-point 
methods for linear programming, the usual technique for dealing with this problem is 
to split A into a sparse part S and a dense part D, 

A=[S D], 

and to solve systems involving AA* in terms of the solution of systems involving SST 
using either conjugate-gradient techniques or the Sherman-Morrison-Woodbury for- 
mula. This approach has the difficulty that SST is often rank-deficient even when AAT 
has full rank. In this paper we propose an alternative method which avoids the 
rank-deficiency problem and at the same time allows for the effective use of 
sparse-matrix techniques. The resulting algorithm is both efficient and robust. 

1. INTRODUCTION 

Let A be a sparse matrix having full row rank. We suppose that some of 

the columns of A are much denser than the other columns and that these 
dense columns have been identified. Then we can write A as a partitioned 
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A=[s D], 

where S represents the sparse part of A, and D the dense part. The matrix 
AAT is equal to SST+ DDT, and even though we expect SST to be quite 
sparse, DDT will be very (or even completely) dense. Hence, AAT is also 
very dense, and so it is important to look for a method for solving the system 
of equations 

AATx=b (1.1) 

without using AAT explicitly. Two techniques are commonly used for this 
purpose. The first technique is to use (SST)-’ as a preconditioner for 
the conjugate-gradient method (see e.g. [l-4]). The second technique 
stays within the framework of direct methods. It is based on the Sherman- 
Morrison-Woodbury formula: 

(AAT)-‘=(SST)-‘-(SST)-‘D[I+ DT(SST)-lD]-‘DT(SST)-’ 

(see e.g. [5-71). These approaches both have the problem that they require 
SST to be of full rank, but in practice SST is often rank-deficient. There have 
been several suggestions to overcome this problem (see e.g. [8, 7, 9, lo]) but 
so far all attempts have resulted in algorithms that are quite sensitive to 
numerical error and require careful tuning of parameters. 

This paper presents an alternative method for solving (1.1) which is 
efficient and robust. The method is motivated by the idea of splitting dense 
columns in the constraint matrix of linear programming problems. In Section 
2, we briefly discuss the Sherman-Morrison-Woodbury formula. Then in 
Section 3, we describe how the method works in the case where the matrix 
has a single dense column. In Section 4, we study the general case. Then in 
Section 5, we discuss the application of these techniques to interior-point 
methods for linear programming. Finally, in Section 6 we extend the method 
to the case of linear systems that are not necessarily symmetric. 

2. THE SHERMAN-MORRISON-WOODBURY FORMULA 

Consider the following system of equations: 

(2.1) 
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which is written out as 

SSTr + Dy = b, (2.2) 

DTr-y=O. (2.3) 

If we solve (2.3) for y as a function of x and then substitute this into (2.21, 
we see that 

r=(SST+ DDT)-‘b=(AAT)-lb. 

Now, suppose that SST is invertible, so that we can solve (2.2) for x as a 
function of y: 

x=(SST)-‘(b- Dy). (2.41 

Then we can substitute this into (2.3) and obtain 

,=[I+ DT(SST)-lD]-‘DT(SST)-‘b. 

Finally, substituting this expression for y into (2.41, we get the Sherman- 
Morrison-Woodbury formula for (SST + DDT)-‘: 

-(SST)-‘D[I+ DT(SST)-ID]-‘DT(SST)-‘}b. (2.5) 

Using (2.1) as a starting point for deriving the Sherman-Morrison- 
Woodbury formula motivates us to ask: why not solve (2.1) with a general 
linear system solver and then just keep the x part of the answer? One would 
think that this should do even better than the Sherman-Morrison-Woodbury 
formula, since it does not predetermine the order in which the equations are 
solved. However, it suffers from the drawback that the matrix in (2.1) is not 
positive definite (even though it is symmetric). Hence, for direct factorization 
methods, pivoting rules depending on tolerances become quite important. 
The splitting technique described in the next two sections of this paper is 
similar to this approach except that it always involves symmetric positive 
definite matrices. 



110 ROBERT J. VANDERBEI 

3. SPLITTING A SINGLE DENSE COLUMN 

Suppose that D consists of a single dense column d: 

A=[S d]. 

We split d into a k-column matrix A by distributing to each column a few 
nonzeros from d. The matrix A is related to d by the following formula: 

Ae=d, 

where e is a k-vector of ones. Of course, to be efficient we want the columns 
of A to be sparse, but this is not necessary for the algebra. Consider the 
system of equations 

(3.1) 

where 

and 

1 
1 

L= 

- 

1 

1 -1 
1 -1 

.‘. 1 -1 1. 

The (k - 1) X k matrix L is called a linking matrix. 

THEOREM 1. C has full row rank if and only if A has full row rank. 
Assuming that C has full row rank, let [rT yTJT be the solution to (3.1). Then 

x = @AT)-lb. 

Proof. Let m and n denote the numbers of rows and columns of A, 
respectively. Then C has m + k - 1 rows and n + k - 1 columns. Since 
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performing column operations does not affect the rank of a matrix, we can 
replace the nth column of C (i.e. the first in the split group of columns) with 
the sum of columns n, n + 1,. . . , n + k - 1 to get the following matrix, which 
has the same rank as C: 

S d As ... Ak A A, .** Ak 

0 0 L, . *. L, = 0 I[ 1 L, ..* L, ’ 

where A, denotes the jth column of A and L, denotes the jth column of L. 
We now see that this matrix has full row rank if and only if A does, since the 
submatrix 

is an invertible (k - l)X(k - 1) matrix. 
Now assume that C has full row rank. Then writing out (3.1) we see that 

(SSr+kAAr)x+&ALry=b, (3.2) 

&LATr + LLTy = 0. (3.3) 

Solving (3.3) for y, we get 

y= -&(LLT)-‘LATq 

and substituting this into (3.2), we get the following expression for X: 

If we can show that 

I-LT(LLT)-~L=+-, 

we will be done, since then (3.4) becomes 

x=(SSr+&r)-%=(AAr)-‘b. 

(3.4) 

(3.5) 
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To prove (3.51, we first note that the left-hand side is the projection onto the 
null space of L. But from the definition of I,, we see that its null space is the 
one-dimensional space spanned by e. The projection onto this one-dimen- 
sional space is easily seen to be given by ee’/ k. 4 

Theorem 1 says that instead of solving the system (1.11, one could instead 
solve the split system (3.1) for X. Even though the system (3.1) is larger, it 
has a better sparsity structure and can often be solved much faster than the 
original system. 

4. SPLITTING SEVERAL DENSE COLUMNS 

Now we return to the general case where A can have several dense 
columns: 

A=[S D]. 

A splitting (and scaling) of D is a matrix A having the same number of rows 
but more columns and which satisfies 

AE= D, (4.1) 

where 

E= (4.2) 

where each e, is a ki-vector of all ones. Hence, we see that we have 
expanded the ith column of D into ki new sparse columns. For each i, let 
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Li be a (ki - 1)X ki linking matrix, and let 

L, 

L= 
L2 

i .’ 
Now, consider the system of equations 

where 

CA A 
[ 1 0 L’ 

113 

(4.3) 

(4.4) 

THEOREM 2. C has fuZZ rou, rank if and only if A has full row rank. 

Assuming that C has full row rank, let [xT yTIT be the solution to (4.4). Then 

x = @@)-lb. 

Proof. The proof that C has full row rank if and only if A does proceeds 
in the same way as the proof of the same statement in Theorem 1, so we omit 
it here. 

Again performing block matrix algebra, we see that 

x=(SS’+A[Z-Lr(LLr)-ILlAT}-lb. (4.5) 

If we can show that 

I- LT(LLT)+L= EET, (4.6) 

we will be done, since then (4.5) becomes 

x=(SS~+DD~)-‘~=(AA~)-~~. 

To prove (4.61, we again note that the left-hand side is the projection onto 
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the null space of L. But from the definition of L, we see that its null space is 
the n-dimensional space spanned by the following n orthonormal vectors: 

Projection onto this space is easily seen to be given by EET. n 

5. APPLICATION TO INTERIOR-POINT METHODS FOR 
LINEAR PROGRAMMING 

Consider the following linear programming problem: 

minimize cTx: 

Ax = b, 

x >o. 

Interior-point methods for solving this problem rely on being able to solve 
efficiently systems of equations of the form 

AX2ATy = d, (5.1) 

where X is a diagonal matrix. Hence, dense columns in A are an impedi- 
ment to efficient interior-point algorithms for linear programming based on 
direct factorization methods. 

As before, let us suppose that we have identified the dense columns, so 
that we can rewrite the linear programming problem in block matrix form: 

minimize c& + c&: 

1s A[;;]=& 

xs >, 0, X,20. 

One technique for dealing with dense columns (see e.g. [ll] or [12]) is to 
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split each column of D into several columns (thereby creating additional 
variables) and to force the corresponding variables to be equal by including 
linking constraints. Algebraically, this derived LP can be written as 

minimize c,$rs + c;xA: 

where A is as defined in (4.1) and L is as defined in (4.3). It is easy to see 
that if C~ is chosen properly and if xA is related back to xo properly, then 
this new LP is equivalent to the original one. 

This technique of splitting the dense columns has been used in an 
experimental LP code called ALPO (Another Linear Programming optimizer) 
and has proven to be quite effective (see [13]). For example, the solution 
time for FIT~P (from the NETLIB suite of test problems-see [14]) has been 
speeded up by a factor of 120, and SEBA (another NETLIB problem) has been 
speeded up by a factor of 10. 

Splitting dense columns in a linear program motivated the method 
described in the previous section for linear systems, but the two splitting 
techniques are not identical. The difference stems from the diagonal matrix 
that appears between A and AT in the linear-programming context and also 
from the fact that the right-hand side of the expanded version of (5.1) does 
not have a vanishing component as it did in the linear-systems context. There 
are some advantages in doing the splitting in the context of linear systems as 
opposed to the way described in this section. First, putting the splitting code 
in with the numerical code for solving systems of equations isolates the 
splitting from the LP code. This yields better program structure. For 
example, if one wants to write out intermediate solutions after every itera- 
tion, it would be necessary to reconsolidate the problem if the splitting were 
done at the LP level, whereas no reconsolidation is required if the splitting is 
done at the equation-solving level. Also, by pushing the splitting down to the 
equation-solving level, one gains some efficiency at the LP level because the 
algorithms at the LP level can act on the original unexpanded linear 
programming problem. 

The effectiveness of these splitting techniques depends on how good the 
heuristic is which identifies and decides exactly how to split dense columns. 
In ALPO, the heuristic is of the simplest possible kind. Namely, there is a 
threshold parameter 8, and any column with more than 8 nonzeros is split 
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into a set of columns, each containing exactly 8 nonzeros, except for the last 
column, which contains the remainder of the nonzeros. The nonzeros are 
allocated to the new columns in the order in which they appear in the 
sparse-matrix data structure. That is, the first 0 nonzeros go into the first 
column, the second 8 go into the second column, etc. It would be interesting 
to develop heuristics which are fast but which are more sophisticated than 
the present one. 

6. GENERAL LINEAR SYSTEMS 

Suppose we wish to solve 

Ar=t?, (6.1) 

where A has the form 

A=B+CDT 

with B being sparse and both C and D being dense. Let r and A be 
splittings of C and D, respectively. That is, 

fE=C, 

AE=D; 

where E is given by (4.2). Then instead of solving the comparatively dense 
system (6.1), we solve the following much sparser system 

B+TAT 

LAT 

where L is given by (4.3). Then mimicking the proof of Theorem 2, we see 
that the x so obtained is actually a solution to Ax = b. 

The author would like to thank R. Fourer and D. Gay for interesting 
discussions which motivated this work. 
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