
Splitting Dense Columns in Sparse Linear Systems

Robert J. Vanderbei

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Submitted by David M. Gay

ABSTRACT

We consider systems of equations of the form

tu=r=b,

where A is a sparse matrix having a small number of columns which are much denser
than the other columns. These dense columns in A cause AAT to be very (or even
completely) dense, which greatly limits the effectiveness of sparse-matrix techniques
for directly solving the above system of equations. In the literature on interior-point
methods for linear programming, the usual technique for dealing with this problem is
to split A into a sparse part S and a dense part D,

A=[S D],

and to solve systems involving AA* in terms of the solution of systems involving SST
using either conjugate-gradient techniques or the Sherman-Morrison-Woodbury for-
mula. This approach has the difficulty that SST is often rank-deficient even when AAT
has full rank. In this paper we propose an alternative method which avoids the
rank-deficiency problem and at the same time allows for the effective use of
sparse-matrix techniques. The resulting algorithm is both efficient and robust.

1. INTRODUCTION

Let A be a sparse matrix having full row rank. We suppose that some of

the columns of A are much denser than the other columns and that these
dense columns have been identified. Then we can write A as a partitioned

LINEAR ALGEBRA AND ITS APPLICATIONS

0 1991 by R. J. Vanderbei
655 Avenue of the Americas, New York, NY 10010

152:107-117 (1991) 107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81153865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108 ROBERT J. VANDERBEI

A=[s D],

where S represents the sparse part of A, and D the dense part. The matrix
AAT is equal to SST+ DDT, and even though we expect SST to be quite
sparse, DDT will be very (or even completely) dense. Hence, AAT is also
very dense, and so it is important to look for a method for solving the system
of equations

AATx=b (1.1)

without using AAT explicitly. Two techniques are commonly used for this
purpose. The first technique is to use (SST)-’ as a preconditioner for
the conjugate-gradient method (see e.g. [l-4]). The second technique
stays within the framework of direct methods. It is based on the Sherman-
Morrison-Woodbury formula:

(AAT)-‘=(SST)-‘-(SST)-‘D[I+ DT(SST)-lD]-‘DT(SST)-’

(see e.g. [5-71). These approaches both have the problem that they require
SST to be of full rank, but in practice SST is often rank-deficient. There have
been several suggestions to overcome this problem (see e.g. [8, 7, 9, lo]) but
so far all attempts have resulted in algorithms that are quite sensitive to
numerical error and require careful tuning of parameters.

This paper presents an alternative method for solving (1.1) which is
efficient and robust. The method is motivated by the idea of splitting dense
columns in the constraint matrix of linear programming problems. In Section
2, we briefly discuss the Sherman-Morrison-Woodbury formula. Then in
Section 3, we describe how the method works in the case where the matrix
has a single dense column. In Section 4, we study the general case. Then in
Section 5, we discuss the application of these techniques to interior-point
methods for linear programming. Finally, in Section 6 we extend the method
to the case of linear systems that are not necessarily symmetric.

2. THE SHERMAN-MORRISON-WOODBURY FORMULA

Consider the following system of equations:

(2.1)

SPLI’lTING DENSE COLUMNS 109

which is written out as

SSTr + Dy = b, (2.2)

DTr-y=O. (2.3)

If we solve (2.3) for y as a function of x and then substitute this into (2.21,
we see that

r=(SST+ DDT)-‘b=(AAT)-lb.

Now, suppose that SST is invertible, so that we can solve (2.2) for x as a
function of y:

x=(SST)-‘(b- Dy). (2.41

Then we can substitute this into (2.3) and obtain

,=[I+ DT(SST)-lD]-‘DT(SST)-‘b.

Finally, substituting this expression for y into (2.41, we get the Sherman-
Morrison-Woodbury formula for (SST + DDT)-‘:

-(SST)-‘D[I+ DT(SST)-ID]-‘DT(SST)-‘}b. (2.5)

Using (2.1) as a starting point for deriving the Sherman-Morrison-
Woodbury formula motivates us to ask: why not solve (2.1) with a general
linear system solver and then just keep the x part of the answer? One would
think that this should do even better than the Sherman-Morrison-Woodbury
formula, since it does not predetermine the order in which the equations are
solved. However, it suffers from the drawback that the matrix in (2.1) is not
positive definite (even though it is symmetric). Hence, for direct factorization
methods, pivoting rules depending on tolerances become quite important.
The splitting technique described in the next two sections of this paper is
similar to this approach except that it always involves symmetric positive
definite matrices.

110 ROBERT J. VANDERBEI

3. SPLITTING A SINGLE DENSE COLUMN

Suppose that D consists of a single dense column d:

A=[S d].

We split d into a k-column matrix A by distributing to each column a few
nonzeros from d. The matrix A is related to d by the following formula:

Ae=d,

where e is a k-vector of ones. Of course, to be efficient we want the columns
of A to be sparse, but this is not necessary for the algebra. Consider the
system of equations

(3.1)

where

and

1
1

L=

-

1

1 -1
1 -1

.‘. 1 -1 1.

The (k - 1) X k matrix L is called a linking matrix.

THEOREM 1. C has full row rank if and only if A has full row rank.
Assuming that C has full row rank, let [rT yTJT be the solution to (3.1). Then

x = @AT)-lb.

Proof. Let m and n denote the numbers of rows and columns of A,
respectively. Then C has m + k - 1 rows and n + k - 1 columns. Since

SPLITHNG DENSE COLUMNS 111

performing column operations does not affect the rank of a matrix, we can
replace the nth column of C (i.e. the first in the split group of columns) with
the sum of columns n, n + 1,. . . , n + k - 1 to get the following matrix, which
has the same rank as C:

S d As ... Ak A A, .** Ak

0 0 L, . *. L, = 0 I[1 L, ..* L, ’

where A, denotes the jth column of A and L, denotes the jth column of L.
We now see that this matrix has full row rank if and only if A does, since the
submatrix

is an invertible (k - l)X(k - 1) matrix.
Now assume that C has full row rank. Then writing out (3.1) we see that

(SSr+kAAr)x+&ALry=b, (3.2)

&LATr + LLTy = 0. (3.3)

Solving (3.3) for y, we get

y= -&(LLT)-‘LATq

and substituting this into (3.2), we get the following expression for X:

If we can show that

I-LT(LLT)-~L=+-,

we will be done, since then (3.4) becomes

x=(SSr+&r)-%=(AAr)-‘b.

(3.4)

(3.5)

112 ROBERT J. VANDERBEI

To prove (3.51, we first note that the left-hand side is the projection onto the
null space of L. But from the definition of I,, we see that its null space is the
one-dimensional space spanned by e. The projection onto this one-dimen-
sional space is easily seen to be given by ee’/ k. 4

Theorem 1 says that instead of solving the system (1.11, one could instead
solve the split system (3.1) for X. Even though the system (3.1) is larger, it
has a better sparsity structure and can often be solved much faster than the
original system.

4. SPLITTING SEVERAL DENSE COLUMNS

Now we return to the general case where A can have several dense
columns:

A=[S D].

A splitting (and scaling) of D is a matrix A having the same number of rows
but more columns and which satisfies

AE= D, (4.1)

where

E= (4.2)

where each e, is a ki-vector of all ones. Hence, we see that we have
expanded the ith column of D into ki new sparse columns. For each i, let

SPLITTING DENSE COLUMNS

Li be a (ki - 1)X ki linking matrix, and let

L,

L=
L2

i .’
Now, consider the system of equations

where

CA A
[1 0 L’

113

(4.3)

(4.4)

THEOREM 2. C has fuZZ rou, rank if and only if A has full row rank.

Assuming that C has full row rank, let [xT yTIT be the solution to (4.4). Then

x = @@)-lb.

Proof. The proof that C has full row rank if and only if A does proceeds
in the same way as the proof of the same statement in Theorem 1, so we omit
it here.

Again performing block matrix algebra, we see that

x=(SS’+A[Z-Lr(LLr)-ILlAT}-lb. (4.5)

If we can show that

I- LT(LLT)+L= EET, (4.6)

we will be done, since then (4.5) becomes

x=(SS~+DD~)-‘~=(AA~)-~~.

To prove (4.61, we again note that the left-hand side is the projection onto

114 ROBERT J. VANDERBEI

the null space of L. But from the definition of L, we see that its null space is
the n-dimensional space spanned by the following n orthonormal vectors:

Projection onto this space is easily seen to be given by EET. n

5. APPLICATION TO INTERIOR-POINT METHODS FOR
LINEAR PROGRAMMING

Consider the following linear programming problem:

minimize cTx:

Ax = b,

x >o.

Interior-point methods for solving this problem rely on being able to solve
efficiently systems of equations of the form

AX2ATy = d, (5.1)

where X is a diagonal matrix. Hence, dense columns in A are an impedi-
ment to efficient interior-point algorithms for linear programming based on
direct factorization methods.

As before, let us suppose that we have identified the dense columns, so
that we can rewrite the linear programming problem in block matrix form:

minimize c& + c&:

1s A[;;]=&

xs >, 0, X,20.

One technique for dealing with dense columns (see e.g. [ll] or [12]) is to

SPLITHNG DENSE COLUMNS 115

split each column of D into several columns (thereby creating additional
variables) and to force the corresponding variables to be equal by including
linking constraints. Algebraically, this derived LP can be written as

minimize c,$rs + c;xA:

where A is as defined in (4.1) and L is as defined in (4.3). It is easy to see
that if C~ is chosen properly and if xA is related back to xo properly, then
this new LP is equivalent to the original one.

This technique of splitting the dense columns has been used in an
experimental LP code called ALPO (Another Linear Programming optimizer)
and has proven to be quite effective (see [13]). For example, the solution
time for FIT~P (from the NETLIB suite of test problems-see [14]) has been
speeded up by a factor of 120, and SEBA (another NETLIB problem) has been
speeded up by a factor of 10.

Splitting dense columns in a linear program motivated the method
described in the previous section for linear systems, but the two splitting
techniques are not identical. The difference stems from the diagonal matrix
that appears between A and AT in the linear-programming context and also
from the fact that the right-hand side of the expanded version of (5.1) does
not have a vanishing component as it did in the linear-systems context. There
are some advantages in doing the splitting in the context of linear systems as
opposed to the way described in this section. First, putting the splitting code
in with the numerical code for solving systems of equations isolates the
splitting from the LP code. This yields better program structure. For
example, if one wants to write out intermediate solutions after every itera-
tion, it would be necessary to reconsolidate the problem if the splitting were
done at the LP level, whereas no reconsolidation is required if the splitting is
done at the equation-solving level. Also, by pushing the splitting down to the
equation-solving level, one gains some efficiency at the LP level because the
algorithms at the LP level can act on the original unexpanded linear
programming problem.

The effectiveness of these splitting techniques depends on how good the
heuristic is which identifies and decides exactly how to split dense columns.
In ALPO, the heuristic is of the simplest possible kind. Namely, there is a
threshold parameter 8, and any column with more than 8 nonzeros is split

116 ROBERT J. VANDERBEI

into a set of columns, each containing exactly 8 nonzeros, except for the last
column, which contains the remainder of the nonzeros. The nonzeros are
allocated to the new columns in the order in which they appear in the
sparse-matrix data structure. That is, the first 0 nonzeros go into the first
column, the second 8 go into the second column, etc. It would be interesting
to develop heuristics which are fast but which are more sophisticated than
the present one.

6. GENERAL LINEAR SYSTEMS

Suppose we wish to solve

Ar=t?, (6.1)

where A has the form

A=B+CDT

with B being sparse and both C and D being dense. Let r and A be
splittings of C and D, respectively. That is,

fE=C,

AE=D;

where E is given by (4.2). Then instead of solving the comparatively dense
system (6.1), we solve the following much sparser system

B+TAT

LAT

where L is given by (4.3). Then mimicking the proof of Theorem 2, we see
that the x so obtained is actually a solution to Ax = b.

The author would like to thank R. Fourer and D. Gay for interesting
discussions which motivated this work.

REFERENCES

1 P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On
projected Newton methods for linear programming and an equivalence to

Karmarkar’s projective method, Math. Programming 36:183-209 (1986).

SPLI-ITING DENSE COLUMNS 117

2

3

4

5

6

7

8

9

10

11

12

13

14

I. Adler, N. K. Karmarkar, M. G. C. Resende, and G. Veiga, An implementation
of Karmarkar’s algorithm for linear programming, Math. Programming 44:297-
335 (1989).
I. Adler, N. K. Karmarkar, M. G. C. Resende, and G. Veiga, Data structures and
programming techniques for the implementation of Karmarkar’s algorithm, ORSA
J. Comput. 1:84-106 (1989).
S. Mehrotra, Implementations of Affine Scaling Methods: Approximate Solutions
of Systems of Linear Equations Using Preconditioned Conjugate Gradient Meth-
ods, Technical Report 89-04, Dept. of Industrial Engineering and Management
Science, Northwestern Univ., Evanston, Ill., 1989.
I. C. Choi, C. L. Monma, and D. F. Shanno, Further Development of a
Primal-Dual Interior Point Method, Technical Report RRR 60-88, RUTCOR,
Rutgers Univ., 1988.
P. E. Gill, W. Murray, and M. A. Saunders, A Single-Phase Dual Barrier Method
for Linear Programming, Technical Report SOL 88-10, Systems Optimization
Lab. Stanford Univ., Stanford, Calif., 1988.
I. J. Lustig, R. E. Marsten, and D. F. Shanno, Computational Experience with a
Primal-Dual Interior Point Method for Linear Programming, Technical Report
SOR 89-17, Dept. of Civil Engineering and Operations Research, Princeton
Univ., Oct. 1989.
R. E. Marsten, M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F. Ballintijn,
Implement&ion of a Dual Interior Point Algorithm for Linear Programming,
Technical Report RRR 44-88, RUTCOR, Rutgers Univ., New Brunswick, N.J.,
1988.
K. A. McShane, C. L. Monma, and D. F. Shanno, An implementation of a
primal-dual interior point method for linear programming, ORSA J. Comput.
1:70-83 (1989).
I. J. Lustig, R. E. Marsten, and D. F. Shanno, On Implementing Mehrotra’s
Predictor-Corrector Interior Point Method for Linear Programming, Technical
Report SOR 90-03, Dept. of Civil Engineering and Operations Research, Prince-
ton Univ., Apr. 1990.
R. J. Vanderbei, ALPO: Another Linear Program Optimizer, Technical Report,
AT&T Bell Labs., 1990.
I. J. Lustig, J. M. Mulvey, and T. J. Carpenter, Formulating Stochastic Programs
for interior Point Methods, Technical Report SOR 89-16, Dept. of Civil Engi-
neering and Operations Research, Princeton Univ., Sept. 1989.
R. J. Vanderbei, A Brief Description of ALPO, Technical Report, AT&T Bell Labs.,
1990.
D. M. Gay, Electronic mail distribution of linear programming test problems,
Math. Programming Sot. COAL Newslett., 1985.

Received 22 August 1990; final manuscript accepted 25 September 1990

