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1. I N T R O D U C T I O N  

One of the most interesting questions in mathematical biology to discuss is permanence. Take- 
uchi [1] showed global stability of diffusive cooperative systems under some conditions. Take- 
uchi [2] discussed the persistence of two species models. But for some systems, we find that they 
have nonlinear growth rates [3]. On the other hand, it is recognized that time delays are natural 
components of the dynamic processes of biology, economics, and physiology, etc. Beretta and 
Takeuchi [4] discussed the globally asymptotic stability of the Lotka-Voterra autonomous model 
with diifnsion and time delay. These motivate us to consider the possible effect of both diffusion 
and time delay on the stability of nonautonomous systems with nonlinear growth. 

The organization of this paper is as follows. In Section 2, two models, some notations and lem- 
mas are given. In Section 2 and 3, we employ differential inequations and Lyapunov-Rzumikhin 
type theorems to obtain an ultimate bounded domain and establish sufficient conditions that 
ensure that there exists a positive periodic solution which is global attractively in each system. 

2. MODELS A N D  LEMMAS 

Let us consider the following systems: 

Xl~t) = Xl(t) kl(t) - -  a l ( t ) X l ( t )  -~" bl(t)xl(t  - T) + dl(t) [x2(t) - xl(t)] 
kl(t) + rl(t)Xl(t) 

 2(t) = x2(t) - a2(t)x (t) + - 
k2(t) + r2(t)x2(t) + d2(t) [xl(t) - x2(t)], 

(2.1) 
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and rib(t)- a l ( t ) x l ( t ) - ' b l ( t ) x l ( t - r ) . | l  + d l ( t ) [ x 2 ( t ) -  x:(t)] Xl(t) x l ( t )  
ki( t)  + Tl(t)Xl(t) .~ L 

(2 .2)  
~2( t )  = x 2 ( t ) k 2 ( t )  - a 2 ( t ) z 2 ( t )  - b2(t )x2( t  - 7)  

k2(t) + r2(t)x2(t)  + d2(t) [xl(t) - x2(t)], 

where xi(t) is the density of species x in patch i( i  = 1, 2), xi ( t )  = ¢i(t) >_ 0, ¢i(0) > 0 (i = 
1,2), t • [--r, 0] r  > 0, ¢i • C([ -T ,O] ,R) .  ki( t)  and ai(t)  are continuous functions which 
have positive upper bound and positive lower bound, ri(t), bi(t), di(t)  are nonnegative bounded 
continuous functions (i = 1,2). We define constants aiM, a iL , ( i  = 1,2), hi, h2, ha, and ha by 
aiM = m a x { a i ( t ) , t  > 0}, a i L =  m i n { a i ( t ) , t  >_ 0}(i = 1,2). kiM, g iL ,  biM, biL, riM, riL, diM, 
diL(i = 1, 2) have the same definition as a~M,aiL. 

( klM k2M ] 
hi  = m a x  ~ - ~ , - - - -  

[ alL -- blM a2L -- b2M I ' 

max ~ k lM,  k2M ~ 
h3 = ( al----L a2----L J '  

h2 : min {a~M'  a2Mk2---~L } ,  

klL -- blMh3 k2L -- b2Mh3 
ha = mm" ~ ~'-~M~b-~M ' ~'2~-~b-~-M J"  > 

Denote 

c ~ = {¢ = ( ¢ i , . . . ,  ¢ , ) :  ¢ • c ( [ - ~ ,  o], a" )} ,  

~+0 = {(~ = (¢1 , - . .  , ¢ , )  : @ • C([--T,O],R~O)}, 

c20 = {¢ = (¢1, . . .  , ¢ , )  : ¢ • c([-r,o],n"_o)}, 
n~_0 -- { ( X l , . . . , x n ) :  z i  >_ O, i = 1 , . . . , n } ,  

Rn_0 = ( (X l , . . . , x n )  : z i  <_ O, i = 1 , . . . , n } .  

Before stating our main theorem, we need the following lemmas. 

LEMMA 1. Suppose  ~ C R x C n is open, (a ,¢ )  E w, f • C ( ~ , R N ) ,  and x is a solution o f  

5(  t ) = f ( t, x t  ) through ( a, ¢ ) which exists  and is unique on [a - r, b] , b > a - r. Then,  there exis ts  
posi t ive  integer M large enough, such that  for m > M ,  each solution x m through (a, ¢) of 

1 
x d t )  = 1i(t, x t )  + - - ,  i = 1 . . . .  , n  

m 

exists on [(r - r, b] and x m -~ x uni formly  on [a - r, b], as m -~ co. 

PROOF. Let a "~ = a, ¢m = ~, f ,~  = f + ( 1 / m  . . . . .  1 / m )  T. Then, applying Theorem 2.3 in 
[5, pp. 19-20], we can see that  the conclusion of Lemma 1 is true. 

LEMMA 2. Suppose  ~ C R x C n is open, f i  G C ( ~ ,  R) ,  i = 1 , . . . ,  n. I f  

fd~,(t)=o,x~eC~.o >- O, X t  = ( xx t , . . . , x ,~ t ) ,  i = 1 , . . . , n ,  

then  C~o is the invarious domain of  the following equations: 

i i ( t )  = f i ( t ,  X t ) ,  t k a, i = 1 , . . . , n ;  (2.3) 

if fi[x~(t)---o,x, ec2o < _ O, Xt = (xit, ..., xnt), i = I, .. ., n, then C n -o is the invarious domain of the 

above equation. 

PROOF. We consider the equation 

1 i j t )=  Ydt, x,) + --, 
m 

i = l,,n, (,) 



Delay Diffusive Models 111 

m is any positive integer. Let x~(t) be the solution of ( . )  and xi(t)  > O, t E [a - r,q], x i (a)  > O, 
i = 1 , . . . , n .  If there is a T,  T > a, X T  not in C~_o, then there must be i and to > a such 
that  xi(to) = O, Xit  >_ 0 for t • [a, to]. This implies ~i(t0) _ 0. It contradicts ~i(t0) = fi(to, 
Xto) + 1 /m  > 0. So we can say that  C~o is the invarious domain of (*). 

Letting m ~ c~, from Lemma 1, we get that  C~_ 0 is the invarious domain of (2.3). 
The  other conclusion can be deduced similarly. 

LEMMA 3. Domain C2o is the invarious domain of systems (2.1) and (2.2). 

PROOF. It can be deduced from Lemma 2. 

LEMMA 4. A n y  of  the solutions of  systems (2.1) and (2.2) are positive for t >_ O. 

PROOF. From Lemma 3 and (2.1), we know that  for t _> 0, 

> , )  _ a,(t)] ~i(t) 
- L k~(t) + ri(t)x~(t) J ' 

i = 1 , 2 .  

This implies tha t  for i = 1, 2, 

{ f o t  ( k i ( s ) - a i ( s ) x , ( s )  + b , ( s ) x , ( s -  T) - d , ( s ) )  d s }  > 0 .  
xdt) >_ ~(o) exp k~(s) + r~(s)~(s) 

Therefore, the conclusion of Lemma 4 is true. 

The proof for system (2.2) is similar to the above. 

3.  P E R M A N E N C E  

DEFINITION 1. System X ( t )  = f ( t ,  Xt) ,  X E R n is said to be permanence, i f  for any solution 
X = X ( t ,  ¢), there exists a constant m > 0 and T = T(¢),  such that X ( t )  > m for a / / t  > T. 

Domain D C C n is said to be an ultimately-bounded domain, if  D is a closed, bounded subset 
o f  C n, and there exists constant T = T(¢)  such that, for t > T,  X t  E D. 

THEOREM 1. H 0  < hi < oo, then, for  a n y  }71 >-- O, }72 > O, 

D~x~2 : { ( x i t ,  x2t)  : h2 - }72 ~_ x i t  ~_ hi +}71, t > - %  i = 1,2} 

is the invarious domain of (2.1). We can let }72 small enough such that h2 - }72 > O. 

PROOF. Let u~(t) = x~(t) - h i  -}71, i = 1,2, then 

us + hi + }71 [ki - aiui + b~ui(t - T) -- (ai -- bl)(hl + }71)] + d~(uj - ui), 
~( t )  = k~ + r~(m + hi + }71) 

i , j = l , 2 ,  i ~ j .  
(3.1) 

We find ~i(t)]~dt)ffiO,Ul,<0,u2,<0 < 0, i = 1, 2. According to Lemma 2, c2_0 is the invarious domain 
of (3.1). Tha t  is to say, if xa(s) ,x2(s)  <_ hi ÷}71, s E [ - r ,0 ] ,  then x l ( t ) , x2( t )  <_ hi + }71 for all 

t > 0 .  
Let  vi(t) = x~(t) - h2 + }72, i = 1, 2. Then, by a similar argument as above, we can deduce that  

if x l ( t ) , x2 ( t )  <_ hi -~-}71, t ~__ --T and x l ( s ) , x ,  >_ h2 -}72, s E [- 'r,0], then Xl(t) ,X2(t  ) __~ h2 - ~ 2  
for all t > 0. 

Taking all into account, we can say Dm~ is the invarious domain of (2.1). 

THEOREM 2. I f  h4 > O, then for 8J3y ~l ~_ O, ~2 • max{ (blM~l/alL),(a2M~l/a2L) }, 

D~1~2 = {(Xlt, X2t) : h4 - ~2 -< xit _< hs + ~1, i = 1, 2} 

is the invarious domain of (2.2). 
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PROOF. By a similar argument as in Theorem 1, we can prove our result. 

Denote 
~ h M T _  ~0 k 2 M + e O  } 

71 = m a x  ( a lL  -- r b l M '  a2L -- rb2M -- h i ,  

where r is a constant more than 1, e0 > 0 is any constant. 

THEOREM 3. Suppose 0 < 71, hi < oo; then domain D~nl~ 2 (it has a similar definition as in 
Theorem 1) is the ultimately-bounded domain of  (2.1). 

PROOF. Suppose that  x (t) = (x 1 (t), x2 (t))X is the solution of system (2.1). Then, from Lemma 4, 
xl ( t ) ,x2( t )  > 0. Define the norm of x(t) by 

Ix(t)l = max {[xi(t)h Ix2(t)[}. 

We will finish our proof in two aspects. 

CLAIM 1. There exists T1 ~ 0 such that  for all t >_ T1, x~(t) <_ hi +71,  i = 1,2. 
Define function V(t) = max{xl(t) ,  x2(t)}. Assume first V(T)  = xl( t) .  Then we have 

? ( t )  =  l(t) 

<_ w ( t ) ( k l ( t )  -- a l ( t ) X l ( t )  ~- b l ( t ) X l ( t  -- T)) 

<: W ( t ) ( k l M  -- (a lL  -- rb lM )Xl (t)  ) 

< - w ( t ) e 0  _< - a ,  

if Ix(t)[ > hi +71,  V ( t + s )  < U(t), t E I-v,  0], where w(t) = x~(t) ~o(h~+~l) -- -- k l ( t )+rl( t )z l ( t )  ' Ot -~ klM+rla4(hl+~l)" 

For V(t)  = x2(t), by similar argument, we have ? ( t )  _< -/3, if Ix(t)[ _> hi +~1,  and V(t  Jr s) <_ 
V(t),  s E [-~', 0], where/3 is positive constant. 

Then, from the Razumilihin-type Theorem 6.4 in [5, pp. 19-20], we can see that  Claim 1 is 

true. 
Define function g l ( t )  = min{x l t ,X2 t ,  t _> 0}. 

CLAIM 2. If gl(0) _< h2 - 3 ,  then there exists T2 > 0 such that  gl(t) >_ h2 - 7t2 for t > T2. 
Otherwise, g l ( t )  < h2 -- 72, t ~ 0, then for t > ~- 

xit  
> k , ( O  + ( k , ( O  - 

Xit (kiL -- a iMh2  T aiL~2) (3.2) 
> k (t) + 
~> aiL~2Xit  i : 1, 2. 
- k (0 + 

Denote L1 = min{ k,u+r,M(hl+~,)a'Ln2, i = 1, 2}. Then, for t > T'  = T1 + r ,  (3.2) implies gl(t)  >_ 
gl(t)L1. So from Lerama 4, we have 

g(t) > g (T') e La ( t -T ' )  --'* (30, as t ---+ oO. 

This contradicts g(t) < h2 - 3 ,  (t > 0). So there exists T2 > 0 such that  g(T2) _> h2 - 7/2. On 
the other hand, for any constants 0 < XL _< h2 - 72, we have 

ici(t)[x,(t)==L,=~(t)>_=L >-- k~(t) + ri(t)x,(t) [k,(t) - a~(t)x~(t)] 

> a~M~2Xi(t)  

- k (0 + 

> 0 ,  i , j = l , 2 ,  i ~ j .  
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It  is easy to know that  the above inequality implies tha t  the conclusion of Claim 2 is true. Choose 
T = max{T~ + ~-, T2}; then for t _> T, (xu,  x2t) e D~,n~, we have completed the proof. 

THEOREM 4. Assume that h4 > O. Then D~I~2 (its definition is in Theorem 2) is an ultimately- 
bounded domain of  (2.2). 

PROOF. Suppose (Xl(t),x2(t)) is the only solution of (2.2). Then by a similar argument in 
Theorem 3, we get tha t  there exists T3 > 0 such that  

Xi(t) < h3 + ~ ,  t >_ T3, i : 1, 2. 

Define function g2(t) = min{xlt,X2~, t > 0}, if g2(0) < h4 -~2 .  We claim there exists T4 > 0 
such that  g2(t) >_ h4 - ~2, for all t > T4. Otherwise, g2(t) < h4 - ~2 < h4, t _> 0. Then for t _> T 

> Xit [k~L -- a~Mh4 -- b~Mh4 + b~L~2] 
- k i ( t )  + r~(t)x~t  

> xitbiL~2 
- k (t) + 

(3.3) 

Denote L2 = rain{ k,M-{-r,M(ha+~l)'b'L~2 i = 1, 2}, Then, for t > T "  = T3 + T, (3.3) implies g2(t) _> 

L2g2(t). Therefore, from Lemma 4, we have 

> _  [rrH~L~( t -T ' )  g2(t) _ y2 ~ ] ~ --* co, as t --~ oo. 

This contradicts g2(t) < h4 - ~2, t ~ 0. So there exists T4 > 0 such that  g(T4) ~ h4 - ~2. On the 
other  hand, for t > T3 + ~- and any constants 0 < XL _< h4 - ~2, we have 

x , ( t )  
~(t)[~,(t)=XL,~j(t)>XL >-- ki(t) + r~(t)xi(t) [ki(t) - ai(t)xi(t) - bi(t)(h3 + ~1)] 

> (a iL~2 - -  b~M~l)Xi(t) 
- k (t) + 

> 0 ,  i , j  = 1,2, i C j .  

It  is easy to know that  the above inequality implies tha t  the claim is true. 
Choosing T = max{Ts + T, T4}, then for t _> T, (Xlt,X2t) E D¢~,~, we have completed the 

proof. 

From Theorems 3 and 4, we immediately get the following theorem. 

THEOREM 5. H 0  < ~-T, hi < oo, then system (2.1) is permanent. 

THEOREM 6. I f  h4 > 0, then system (2.2) is permanent. 

4. E X I S T E N C E  A N D  G L O B A L  A T T R A C T I V I T Y  
OF P O S I T I V E  P E R I O D I C  S O L U T I O N S  

Throughout  this section, we assume that  for i = 1, 2, a~(t), b~(t), d~(t), k~(t), and r~(t) are w- 
period functions, i.e., systems (2.1) and (2.2) are w-period systems. We define the norm of C ~ by 
I[¢H = max{levi, i = 1 . . . .  n) ,  where ¢ E C n. Then D~lv 2, D~1~2 (their definition is in Theorems 3 
and 4) are closed, convex and bounded subset of C2° 

THEOREM 7. I f  0 < ~-~, hi < 00. Then system (2.1) has a positive w-period solution. 

PROOF. We define a mapping P by P : C 2 --* C 2, P (¢)  = Xw(¢), ¢ E C 2 where Xw(¢) represents 
the solution of system (2.1) with initial function ~b. P is continuous and P maps domain/9~1'~ 
into itself. Then by the Brouwer fixed point theorem, P has a fixed point ¢0 in D~ln 2. Since 
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system (2.1) is a w-period system, we can say that  Xt(¢0) is a positive w-period solution of 
system (2.1). We have completed the proof of Theorem 7. 

By a similar argument as in Theorem 7, we can prove the following theorem. 

THEOREM 8. I f  h4 > O, then system (2.2) has a positive w-period solution. 

Denote N = max{(blMn/klL),  (b2Mn/k2L)}; n is a constant more than 1. Suppose X( t )  -- 
(xl( t) ,x2(t))  is any nonnegative solution of system (2.1). U(t) = (ul(t),u2(t)) is a positive 
w-period solution of (2.1) in/)~,n2- We introduce transform 

xi(t) = exp{~4(t)}, i -- 1, 2, 

ui(t) = exp{~i(t)}, i -- 1, 2. 

Then, we have 

~4(t) - ~ i ( t )  = d,(t) { x j ( t )  uj( t )~ ki k~ 
/ + + r  4(t) 

ai exp{~4(t)} 5i exp{~(t  - r)} + + - 
ki + rixi(t) ki + rixi(t) 

i , j  = 1,2, i ¢ j .  

{ ~  k2~ l where r is a constant more than 1. Denote h5 -- max , aaL--rb2M J' 

THEOREM 9. Assume 0 < hi, h5 < oo. If, in addition, 

aiLkiL rim diM - N - -  > ~, i , j  = l ,2,  
kiM + riM(hi -{- hs) kiL h2 

ai exp{~i (t) } 
ki + riui(t) ki + rixi(t) 

54 exp{~4(t - T)} 

ki + rixi(t) ' 

i # j ,  

(4.1) 

where 

[ b~xi(t - v) biui(t - r) ] 

(%(t)  j(t) 
Bi = sgn(xdt)-  u4(t) )d4 \ xdt) udt) ] ' 

i , j = l , 2 ,  i ~ j .  

then system (2.1) has a unique positive w-period solution which has global attractivity, where a 
is a positive constant. 

PROOF. From the assumption of the theorem, it is easy to know that  there exist positive constants 
e0 and Y2 which are small enough such that  h2 - Y2 > 0, and 

aiLkiL - - N  riM dj__M__M > a 
kiM T riM(h1 + 71) kiL h2 - ~2 2 i, j = 1, 2, i ¢ j, 

= maxl  k , ,+e ,  , i = 1, 2}; then D~nl, 2 (its definition is in Theorem 3) is the ultimately- where 71 t alL--rbiM 
bounded domain of system (2.1). 

From Theorem 7, system (2.1) has a positive periodic solution U(t) in D~,~.  Define function 
w ( t )  by 

2 

w i t )  = - u,(t)l. 
i=1 

From Theorem 3, there exists T such that  for all t > T, h2 - ~2 _< xi(t) ~ hi +71, i = 1, 2. Then 
the upper derivative of W(t)  along system (2.1) satisfies, for t > T, 

2 2 2 2 
D+W(t) ~- - E kiLaiLIXi(t) -- Ui(t)l "~ ~ rl-/--M [Xi(t) --  u i ( t ) [  -~- E Ai + E Si, 

i = l  kiM "{- riM(hl + 71)  .= ~iL i = l  i=1 
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If x~(t) >_ ui(t), then 

A~ < b i ( x i ( t  - r )  - u i ( t  - r ) )  < b~M Ixi(t - r) - u~(t - r) l ,  
- k~ + r iu i ( t )  - kiL 

Bi <_ di(x~(t) - u'(t)) di_M___rl 
ui(t) <- h - 2 Ixj(t) - uj(t)l ,  

i = 1,2, i C j .  

If xi(t) < ui(t), then 

b i ( u ~ ( t  - r )  - x i ( t  - V ) )  biM Ixi(t - r) - ui(t - r ) l ,  

di(uj(t) - xj(t))  diM 
B, < -~i~-) _< h--Z2-~_ ~2 Ixj( t )-  uj(t)l ,  

i , j  = 1,2, i C j .  

Then we have 

2 2 [ aiLkiL 
D e W ( t )  <- - ~ Y~ kiM "~= riM(hl + ~1) 

i=l j=l,j#i 

2 

- - 2  ~ Ixi(t) - ui(t)l ,  

( + N + ~ L  + hT----7}2]J Ixi(t) - ui(t)l 

if t > T, and W ( t  + s) < nW(t) ,  s • [--T, 0]. 
By the value theorem, we have 

m l e i ( t ) -  ~ i ( t ) l  <_ [ x i ( t )  - ui( t ) l  < M i n i ( t ) -  g i ( t ) l ,  

where 

t > T, m -- h2 - z}2, M = hi -{- ~1. 

Hence, 

D e W ( t )  <_ - m W ( t )  2 ,  

for 
t > T, W( t  + s) < nW(t) ,  s • [ - r , 0 ] .  

Then, by the Razumikhin-type Theorem 6.1 [5, pp. 38-46], we know 

lira I~i(t) - g i ( t )  l = 0 ,  i = 1,  2 .  
t - - - * O O  

So we can get 

0 < lim Ixdt)  - ui(t)l < lim M l e d t )  - ~i(t)l  = O, 
- -  t - - - -*O0  - -  t - - - * O 0  

i = 1, 2, 

which implies tha t  the conclusion of Theorem 9 holds. We have completed the proof. 

THEOREM 10. Suppose h4 > O. For a given positive constant ~, assume 

aiLkiL -- N riM dim ;> o~, 
kiM ~- riM(h3 -t- ~) kiL h4 

i , j  = l,2, i T~ j, 
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where a is a positive constant. Then sys tem (2.2) has a unique positive w-period solution which 
is global attractivity. 

PROOF. B y  the  a s sumpt ion  of the  theorem,  we can choose ' 1 ,  ' 2  small  enough such t h a t  ,1 > 0, 

h4 - ' 2  > 0 and 

aiLkiL - - N -  r iM diM > ~_~ 
kiM -b riM(h3 nc ' 1 )  kiL h4 - '2  - 2 '  

i , j  = 1,2, i ¢ j ;  

,2  is satisfied by 

'2 > max~biM'------!l,i = ( a i L  1 , 2 ) .  

T h e n  D¢~2 ( the definition is in T h e o r e m  4) is the  u l t ima te ly -bounded  domain  of sys t em (2.2). 

In  the  following example ,  we can finish our  proof  by  a similar a rgumen t  as t h a t  in T h e o r e m  9. 

Therefore ,  we will omi t  it. 

EXAMPLE. Consider  the  following systems:  

x l ( t )  (10 - 20z l ( t )  + 5x l ( t  - r))  + z2(t )  - z l ( t )  
~ l ( t )  = 10 + (2 + sint)xl(t) 20 

x2(t)  (10 + s in t  -- 35x2(t) + 2x2(t -- T)) + Xl(t)  -- x2(t)  
~ ( t )  = 10 + 2=2(t)  40 ' 

= l ( t )  
5:1(t)  = 10 + (2 + sint)xl(t)(10 - 2 0 x l ( t )  - 53:1(t -- T))  Jr" X2 ( t )  20-- x l ( t )  

X2( t )  (10 + sint - 3 5 x 2 ( t  ) - 2 x 2 ( t  - T ) )  7 L x l ( t )  -- X2( t )  
:~2(t) = 10 + 2x2(t) 40 

We compu te  the  value hi  = 2/3,  h2 = 9/35, h3 = 1/2, h4 = 8/37,  h5 = 1/3. We choose r = 2, 
n = 3 / 2 , ,  = 1/3. Then ,  we easily find those conditions of  Theo rems  9 and 10 hold. So we can 
conclude t h a t  each sys tem has a unique posit ive and global a t t r ac t iv i ty  2 r -pe r iod  solution. 

5 .  C O N C L U S I O N  

From this  paper ,  we can  find t h a t  diffusion ra te  has no effect on pe rmanence  and  existence of 
a posi t ive per iodic  solution. 
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