
Meyer et al. BMC Bioinformatics 2013, 14:226
http://www.biomedcentral.com/1471-2105/14/226

METHODOLOGY ARTICLE Open Access

Fast online and index-based algorithms for
approximate search of RNA
sequence-structure patterns
Fernando Meyer, Stefan Kurtz and Michael Beckstette*

Abstract

Background: It is well known that the search for homologous RNAs is more effective if both sequence and structure
information is incorporated into the search. However, current tools for searching with RNA sequence-structure
patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching
large sequence databases because of the high computational costs of the underlying sequence-structure alignment
problem.

Results: We present new fast index-based and online algorithms for approximate matching of RNA
sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods
efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose
costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new
computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings
and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new
index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are
sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex
secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global
chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the
set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam
database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new
index-based algorithm achieves a speedup of factor 560.

Conclusions: The presented methods achieve considerable speedups compared to the best previous method. This,
together with the expected sublinear running time of the presented index-based algorithms, allows for the first time
approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic
contributions, we provide with RaligNAtor a robust and well documented open-source software package
implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.
uni-hamburg.de/ralignator.

Background
Due to their participation in several important molecular-
biological processes, ranging from passive carriers of
genetic information (tRNAs) over regulatory func-
tions (microRNAs) to protein-like catalytic activities
(Riboswitsches), non-coding RNAs (ncRNAs) are of

*Correspondence: beckstette@zbh.uni-hamburg.de
Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, Hamburg
20146, Germany

central research interest in molceular biology [1].
NcRNAs, although synthesized as single-stranded
molecules, present surprising complexity by being able
to base pair with themselves and fold into numerous dif-
ferent structures. It is to a large extent the structure that
allows them to interact with other molecules and hence
to carry out various biological functions. This can also be
observed in families of functionally related ncRNAs like
the ones compiled in the Rfam database [2]. Here mem-
bers of a family often share only few sequence features,

© 2013 Meyer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81153634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.zbh.uni-hamburg.de/ralignator
http://www.zbh.uni-hamburg.de/ralignator

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 2 of 24
http://www.biomedcentral.com/1471-2105/14/226

but share by far more specific structural and functional
properties. Consequently, methods for effective RNA
homology search (i.e. finding new members of an RNA
family) cannot rely on sequence similarity alone, but also
have to take structural similarity into account.
In this paper, we address the problem of searching

nucleotide databases for occurrences of RNA familymem-
bers. Since for this task it is not sufficient to rely on pure
sequence alignment, we briefly review search methods
that employ sequence and structure information.
There exist various general sequence-structure align-

ment tools which determine structural similarities that are
too diverse to be alignable at the sequence level. Such tools
can roughly be divided into two classes. The first class
consists of tools that align RNAs with given structures or
determine a common structure during the alignment pro-
cess. Tools like MARNA [3] and RNAforester [4] require
an a priori known secondary structure for both input
RNAs. However, they suffer from the low quality of sec-
ondary structure prediction. Addressing this problem,
other tools implement variations of the Sankoff algo-
rithm [5], which provides a general but computationally
demanding solution to the problem of simultaneously
computing an alignment and the common secondary
structure of the two aligned sequences. Unfortunately,
even tools with improved running times using variations
of this algorithm (LocARNA [6], Foldalign [7,8], Dynalign
[9,10]) or heuristics [11] are simply not fast enough for
rapid searches in large nucleotide databases. Hence, in a
second class we identify more specialized tools for search-
ing RNA families in nucleotide databases. These tools
use a model or motif descriptors (i.e. patterns) defining
consensus sequence and secondary structure properties
of the families to be searched for. For example, Infernal
[12] and RSEARCH [13] infer a covariance model from a
given multiple sequence alignment annotated with struc-
ture information. This model can then be used to search
sequence databases for new family members. Another
tool, ERPIN [14] is also based on automatically generated
statistical secondary profiles. Although being very sensi-
tive in RNA homology search, in particular Infernal and
RSEARCH suffer from high computational demands. An
alternative are tools like RNAMotif [15], RNAMOT [16],
RNABOB [17], RNAMST [18], PatScan [19], PatSearch
[20], or Palingol [21]. These methods use user-defined
motif descriptors created from a priori knowledge about
the secondary structure of the described RNA family.
Another tool, Locomotif [22], generates a thermodynamic
matcher program from a pattern drawn interactively by
the user via a graphical interface. Although these tools
based on motif descriptors are faster than the previ-
ously mentioned tools, they have a running time that
scales at least linearly with the size of the target sequence
database. This makes their application to large databases

challenging. Previously, we addressed this problem by
presenting Structator [23], an ultra fast index-based bidi-
rectional matching tool that achieves sublinear running
time by exploiting base pair complementarity constraints
for search space reduction.
Apart from running time constraints, another major

disadvantage of all current tools that search for sequence-
structure patterns is their limited capacity to find approx-
imate matches to the patterns. Although variability in
length of pattern elements is often allowed, this is con-
strained to certain pattern positions that must be specified
by the user. This limitation also holds for our Structator
tool. Also, variations (insertions, deletions, or replace-
ments) in the sequence that lead to small structural
changes, such as the breaking of a base pair, are not sup-
ported. This often hampers the creation of patterns that
are specific but generalized enough to match all family
members. An algorithm presented in [24] only partially
alleviates this problem by finding approximate matches
of a helix in a genome allowing edit operations on single
bases, but not on the structure.
To overcome these issues, we present new fast index-

based and online algorithms for approximate matching
of sequence-structure patterns, all implemented in an
easy-to-use software package. Given one or more pat-
terns describing any (branching, non-crossing) RNA sec-
ondary structure, our algorithms compute alignments of
the complete patterns to substrings of the target sequence,
i.e. semi-global alignments, taking sequence and struc-
ture into account. For this, they apply a full set of edit
operations on single bases and base pairs. Matches are
reported for alignments whose sequence-structure edit
cost and number of insertions and deletions do not exceed
user-defined thresholds. Our most basic algorithm is
a scanning variant of the dynamic programming algo-
rithm for global pairwise sequence-structure alignment of
Jiang et al. [25], for which no implementation was avail-
able. Because its running time is too large for database
searches on a large scale, we present accelerated online
and index-based algorithms. All our new algorithms profit
from a new computing scheme to optimally reuse the
required dynamic programming matrices and a tech-
nique to save computation time by determining as early
as possible whether a substring of the target sequence
can contain a match. In addition, our index-based algo-
rithms employ the suffix array data structure compiled
from the search space. This further reduces the running
time.
As in [23], we also support the description of an RNA

molecule by multiple ordered sequence-structure pat-
terns. In this way, the molecule’s secondary structure is
decomposed into a sequence of substructures described
by independent sequence-structure patterns. These pat-
terns are efficiently aligned to the target sequences using

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 3 of 24
http://www.biomedcentral.com/1471-2105/14/226

one of our new algorithms and the results are combined
with fast global and local chaining algorithms [23,26].
This allows a better balancing of running time, sensitivity,
and specificity compared to searching with a single long
pattern describing the complete sequence and secondary
structure.
Before we describe our algorithms, we formalize the

approximate search problem with the involved sequence-
structure edit operations. Then we present, step by step,
two efficient online and two index-based matching algo-
rithms. We proceed with a short review of the approach
for computing chains of matches. Finally, we present sev-
eral benchmark experiments.

Methods
Preliminaries
An RNA sequence S of length n = |S| over the set of bases
A = {A, C, G, U} is a juxtaposition of n bases from A.
S[i], 1 ≤ i ≤ n, denotes the base of S at position i. Let ε

denote the empty sequence, the only sequence of length 0.
ByAn we denote the set of sequences of length n ≥ 0 over
A. The set of all possible sequences over A including the
empty sequence ε is denoted byA∗.
For a sequence S = S[1] S[2] . . . S[n] and 1 ≤ i ≤

j ≤ n, S[i..j] denotes the substring S[i] S[i + 1] . . . S[j] of
S. For S = uv, u and v ∈ A∗, u is a prefix of S, and v
is a suffix of S. The k–th suffix of S starts at position k,
while the k–th prefix of S ends at k. For 1 ≤ k ≤ n, Sk
denotes the k–th suffix of S. For stating the space require-
ments of our index structures, we assume that |S| < 232,
so that sequence positions and lengths can be stored in
4 bytes.
The secondary structure of an RNA molecule is formed

by Watson-Crick pairing of complementary bases and
also by the slightly weaker wobble pairs. We say that
two bases (c, d) ∈ A × A are complementary and

can form a base pair if and only if (c, d) ∈ C =
{(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}. If two bases
a and b form a base pair we also say that there exists an arc
between a and b. A non-crossing RNA structure R̂ of length
m is a set of base pairs (i, j), 1 ≤ i < j ≤ m, stating that
the base at position i pairs with the base at position j, such
that for all (i, j), (i′, j′) ∈ R̂: i < i′ < j′ < j or i′ < i < j < j′
or i < j < i′ < j′ or i′ < j′ < i < j. A standard notation
for R̂ is a structure string R over the alphabet {., (,)} such
that for each base pair (i, j) ∈ R̂, R[i] = (and R[j]=), and
R[r]= . for positions r, 1 ≤ r ≤ m, that do not occur in
any base pair of R̂, i.e. r �= i and r �= j for all (i, j) ∈ R̂.
Let � = {R, Y, M, K, W, S, B, D, H, V, N} be a set of

characters. According to the IUPAC definition, each char-
acter in � denotes a specific character class ϕ(x) ⊆ A.
Each character x ∈ A can be seen as a character class
ϕ(x) = {x} of exactly one element. A sequence pattern is a
sequence P ∈ (A ∪ �)∗. An RNA sequence-structure pat-
tern (RSSP) Q = (P,R) of length m is a pair of a sequence
pattern P and a structure string R, both of length m. With
Q[i..j] we denote the RSSP region (P[i..j] ,R[i..j]).

Approximate matching of RNA sequence-structure
patterns
To find in a long RNA sequence S approximate matches
of an RSSP Q describing a part of an RNA molecule, we
compute alignments of the complete Q and substrings of
S considering edit operations for unpaired bases and base
pairs. That is, we compute semi-global alignments simul-
taneously obtaining the sequence-structure edit distance
ofQ and substrings of S.
We define the alignment of Q and a substring S[p..q],

1 ≤ p ≤ q ≤ n, as set A = Amatch
 Agap.
The set Amatch ⊆[1..m]×[p..q] of match edges satis-
fies that, for all different (k, l), (k′, l′) ∈ Amatch, k > k′
implies l > l′. The set Agap of gap edges is defined as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AUAGAUUAC-AGUUAUGU-U-UAUCU-GGCAUGUGGAAU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

..(.(...-).(....)..).
 AAUACUUA-GUAUCUAUCUGU

base match base mismatch

arc breaking arc removing arc altering

base insertion base deletion

P =

R =

S =

Figure 1 Example of a semi-global alignment of a sequence-structure patternQ = (P,R) and an RNA sequence S and involved
sequence-structure edit operations. Continuous (dashed) lines indicate match (gap) alignment edges from Amatch (Agap).

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 4 of 24
http://www.biomedcentral.com/1471-2105/14/226

{(x,−) | x ∈[1..m]∧�y, (x, y) ∈ Amatch} ∪ {(−, y) | y ∈
[p..q]∧�x, (x, y) ∈ Amatch}. See Figure 1 for an example of
a semi-global alignment and associated alignment edges.
The alignment cost is based on a sequence-structure edit
distance. The allowed edit operations on unpaired bases
P[k] and S[l], 1 ≤ k ≤ m, p ≤ l ≤ q, are base mismatch
(match), with cost ωm (zero), which occurs if there is an
edge (k, l) ∈ Amatch and S[l] /∈ ϕ(P[k]) (S[l]∈ ϕ(P[k])),
and base deletion (insertion), with cost ωd, which occurs
if (k,−) ∈ Agap ((−, l) ∈ Agap). The possible edit oper-
ations on base pairs were first introduced by Jiang et al.
[25] and are defined as follows. Let (k1, k2) be a base pair
in R̂ and l1 and l2, p ≤ l1 < l2 ≤ q, be positions
in S.

• An arc breaking, with cost ωb, occurs if
(k1, l1) ∈ Amatch and (k2, l2) ∈ Amatch but bases S[l1]
and S[l2] are not complementary. An additional base
mismatch cost ωm is caused if S[l1] /∈ ϕ(P[k1]) and
another if S[l2] /∈ ϕ(P[k2]). To give an example,
consider the semi-global alignment in Figure 1. RSSP
Q contains base pair (5, 9) ∈ R̂ and there exist edges
(5, 11) ∈ Amatch and (9, 16) ∈ Amatch but S[11]= G
and S[16]= G are not complementary. We note a
difference between our definition and the definition
of Jiang et al., where both aligned sequences are
annotated with structure information. There, an arc
breaking occurs if bases S[l1] and S[l2] are annotated
as unpaired in addition to the condition of existing
edges (k1, l1) ∈ Amatch and (k2, l2) ∈ Amatch. Hence,
because in our case sequence S has no structure
annotation, our definition is based on the
complementarity of bases S[l1] and S[l2].

• An arc altering, with cost ωa, occurs if either (1)
(k1, l1) ∈ Amatch and (k2,−) ∈ Agap or (2)
(k2, l2) ∈ Amatch and (k1,−) ∈ Agap. Each case
induces an additional base mismatch cost ωm if
S[l1] /∈ ϕ(P[k1]) or S[l2] /∈ ϕ(P[k2]). As an example,
observe in the alignment shown in Figure 1 that there
exist a base pair (11, 16) ∈ R̂ and edges
(11,−) ∈ Agap and (16, 21) ∈ Amatch.

• An arc removing, with cost ωr, occurs if
(k1,−) ∈ Agap and (k2,−) ∈ Agap. As an example,
observe in the alignment in Figure 1 that there exist a
base pair (3, 19) ∈ R̂ and edges (3,−) ∈ Agap and
(19,−) ∈ Agap.

With this set of edit operations on the sequence and
structure we can now define the cost of the alignment of
Q and S[p..q] as

dist(Q, S[p..q]) = min{distA(Q, S[p..q]) | A
is an alignment ofQ and S[p..q] } (1)

where
distA(Q, S[p..q]) =∑

(k,l)∈A,R[k]=.,S[l]/∈ϕ(P[k])
ωm base mismatch

+ ∑
(k,−)∈A,R[k]=.

ωd base deletion

+ ∑
(−,l)∈A

ωd base insertion

+ ∑
(k1,k2)∈R̂,(k1,l1)∈A,(k2,l2)∈A,(S[l1],S[l2])/∈C

ωb arc breaking

+ ∑
(k1,k2)∈R̂,(k1,l1)∈A,(k2,−)∈A

ωa arc altering

+ ∑
(k1,k2)∈R̂,(k2,l2)∈A,(k1,−)∈A

ωa arc altering

+ ∑
(k1,k2)∈R̂,(k1,−)∈A,(k2,−)∈A

ωr arc removing.

(2)

An alignment A of minimum cost between Q and
S[p..q] is an optimal alignment ofQ and S[p..q].
In practice, one is often interested in finding substrings

of an RNA sequence S having a certain degree of similar-
ity to a given RSSPQ on both the sequence and structure
levels. Therefore, we are only concerned about optimal
alignments of Q and substrings S[p..q] with up to a user-
defined sequence-structure edit distance and a limited
number of allowed insertions and deletions (indels). More
precisely:

• the cost dist(Q, S[p..q]) should not exceed a given
threshold K, and

• the number of indels in the alignment should be at
most d.

Thus, the approximate search problem for finding
occurrences of an RSSPQ in S, given user-defined thresh-
olds K and d, is to report all intervals [p..q] such that

dist(Q, S[p..q]) ≤ K andm−d ≤ |S[p..q] | ≤ m+d ≤ n.
(3)

We call every substring S[p..q] satisfying Equation (3) a
match of Q in S. In the subsequent sections we present
algorithms for searching for matches of an RSSP Q in a
sequence S.

Online approximate RNA database search for RSSPs:
ScanAlign
A straightforward algorithm to search for approximate
matches of an RSSP Q in an RNA sequence S consists
of sliding a window of length m′ = m + d along S while
computing dist(Q, S[p..q]) for 1 ≤ p ≤ q ≤ n and
q − p + 1 = m′. We note that, although the length of a
match can vary in the rangem−d tom+d, to findmatches
of all possible lengths it suffices to slide a window of length

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 5 of 24
http://www.biomedcentral.com/1471-2105/14/226

m′ along S corresponding to substrings S[p..q]. This holds
because the alignment to a window of length m′ entails
all possible alignments with up to d allowed indels. In the
following we present a dynamic programming algorithm
computing dist(Q, S[p..q]) for every window S[p..q]. Our
recurrences are derived from the algorithm for global
pairwise sequence-structure alignment of Jiang et al. [25],
i.e. an algorithm for aligning sequences of similar lengths.
Although Jiang’s algorithm supports the sequence-
structure edit operations described above, we emphasize
that it is not suitable for computing semi-global align-
ments, which is what we are interested in.
We begin the description of our algorithm by defining

three functions required by the dynamic programming
recurrences. Let T = S[p..q].

1. For computing base match and mismatch costs for
positions i and j of the RSSPQ = (P,R) and
substring T, respectively, we define a function
χ : N × N → {0, 1} as:

χ(i, j) =
{
0 if T[j]∈ ϕ(P[i]) (base match)
1 otherwise. (base mismatch) (4)

2. To determine whether an arc breaking operation can
occur, we must also be able to check for base
complementarity at positions i and j of T. Therefore,
we define a function comp : N × N → {0, 1} as:

comp(i, j) =
{
0 if (T[i] ,T[j]) ∈ C (complementary)
1 otherwise. (not complementary)

(5)
3. For determining the correct row (of the dynamic

programming matrices introduced below) where
certain operation costs must be stored we introduce
a function row : N → N defined as:

row(i) =

⎧⎪⎨⎪⎩
i′ if (i′, i) ∈ R̂ and 1 < i′ < i < m and R[i + 1]

= . and R[i′ − 1] �= (
0 if (i, i′) ∈ R̂ and R[i + 1]= .
i otherwise.

(6)

Intuitively, function row satisfies the following: (1) given
the right index i of a base pair (i′, i), it returns the left index
i′ if (i′, i) is preceded or followed by other structures; (2)
given the left index i of a base pair (i, i′), it returns 0 if the
base at position i + 1 of Q is unpaired; and (3) given any
other position index i, it returns i itself.
Using these three functions, our algorithm determines

the sequence-structure edit distance dist(Q,T[1..m′]) by
computing a series ofm′ +1 (m′ +1)× (m′ −k+1) matri-
cesDPk , for 1 ≤ k ≤ m′ +1, such thatDP1(row(m),m′) =
dist(Q,T[1..m′]). We remark that DPk(i, j) is not defined
for every subinterval [i..j].While the recurrences of Jiang’s
algorithm are divided in four main cases, we present a

simplified recurrence relation with only two main cases.
In addition, we observe that we use only three indices
for a matrix entry instead of four. Our recurrences are as
follows.

1. If i = 0 or R[i] = . (unpaired base), then

DPk(i, j)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = 0 and j = 0
DPk(0, j − 1) + ωd if i = 0 and j > 0
DPk(row(i − 1), 0) + ωd if i > 0 and j = 0

min
{DPk(row(i − 1), j) + ωd
DPk(i, j − 1) + ωd
DPk(row(i − 1), j − 1) + χ(i, j)ωm

}
if i > 0 and j > 0

(7)
2. If R[i] �= . (paired base), then

(a) If R[i]=) where i forms base pair (i′, i) ∈ R̂,

DPk(i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DPk(row(i − 1), 0) + ωr if j = 0

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

DPk(row(i − 1), j − 1) + χ(i, j + k)ωm + ωa
DPk+1(row(i − 1), j − 1) + χ(i′, k)ωm + ωa
DPk(row(i − 1), j) + ωr
DPk(i, j − 1) + ωd
DPk+1(i, j − 1) + ωd
DPk+1(row(i − 1), j − 2) + (χ(i, j + k)
+χ(i′, k + 1))ωm+
comp(k + 1, j + k)ωb, if j > 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
if j > 0

(8)

(b) If (a) holds and either R[i′ − 1]= . or
R[i′ − 1]=), compute in addition to Equation (8)

DPk(row(i), j)=
{
DPk(row(i′ − 1), 0) + DPk(i, 0) if j=0
min

{
DPk(row(i′−1), j′)+DPk+j′ (i, j−j′)|0≤ j′≤ j

}
if j>0

(9)
A natural way to compute these DP matrices is top

down, checking whether case 1, 2(a), or 2(b) applies,
in this order. Due to the matrix dependencies in
cases 2(a) and (b), the matrices need to be computed
simultaneously.
Note that for all j, 1 ≤ j ≤ m′, clearly DP1(row(m), j) =

dist(Q,T[1..j]). Therefore all candidate matches shorter
than m′ beginning at position p are also computed
in the computation of dist(Q,T[1..m′]). The following
Lemma is another important contribution of this work
and also the key for the development of an efficient
algorithm.

Lemma 1. When sliding a window along S to compute
dist(Q, S[p..q]), 1 ≤ p ≤ q ≤ n, m′ = q − p + 1 =
m + d, a window shift by one position to the right requires
to compute only column m′ − k + 1, i.e. the last column of
matrices DPk, 1 ≤ k ≤ m′.

Proof. Let T[1..m′]= S[p..q]. The computation of
dist(Q,T[1..m′]) requires to computem′+1DPmatrices,
one for each suffix Tk of string T = T[1..m′], 1 ≤ k ≤ m′,
and one for the empty sequence ε. As a result, it holds
for every k that dist(Q,Tk) = DPk(row(m),m′) which
is obtained as a by-product of the dist(Q,T) computa-
tion. Because each substring Tl+1[1..m′ − l]= S[p+ l..q],

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 6 of 24
http://www.biomedcentral.com/1471-2105/14/226

0 ≤ l < m′, only differs by its last character from
S[p + l + 1..q + 1] which are suffixes of the window
substring shifted by one position to the right, the lemma
holds.

Due to Lemma 1, our algorithm computes only the
last column of the DP matrices for every shifted win-
dow substring (see the example in Figure 2) and just
for the first window S[1..m′] it computes every column.
We call this algorithm ScanAlign. We note that during
the reviewing process of this manuscript, Will et al. [27]
submitted and published an algorithm for semi-global
sequence-structure alignment of RNAs. As our method,
this algorithm saves computation time by reusing entries
of dynamic programming tables while scanning the target
sequence.
Our ScanAlign algorithm has the following time com-

plexity: computing DPk(i, j) in cases 1 and 2(a) takes O(1)
time and in case 2(b) it takes O(m′) time. Now consider
the two situations:

• For the first computed window substring S[1..m′],
cases 1 and 2(a) require O(mm′2) time in total and
case 2(b) requires O(mm′3) time in total. This leads
to an overall time of O(mm′3).

• For one window shift, cases 1 and 2(a) require
O(mm′) time in total and case 2(b) requires O(mm′2)
time in total, leading to an overall time
of O(mm′2).

Since there are n − m′ − 1 window shifts, the com-
putation for all shifted windows takes O(mm′2(n −
m′)) = O(mm′2n) time. We observe that the time needed
by ScanAlign to compute all window shifts reduces to
O(mm′n) if recurrence case 2(b) is not required. This is

the case if the structure of Q does not contain unpaired
bases before a base pair constituting e.g. a left dangling
end or left bulge.

Faster online alignment with early-stop computation:
LScanAlign
Often, before completing the computation of the align-
ment between an RSSPQ and a window substring S[p..q]
of the searched RNA sequence, we can determine whether
the cost of this alignment will exceed the cost threshold
K. By identifying this situation as early as possible, we
can improve algorithm ScanAlign to skip the window, thus
saving computation time and proceed with aligning the
next window. The idea consists in checking, during the
alignment computation, whether the cost of an already
aligned region of Q and a substring of S[p..q] exceeds K.
In such a case, the alignment cost of the complete Q and
S[p..q] will also exceed K. In more detail, this works as
follows.

• We decompose the RSSPQ into regions that can
themselves represent a pattern, e.g. a stem-loop or
unpaired region. A basic constraint is to not split base
pairs to different regions.

• We compute the alignment of a given initial RSSP
region and a substring of the current window S[p..q],
progressively extending the alignment to other
regions.

• If the cost of aligning an RSSP region to a substring of
the window exceeds cost threshold K, then the entire
pattern cannot match the window. This means that
the window can immediately be skipped.

Formally, a valid RSSP region Q[x..y], 1 ≤ x ≤ y ≤ m,
satisfies exactly one of the following conditions.

Figure 2DP tables for the sequence-structure alignment computation of RSSPQ = (AAGUUUC, . . (. . .)) and window substring
T = ACCCUCUUwhen scanning a sequence Swith algorithm ScanAlign. Only the entries in red have to be computed for each window shift,
whereas the entries in green are reused. Entries in yellow boxes are on a possible minimizing path for alignments with up to d = 1 indels. The
following operation costs were used: ωd = ωm = 1, ωb = ωa = 2, and ωr = 3.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 7 of 24
http://www.biomedcentral.com/1471-2105/14/226

1. Q[x..y] is a left dangling (unpaired) end of the
pattern in 5′ to 3′ direction, i.e. x = 1. Alternatively,
it is an unpaired region of maximal length such that
position x − 1 forms a base pair (x − 1, y′) ∈ R̂ for
some position y′ ofQ. Observe that no extension of
Q[x..y] by another unpaired position is possible. As
an example, consider the green marked regions
Q[1..2],Q[4..4],Q[6..8], andQ[12..15] in Figure 3.

2. Position y is unpaired and there is at least one base
pair (x′, y′) ∈ R̂, x ≤ x′ < y′ < y. No extension of
Q[x..y] by another unpaired position is possible. As
examples of regions under these requirements, see
the regions in orange of the RSSPQ in Figure 3,
namelyQ[4..10],Q[4..18], andQ[1..20].

3. (x, y) ∈ R̂ is a base pair. For examples of such RSSP
regions, see the regions in blue of the RSSP in
Figure 3, namelyQ[5..9],Q[11..16], andQ[3..19].

4. y forms a base pair (x′, y) ∈ R̂ where either
R[x′ − 1]= . or R[x′ − 1]=), 1 ≤ x ≤ x′ − 1. In
addition, x = 1 or (x − 1, y′) ∈ R̂ for some y′ > y.
Examples of such RSSP regions are shown in red in
Figure 3, i.e. regionsQ[4..9],Q[4..16], andQ[1..19].

Note that regions can be embedded in other regions but
cannot partially overlap another.
Our progressive alignment computation of an RSSP Q

and a window substring of the searched RNA sequence
S begins by considering only an in general small region
of Q embedded in another region. The computation is
then extended to a surrounding region, e.g. from region
Q[6..8] to Q[5..9] of the RSSP shown in Figure 3, until

it entails the largest region surrounding all other regions,
e.g. Q[1..20] of the same example. Formally, we elab-
orate the alignment computation as follows. Let T =
T[1..m′] be a window substring of length m′ = m + d
of S and d be the number of allowed indels. Pattern
regions have the property that, for any region Q[x..y],
computing dist(Q[x..y] ,T) does not depend on any other
region Q[x′..y′] for some y′ < x and x′ < y. Therefore,
they can easily be sorted to indicate the order by which
the rows of the DP matrices are computed. We observe
that the top-down computation of the DP matrices, as
described above, automatically sorts the regions and
respects the dependency between rows. To obtain from
the sorted regions the indices of the rows to be computed,
we consider the condition satisfied by each region. The
rows obtained according to each condition are computed
according to one case of the recurrence. Given region
Q[x..y] identified by one of the four conditions this region
satisfies, the following rows of the matrices have to be
computed.

1. All rows in the interval [x..y] are computed by
Equation (7).

2. One scans the structure of regionQ[x..y] from
position y to position x until one finds a paired
position y′. Then, all rows in the interval [y′ + 1..y]
are computed by Equation (7).

3. Row y is computed by recurrence (a) of Equation (8).
4. Row row(y) is computed by recurrence (b) of

Equation (8).

AAUACUUAGUAUCUAUCUGU
..(.(...).(....)..).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q[6..8] Q[12..15]Q[4..4]Q[1..2]

Q[4..10]

Q[4..18]

Q[1..20]

Q[5..9] Q[11..16]

Q[4..9]

Q[4..16]

Q[1..19]

Q[3..19]

P =
R =

Figure 3 Regions of RSSPQ = (AAUACUUAGUAUCUAUCUGU, . . (. (. . .) . (. . . .) . .) .) according to conditions 1 (green), 2 (orange),
3 (blue), and 4 (red) described in the text.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 8 of 24
http://www.biomedcentral.com/1471-2105/14/226

The sequential computation of the rows belonging to
each region naturally leads to the computation of the
entire alignment of Q and sequence-structure edit dis-
tance dist(Q,T).
Our improvement of the ScanAlign algorithm is based

on the following two observations.

• The standard dynamic programming algorithm for
aligning two plain text sequences of lengths m and n
requires an (m + 1) × (n + 1) matrix. Let i and j be
indices of each of the matrix dimensions and a
diagonal v be those entries defined by i and j such that
j − i = v. Given that the cost of each edit operation is
a positive value, the cost of the entries along a
diagonal of the matrix are always non-decreasing [28].

• Moreover, one indel operation implies that an
optimal alignment path including an entry on
diagonal v also includes at least one entry on diagonal
v + 1 or v − 1. Now let v be the diagonal ending at
the entry on the lower-right corner of the matrix and
d be the number of allowed indels. One can stop the
alignment computation as soon as all the entries of
one row in the matrix and along diagonals v + d′,
−d ≤ d′ ≤ d, exceed K.

For our improvement of algorithm ScanAlign, based on
the following Lemma, we define a diagonal for each RSSP
region instead of only one for the entire matrices.

Lemma 2. Assume an RSSPQ = (P,R), a regionQ[x..y]
of length l = y − x + 1, a window substring T[1..m′] of the
searched RNA sequence, a cost threshold K, and number
d of allowed indels. If for every d′, −d ≤ d′ ≤ min{d, x},
z ∈ {|d′| − d,−|d′| + d}, y + d′ ≤ m′, it holds that
dist(Q[x..y] ,Tx+d′ [1..l + z]) > k, then, for every d′′, 0 ≤
d′′ ≤ d, dist(Q,T[1..m′ − d′′]) > k.

Proof. If the RSSP region Q[x..y] originates from con-
dition 1 or 2 (3 or 4) above, we define the entries on a
diagonal e as those entries DPk(i, j) (DPk(row(y), j)), 1 ≤
k±d ≤ m′, such that j−i+offset = e, where offset = x−1.
Without loss of generality let d = 1. Assuming x − 1 > 0
and y + 1 ≤ m′, this means that an optimal alignment of
patternQ and substring T requiresQ[x..y] to align with:

• T[x..y], T[x..y − 1], or T[x..y + 1], requiring for all
three alignments the computation of
dist(Q[x..y] ,Tx[1..l + z]) for
z ∈ {0 − 1, 0 + 1} = {−1, 1};

• T[x − 1..y − 1], requiring the computation of
dist(Q[x..y] ,Tx−1[1..l + z]) for
z ∈ {| − 1| − 1,−| − 1| + 1} = {0}; or

• T[x + 1..y + 1], requiring the computation of
dist(Q[x..y] ,Tx+1[1..l + z]) for
z ∈ {|1| − 1,−|1| + 1} = {0}.

The alignments with T[x..y], T[x..y+1], and T[x..y−1]
end inmatrixDPx. The alignments withT[x−1..y−1] end
in matrix DPx−1, and the alignments with T[x + 1..y + 1]
end in matrix DPx+1. Every minimizing path obtained for
the entire alignment of Q and T can only include the
entries on the diagonals e, e + 1, and/or e − 1 for the
alignments with T[x..y], T[x..y + 1], and T[x..y − 1],
and can only include the entries on diagonal e for the
alignments with T[x−1..y−1] and T[x+1..y+1] because
these substrings already imply alignments with one indel.
As the sum of the cost of the edit operations on the min-
imizing path increases monotonically and there cannot
be other minimizing paths due to the limited number of
indels d, the lemma holds.

Let Q be an RSSP whose regions are sorted by the
order of computation of their respective rows in the DP
tables above, let d be the number of allowed indels, and
T = T[1..m′] be a window substring of the searched
RNA sequence. Applying Lemma 2, we modify algo-
rithm ScanAlign to compute the alignment of each region
Q[x..y] to substrings Tx+d′ , −d ≤ d′ ≤ min{d, x},
y + d′ ≤ m′, and progressively extend the alignment
to other RSSP regions and substrings of T as long as
dist(Q[x..y] ,Tx+d′ [1..l+ z]) ≤ k, z ∈ {|d′|−d,−|d′|+d},
holds. That is, for each RSSP region, it determines the
rows and recurrence case required for their computa-
tion according to conditions 1, 2, 3, or 4 above. Then,
within each processed row i, it checks whether for at
least one entry DPk(i, j) on a possible minimizing path,
i.e. on diagonals e′, e − d ≤ e′ ≤ e + d, DPk(i, j) ≤ k.
If no entry is below K, it skips the alignment computa-
tion for all remaining RSSP regions and proceeds with
aligning the next window. See Figure 2 for an example
of the DP matrices of an alignment computation whose
entries on a possible minimizing path are highlighted in
yellow.
When scanning the searched RNA sequence, a window

can be shifted before all DP matrices entries are com-
puted. Hence, a direct application of Lemma 1 is no longer
possible. To overcome this, we define an array Z in the
range 1 to z, where z is the number of RSSP regions, and
associate each region with an index r, 1 ≤ r ≤ z. Let p be
the starting position of the window substring S[p..q] in the
RNA sequence. We set Z[r]= p whenever all DP matri-
ces rows and columns belonging to region r are computed.
This occurs when the cost of aligning this region does not
exceed cost threshold K. Now, when aligning the same
RSSP region r to a different window substring S[p′..q′],
p′ > p, computing all DP matrices columns requires to
compute the last p′ − p columns. If p′ − p < m′ (recall
that m′ = q − p = q′ − p′), this means that the two win-
dow substrings do not overlap and therefore noDPmatrix
column can be reused.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 9 of 24
http://www.biomedcentral.com/1471-2105/14/226

Our improved algorithm, hereinafter called LScanAlign,
in the worst case needs to process every RSSP region for
every window shift. Hence, it has the same time com-
plexity as algorithm ScanAlign. However, as in many cases
only a few RSSP regions are evaluated, it is much faster in
practice as will be shown later. ScanAlign and LScanAlign
are the basis for further improvements presented in the
subsequent sections.

Index-based search: LESAAlign
Suffix trees and enhanced suffix arrays are powerful data
structures for exact string matching and for solving other
string processing problems [29,30]. In the following we
show how the use of enhanced suffix arrays leads to even
faster algorithms for searching for matches of an RSSP Q
in an RNA sequence S.
The enhanced suffix array of a sequence S is com-

posed of the suffix array suf and the longest common
prefix array lcp. Let $, called terminator symbol, be a
symbol not in A for marking the end of a sequence. $
is larger than all the elements in A. suf is an array of
integers in the range 1 to n + 1 specifying the lexico-
graphic order of the n + 1 suffixes of the string S$. That
is, Ssuf[1], Ssuf[2], ..., Ssuf[n+1] is the sequence of suffixes of
S in ascending lexicographic order. Table suf requires 4n
bytes and can be constructed in O(n) time and space
[31]. In practice non-linear time construction algorithms
[32,33] are often used as they are faster. lcp is a table in
the range 1 to n + 1 such that lcp[1] = 0, and lcp[i] is
the length of the longest common prefix between Ssuf[i−1]
and Ssuf[i] for 1 < i ≤ n + 1. Table lcp requires n
bytes and stores entries with value up to 255, whereas
occasional larger entries are stored in an exception table
using 8 bytes per entry [30]. More space efficient rep-
resentations of the lcp table are possible (see [34]). The
construction of table lcp can be accomplished in O(n)

time and space given suf [35]. For an example of an
enhanced suffix array, see Figure 4. In the following we

assume that the enhanced suffix array of S has already
been computed.
Consider an RSSP Q to be matched against an RNA

sequence S with up to d indels. For each i, 1 ≤ i ≤ n, let
pi = min{m + d, |Ssuf[i]|} be the reading depth of suffix
Ssuf[i]. When searching for matches of Q in S, we observe
that algorithms ScanAlign and LScanAlign scan S comput-
ing dist(Q, S[p..q]) for every window substring of length
q−p+1 = m+d. In the suffix array, each substring S[p..q]
is represented by a suffix Ssuf[i] up to reading depth pi, i.e.
there is a substring Ssuf[i][1..pi] such that Ssuf[i][1..pi]=
S[p..q]. To match Q in S using a suffix array, we simu-
late a depth first traversal of the lcp interval tree [30] of
S on the enhanced suffix array of S such that the reading
depth of each suffix is limited by pi. That is, we traverse
the suffix array of S top down, computing the sequence-
structure edit distance dist(Q, Ssuf[i][1..pi]) for each suffix
Ssuf[i]. We recall that candidate matches of Q have length
betweenm−d andm+d and that pi ≤ m+d. In case pi <

m−d, we can skip Ssuf[i]. Also, remember that all candidate
matches shorter than pi are obtained as a by-product of
the computation of dist(Q, Ssuf[i][1..pi]). Hence, for every
p′,m−d ≤ p′ ≤ pi, if dist(Q, Ssuf[i][1..p′]) ≤ K we report
[suf[i] ..suf[i]+p′] as a matching interval of Q in S. That
is, Q matches substring S[suf[i] ..suf[i]+p′] beginning at
position suf[i] of S.
Our algorithm for the suffix array traversal and

dist(Q, Ssuf[i][1..pi]) computation, hereinafter called
LESAAlign, builds on algorithms ScanAlign and
LScanAlign. ScanAlign and LScanAlign exploit overlap-
ping substrings of consecutive window substrings to
avoid recomputation of DP matrices entries. LESAAlign
exploits the enhanced suffix array in two different ways.
First, for a single suffix Ssuf[i], i > 0, it benefits from the
common prefix of length lcp[i] between two consecutive
suffixes Ssuf[i] and Ssuf[i−1] by avoiding the recomputation
of columns j, 1 ≤ j ≤ lcp[i]−k + 1, of each matrix DPk .
This means that, for lcp = min{pi, lcp[i] }, it avoids the

Figure 4 Enhanced suffix array of sequence S$ = CCACCCCCCACCCACCACCCUCUU$ consisting of the suffix array suf, longest common
prefix array lcp, and inverse suffix array suf−1. For the definition of suf−1, see the section describing algorithm LGSlinkAlign.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 10 of 24
http://www.biomedcentral.com/1471-2105/14/226

recomputation of
∑lcp

k=1 lcp− k+1 columns for Ssuf[i]. See
an example in Figure 5. We observe that if pi ≤ lcp, no DP
entry needs to be recomputed. In this case, two situations
arise:

1. If pi ≤ lcp and dist(Q, Ssuf[i−1][1..pi−1]) ≤ K, then
clearly dist(Q, Ssuf[i][1..pi]) ≤ K and at least one
match ofQ starts at position suf[i] of S ; and

2. If pi ≤ lcp and dist(Q, Ssuf[i−1][1..pi−1]) > K, then
dist(Q, Ssuf[i][1..pi]) > K.

These situations allow LESAAlign to benefit from the
enhanced suffix array in a second important way. That
is, it skips all suffixes Ssuf[i], Ssuf[i+1], ..., Ssuf[j] sharing a
common prefix of at least length lcp with Ssuf[i−1]. To find
the index j of the last suffix Ssuf[j] to be skipped, it suf-
fices to look for the largest j such that min{lcp[i] , lcp[i +
1] , ..., lcp[j] } ≥ lcp. If the first situation above holds,
there are matches of Q in S at positions suf[i], suf[i + 1],
..., suf[j]. We note that suffixes can also be efficiently
skipped using so-called skip-tables as described in [36].
However, to save the 4n additional bytes required to
store such tables we do not use them here. Our algo-
rithm continues the top-down traversal of the suffix array
with suffix Ssuf[j+1], taking into account that the DP
tables were last computed for Ssuf[i−1]. Consequently, the
length of the longest common prefix between Ssuf[i−1] and
Ssuf[j+1] to be considered in the processing of Ssuf[j+1] is
min{lcp[i] , lcp[i + 1] , ..., lcp[j] , lcp[j + 1] }.
We also incorporate in our index-based algorithm the

early-stop alignment computation scheme of algorithm
LScanAlign. This allows to skip suffixes Ssuf[i] as soon
as it becomes clear that the sequence-structure edit dis-
tance of RSSP Q and Ssuf[i] up to reading depth pi will
exceed the cost thresholdK. For this, LESAAlign progres-
sively aligns regions of Q to a substring of the current
suffix as in algorithm LScanAlign, checking whether the

cost of each subalignment remains below the cost thresh-
old K, thus applying Lemma 2. If the cost exceeds K, the
alignment computation of the remaining pattern regions
is skipped and the algorithm proceeds with processing the
next suffix. To avoid recomputing as many entries of the
DP matrices as possible while traversing the suffix array,
LESAAlign differs from LScanAlign in the way it manages
(non-) aligned regions for each suffix. Lemma 1, which
algorithm LScanAlign applies to support early-stop com-
putation, relies on scanning the searched RNA sequence S
and overlapping window substrings. This makes it unsuit-
able for use with the suffix array. Instead, LESAAlign
only uses information from the lcp table as follows. Let
z be the number of regions of Q indexed from 1 to z
and T = Ssuf[i][1..pi] be the current substring. When
progressively aligning the regions ofQ to a substring of T,
we store the index r of the first region whose alignment
cost exceeds K, if there is any. That is, for the first region
Q[x..y] whose index r we store, it holds that for every d′,
−d ≤ d′ ≤ min{d, x}, dist(Q[x..y] ,Tx+d′ [1..l + z]) > k
with l = y − x + 1, z ∈ {|d′| − d,−|d′| + d}, and
y + d′ ≤ m + d (see Lemma 2). Then, when aligning
Q to a subsequent substring Ssuf[j][1..pj], we must distin-
guish the regions of Q previously computed from regions
not computed.

• Previously computed pattern regions are all regions
whose index is strictly smaller than r. The alignment
computation of these regions profits from the
common prefix between Ssuf[i][1..pi] and Ssuf[j][1..pj]
by avoiding the recomputation of DP matrices
columns as described above.

• Non-computed pattern regions are all regions whose
index is larger than or equal to r. In this case, all DP
matrices columns of the respective pattern region
need to be computed, even if Ssuf[i][1..pi] and
Ssuf[j][1..pj] share a common prefix.

Figure 5DP tables for the sequence-structure alignment computation of RSSPQ = (AAGUUUC, . . (. . .)) and substring
Ssuf[i][1..8]= ACCCUCUU. Given that suffix Ssuf[i] shares a common prefix of length lcp[i]= 4 with Ssuf[i−1], algorithm LESAAlign reuses the entries
in green and computes the entries in red. Used operation costs: ωd = ωm = 1, ωb = ωa = 2, and ωr = 3.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 11 of 24
http://www.biomedcentral.com/1471-2105/14/226

We observe that longer ranges of suffixes not contain-
ing matches to Q can be skipped thanks to the early-stop
alignment computation scheme. Note that the left-most
character of T needed to assert dist(Q[x..y] ,Tx+d′ [1..l +
z]) > K is T[x+ l + d − 1]= T[x+ y− x+ 1+ d − 1]=
T[y + d] as l = y − x + 1. Therefore, no suffix sharing
prefix T[1..y + d] can match Q and thus can be skipped
in the top-down traversal of the suffix array of S. Because
in most cases y + d < pi, more suffixes are likely to share
a prefix of length y + d than of length pi with Ssuf[i]. For
the pseudocode of algorithm LESAAlign, see Section 1 of
Additional file 1.

Enhanced index-based search: LGSlinkAlign
Given an RSSP Q to be searched in an RNA sequence S,
algorithm LESAAlign is very fast when it can

• avoid recomputation of DP matrices columns due to
a common prefix between suffixes of S ; and

• skip long ranges of suffixes of the suffix array suf
whose common prefix up to a required reading depth
are known to match or not matchQ.

Therefore, LESAAlign exploits repetitions of substrings
of S, i.e. substrings shared by different suffixes, and
information of the lcp table to save computation time.
However, the use of information of the lcp table alone
does not necessarily lead to large speedups. Consider
e.g. the DP matrices for the computation of the align-
ment of Q = (AAGUUUC,..(...)) and substring
Ssuf[4][1..p4]= ACCCUCUU in Figure 5. The enhanced
suffix array of S is shown in Figure 4. The substring
Ssuf[4][1..p4] of length 8 shares a common prefix of
length lcp[4]= 4 with the previously processed substring
Ssuf[3][1..p3]. Despite this common prefix, still 182/252 ≈
72% of the DP matrices entries need to be computed (dis-
regarding initialization rows and columns 0) in case no
early-stop is possible, i.e. in caseK > 4. This is more than
the at most 56/252 ≈ 22% of theDPmatrices entries com-
puted by the online algorithm LScanAlign for a window
shift.
Our next goal is to develop an algorithm traversing the

enhanced suffix array of S that:

1. can skip more suffixes; and
2. improves the use of already computed DP matrices

entries, reusing computed entries for as many
suffixes as possible.

To address the first goal, we motivate our method
by recalling the alignment computation example in
Figure 2. In this example, one of the regions of
Q = (AAGUUUC,..(...)) is Q[3..7]= (GUUUC,
(...)). Assume K = d = 1 and observe that
dist(Q[3..7] ,T3+d′ [1..5 + z]) > 1 for every d′, −1 ≤

d′ ≤ 1, z ∈ {|d′| − 1,−|d′| + 1}, i.e. the alignment cost
for this pattern region already exceeds the cost thresh-
old of 1 (in accordance with Lemma 2). In other words,
Q[3..7] cannot align to any of the substrings T[2..6]=
CCCUC, T[3..6]= CCUC, T[3..7]= CCUCU, T[3..8]=
CCUCUU, or T[4..8]= CUCUUwith a cost lower than 1.
Observe further that the alignment computation of region
Q[3..7] does not depend on any previous computation of
any other region.We can therefore conclude that no suffix
containing substring T[2..8]= CCCUCUU from position
2 to 8 can match Q, independently of any prefix of length
1. Our goal is to find and eliminate from the search space
all such suffixes, in addition to skipping all suffixes shar-
ing prefix T[1..8] as performed by LESAAlign. That is, we
want to skip suffixes sharing a substring, not limited to a
prefix, whose alignment cost to a pattern region exceeds
cost threshold K.
Let S be an arbitrary RNA sequence and T[x..y]=

Ssuf[i][x..y] contain all substrings whose alignment cost to
a region of an RSSP Q exceeds threshold K. Consider
the following two cases for skipping suffixes that cannot
matchQ as a consequence of containing substring T[x..y]
from position x to y. (1) For any value of x, all suffixes
sharing prefix T[1..y] can be skipped as performed by
algorithm LESAAlign. (2) Now let x > 1. To find all suf-
fixes of S sharing substring T[x..y] from position x to y,
we first locate all suffixes sharing T[x..y] as a prefix. We
begin by locating one such suffix, in particular the suffix of
index suf[j] that contains all but the first x′ = x − 1 char-
acters of Ssuf[i], i.e. suffix Ssuf[j] = Ssuf[i]+x′ . We determine
j using a generalization of a concept originated from suf-
fix trees. It is a property of suffix trees that for any internal
node spelling out string T there is also an internal node
spelling out T2 whenever |T | > 1 [37]. A pointer from
the former to the latter node is called a suffix link. In the
case of suffix arrays, a suffix link can be computed using
the inverse suffix array suf−1 of S$. suf−1 is a table in the
range 1 to n+ 1 such that suf−1[suf[i]]= i. It requires 4n
bytes and can be computed via a single scan of suf in O(n)

time. Given table suf−1, we can define the suffix link from
T = Ssuf[i] to T2 = Ssuf[i]+1 as link = suf−1[suf[i]+1],
i.e. it holds that suf[link]= suf[i]+1. Now, if x′ = 1,
we already find that the index suf[j] of the suffix contain-
ing all but the first character of Ssuf[i] is suf[j]= suf[link]
because Ssuf[link] = Ssuf[i]+x′ holds. However, we also want
to be able to determine j for any x′ ≥ 1. The obvious
solution is to compute suffix links x′ successive times.
Each suffix link skips the first character of the previously
located suffix. For a more efficient solution, we generalize
suffix links to point directly to the suffix without a prefix
of any length x′ of the initial suffix. For this purpose we
define a function link : N × N → N as:

link(i, x′) = suf−1[suf[i]+x′] . (10)

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 12 of 24
http://www.biomedcentral.com/1471-2105/14/226

Then, by letting j = link(i, x′), Ssuf[link(i,x′)] = Ssuf[i]+x′
holds for any x′ ≥ 1. All suffixes sharing T[x..y] as
a prefix are all suffixes in the range jstart to jend where
jstart is the smallest and jend is the largest index satisfy-
ing min{lcp[jstart + 1] , ..., lcp[j] , ..., lcp[jend] } ≥ y− x+ 1.
Finally, we find that all suffixes of S sharing substring
T[x..y] from position x to y are all Ssuf[j′]−x′ , jstart ≤
j′ ≤ jend, satisfying suf[j′]> x′. To skip these suffixes
not containing matches to Q in the top-down traver-
sal of the suffix array suf, we mark their positions as
true (for already“processed”) in a bit array vtab of n bits.
The suffix array traversal proceeds from position suf[i],
but skips the marked suffixes when their positions are
reached.
We remark that the described method for skipping

suffixes can profit from a resorting according to the
order by which RSSP regions are aligned. In the align-
ment computation example in Figure 2, determining
dist(Q[3..4] ,T3+d′ [1..2 + z]) > 1, −1 ≤ d′ ≤ 1,
z ∈ {|d′| − 1,−|d′| + 1}, does not depend on char-
acter T[1] and region Q[1..1]. Hence, region Q[1..1]
is unnecessarily aligned first when the regions are
sorted by a top-down analysis of the DP tables. To
decrease the chance that unnecessary computations
occur, we sort the RSSP regions to begin aligning
with the left-most RSSP region Q[x..y] not depending
on the alignment of any other region and satisfying
x − d > 1.
We now address the second goal, namely reusing com-

putedDPmatrices entries for as many suffixes as possible.
Recall that computing the sequence-structure edit dis-
tance dist(Q, Ssuf[i][1..pi]) for each suffix Ssuf[i] up to
reading depth pi means computing pi+1DPmatrices, one
for each suffix Tk of string T = Ssuf[i][1..pi], 1 ≤ k ≤ m′,
and one for the empty sequence ε. Observe that each suf-
fix Tk , Tk �= T , also occurs itself as a prefix of a suffix
in table suf, i.e. there exists a suffix Ssuf[j] shorter than
Ssuf[i] by exactly k − 1 characters which has prefix Tk .
Consequently, Tk is processed again in an alignment to
RSSP Q at a different point in time during the traversal
of suf. Let T ′ = Ssuf[j][1..pj]. Now note that if T ′ is at
a (nearly) contiguous position in suf to T, T ′ and T are
likely to share a common prefix due to their similar lex-
icographic ranking. This allows algorithm LESAAlign to
avoid recomputation of DP matrices columns by using
information from the lcp table. Unfortunately, T ′ and T
can be lexicographically ranked far away from each other
in table suf, meaning that the DP matrices computed for
T ′ either:

• were already computed once because T ′ is
lexicographically smaller than T, but were discarded
to allow the processing of other suffixes until T was
traversed; or

• are computed for the first time otherwise, but will not
be reused to also allow the processing of other suffixes
until T ′ occurs in table suf as a prefix of a suffix itself.

In both cases, redundant computations occur. To avoid
this, we optimize the use of computed DP matrices by
processing T ′ directly after processing T for fixed k = 2,
recalling that T = Ssuf[i][1..pi] and T ′ = Ssuf[j][1..pj].
This value of k implies that Ssuf[j] does not contain the
first character of Ssuf[i] and that we can locate Ssuf[j] in
table suf by computing the suffix link j = link(i, 1). Also,
k = 2 implies that T ′ only differs by its last character from
T, aside from not beginning with character T[1]. There-
fore, to determine dist(Q,T ′), we only have to compute
the last column of the DP matrices required to compute
dist(Q,T) as shown by Lemma 1. We note that, because
i and j are not necessarily contiguous positions in suf, we
mark the processed suffix Ssuf[j] in the bit array vtab so
that it is only processed once. If no match to RSSP Q
begins at position suf[j], we also mark and skip every suf-
fix sharing the substring with T ′ whose alignment to a
region of Q is known to exceed threshold K. Once T ′ is
processed and all possible suffixes are skipped, we recur-
sively repeat this optimization scheme by setting T = T ′
and processing the next T ′ = Ssuf[j′][1..pj′] where j′ =
link(j, 1). The recursion stops when pj′ < m − d, mean-
ing that T ′ is too short to match Q, or when suf[j′] is
already marked as processed in vtab. The suffix array
traversal proceeds at position i + 1 repeating the entire
scheme.
We call our algorithm incorporating the presented

improvements LGSlinkAlign. For its pseudocode, see
Section 1 of Additional file 1. LGSlinkAlign inherits all
the improvements of the above presented algorithms. In
summary, its improvements are as follows.

• LGSlinkAlign traverses the enhanced suffix array of
the searched sequence S, i.e. the suffix array suf
enhanced with tables lcp and suf−1. During this
traversal, it benefits from common prefixes shared
among suffixes to (1) avoid the computation of DP
matrix columns and to (2) skip ranges of suffixes
known to match or not match RSSPQ as in
algorithm LESAAlign.

• The suffix array traversal is predominantly top down,
but non-contiguous suffixes are processed to
optimize the use of computed DP matrices.

• LGSlinkAlign stops the alignment computation as
early as the alignment cost of a region of RSSPQ and
a substring of the prefix of the current suffix exceeds
threshold K, an improvement first introduced in
algorithm LScanAlign.

• Due to the early-stop computation scheme, suffixes
sharing common prefixes shorter thanm + d can be

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 13 of 24
http://www.biomedcentral.com/1471-2105/14/226

skipped, leading to larger ranges of skipped suffixes.
The early-stop computation scheme also helps to
identify and skip non-contiguous suffixes sharing a
common substring which is not their prefix.

Example: searching for an RSSPwith algorithm LGSlinkAlign
We elucidate the ideas of algorithm LGSlinkAlign with
the following example. Consider the RSSP Q =
(AAGUUUC,..(...)) to be matched in the sequence S
whose enhanced suffix array is shown in Figure 4. To keep
the example simple, we only allow a small cost thresh-
old and number of indels, i.e. we set K = d = 1. The
costs of the edit operations are ωd = ωm = ωb =
ωa = 1 and ωr = 2. When traversing the enhanced suf-
fix array of S, LGSlinkAlign always begins to align Q to
a substring of S with region Q[4..6], because the align-
ment computation of this region does not depend on any
other region. In addition, the left index of this region
satisfies 4 − d > 1. This means that the alignment
computation of region Q[1..2] is avoided if the cost of
aligning regionQ[4..6] exceeds the thresholdK. The algo-
rithm starts the traversal of the enhanced suffix array of
S aligning Q[4..6] to substrings of T = Ssuf[1][1..p1]=
S14[1..8] from positions 4 − d = 3 and 6 + d = 7.
For this, it computes dist(Q[4..6] ,T4+d′ [1..3 + z]) for
−1 ≤ d′ ≤ 1 and z ∈ {|d′| − 1,−|d′| + 1}. Observe that
dist(Q[4..5] ,T4+d′ [1..2 + z]) > 1 holds. Hence (1) no
suffix with prefix T[1..6]= AACACC can match Q and
thus can be skipped and (2) no suffix containing substring
T[3..6]= CACC from position 4 − d = 3 to 5 + d = 6
can match Q and thus can be skipped as well. We notice
that there is no other suffix with prefix AACACC because
lcp[2]< 6, so we analyze case (2). The algorithm looks for
suffixes sharing substring CACC from position 3 to 6. It
begins by locating suffixes without the first two characters
of T and containing CACC as a prefix. It follows the
suffix link link(1, 2) = suf−1[suf[1]+2]= suf−1[16]= 7
and looks for the smallest jstart and largest jend satisfying
min{lcp[jstart+1] , ..., lcp[8] , ..., lcp[jend] } ≥ 4 = |CACC|.
It finds that jstart = 5 and jend = 8, since min{lcp[5 +
1] , lcp[7] , lcp[8] } = min{4, 5, 5} ≥ 4 holds. The suffixes
containing CACC from position 3 to 6 are Ssuf[5]−2 = S11,
Ssuf[6]−2 = S7, and Ssuf[8]−2 = S14. S11 and S7 are marked
in the bit array vtab, whereas S14 = Ssuf[1] was already
processed and does not need to be marked. We observe
that Ssuf[7]−2 = S−1 is not a valid suffix. To reuse as many
computed DP matrices entries as possible, the algorithm
next processes the suffix Ssuf[j] which does not contain the
first character of Ssuf[1]. It determines j = link(1, 1) =
suf−1[suf[1]+1]= 11 and sets T = Ssuf[12][1..p12]=
S15[1..8]. The alignment to this substringT begins with its
substrings from positions 3 to 7 and Q[4..6]. We observe
that dist(Q[4..5] ,T4+d′ [1..2 + z]) > 1 holds and conse-
quently T cannot match Q. Because suffix Ssuf[12] = S15

was traversed via a suffix link, it is marked as processed
in vtab. We now again analyze two cases of suffixes that
cannot matchQ and therefore can be skipped: (1) suffixes
sharing prefix T[1..6]= CCACCC and (2) suffixes con-
taining substring T[3..6]= ACCC from position 3 to 6.
Satisfying case (1) are suffixes Ssuf[11] = S1 and Ssuf[10] =
S8 since lcp[12]≥ 6 and lcp[11]≥ 6. These suffixes are
marked in vtab. We now check if there are suffixes satis-
fying case (2). The algorithm begins by locating suffixes
containing substring T[3..6]= ACCC as a prefix. For this,
it follows the suffix link link(12, 2) = suf−1[suf[12]+2]=
4 and determines jstart = 2 and jend = 4. The property
min{lcp[2+ 1] , lcp[4] } ≥ 4 is satisfied. The suffixes con-
taining ACCC from position 3 to 6 are Ssuf[2]−2 = S8,
Ssuf[3]−2 = S1, and Ssuf[4]−2 = S15. Since these were
already marked in vtab, none of them needs to be marked.
The algorithmic scheme of LGSlinkAlign to reuse as many
computed DP matrices entries as possible continues pro-
cessing other suffixes which are located by iteratively
following the suffix links. It locates suffixes Ssuf[8], Ssuf[4],
Ssuf[18], and Ssuf[19] because link(12, 1) = 8, link(8, 1) = 4,
link(4, 1) = 18, and link(18, 1) = 19, respectively. These
suffixes are processed analogously as above, one after the
other, not resulting in matches to Q. The iteration then
leads to suffix Ssuf[20], since link(19, 1) = 20. However,
|Ssuf[20]| < m − d, meaning that this suffix is too short
to contain a match toQ. This causes the iteration to stop.
The suffix array traversal proceeds and repeats the entire
matching scheme from the suffix that follows the last pro-
cessed suffix not located via a suffix link, i.e. suffix Ssuf[2].
After processing and skipping all possible suffixes, we note
that LGSlinkAlign does not report any matches for the
defined cost threshold and allowed number of indels K =
d = 1. By setting K = 5, it reports a match at position 16.

RNA secondary structure descriptors based onmultiple
ordered RSSPs
RNAs with complex branching structures often cannot be
adequately described by a single RSSP due to difficulties in
balancing sensitivity, specificity, and reasonable running
time of the used search algorithm. Although their descrip-
tion by a single short RSSP specifying an unbranched
fragment of the molecule might be very sensitive, it is
often too unspecific and likely to generate many spuri-
ous matches when searching for structural homologs in
large sequence databases or complete genomes. In con-
trast, using a single long RSSP often requires a higher
cost thresholdK for being sensitive enough which in turn,
together with the increased RSSP length, has a negative
influence on the search time. This might lead to disad-
vantageous running times in larger search scenarios in
practice.
We solve this problem by applying the powerful con-

cept of RNA secondary structure descriptors (SSDs for

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 14 of 24
http://www.biomedcentral.com/1471-2105/14/226

short) recently introduced in [23]. The underlying con-
cept of SSDs is similar to the idea of PSSM family models
[38], which are successfully used for fast and sensitive
protein homology search. SSDs use the information of
multiple ordered RSSPs derived from the decomposition
of an RNA’s secondary structure into stem-loop like struc-
tural elements. In a first step, approximate matches to the
single RSSPs the SSD consists of are obtained using one
of the algorithms presented above. From these matches,
either local or global high-scoring chains are computed
with the efficient chaining algorithms described in [23].
These algorithms take the chain’s score, i.e. the weights
of the fragments in the chain, into account (see [23] for
details). For chaining of approximate RSSP matches, we
use the fragment weight ω∗

Q−dist(Q,T) for an RSSPQ of
lengthmmatching substringT, whereω∗

Q = m∗ωm+bps∗
ωr and bps denotes the number of base pairs in Q. Here
ω∗
Q is the maximal possible weighting Q can gain when

being aligned and therefore it reflects the situation of a
perfect match between Q and T. With this definition of a
fragment’s weight, a positive weight is always guaranteed,
thus satisfying a requirement for the chaining algorithm.
Once the chaining of matches to the RSSPs is completed,
the high-scoring chains are reported in descending order
of their chain score. By restricting to high-scoring chains,
spurious RSSP matches are effectively eliminated. More-
over, the relatively short RSSPs used in an SSD can be
matched efficiently with the presented algorithms leading
to short running times that even allow for the large scale
application of approximate RSSP search.

Results and discussion
Implementation and computational results
We implemented (1) the fast index-based algorithms
LESAAlign and LGSlinkAlign, (2) the online algorithms
LScanAlign, ScanAlign, both operating on the plain
sequence, and (3) the efficient global and local chain-
ing algorithms described in [23]. In our experiments
we use ScanAlign, which is the scanning version of
the method proposed in [25], for reference bench-
marking. All algorithms are included in the program
RaligNAtor. The algorithms for index construction were
implemented in the program sufconstruct, which makes
use of routines from the libdivsufsort2 library (see http://
code.google.com/p/libdivsufsort/) for computing the suf
table in O(n log n) time. For the construction of table
lcp we employ our own implementation of the linear
time algorithm of [35]. All programs were written in
C and compiled with the GNU C compiler (version
4.5.0, optimization option -O3). All measurements are
performed on a Quad Core Xeon E5620 CPU running
at 2.4 GHz, with 64 GB main memory (using only one
CPU core). To minimize the influence of disk subsystem
performance, the reported running times are user times

averaged over 10 runs. Allowed base pairs are canonical
Watson-Crick and wobble, unless stated otherwise. The
used sequence-structure operation costs are ωd = ωm =
ωb = ωa = 1 and ωr = 2.

Comparison of running times
In a first benchmark experiment we measure the running
times needed by the four algorithms to search with a sin-
gle RSSP under different cost thresholds K and number
of allowed indels d. We set (1) K = d varying the values
in the interval [0, 6], (2) K = 6 varying d in the inter-
val [0, 6], and (3) d = 0 varying K in the interval [0, 6].
The searched dataset contains 2, 756, 313 sequences with
a total length of ≈ 786 MB from the full alignments of all
Rfam release 10.1 families. The construction of all neces-
sary index tables needed for LESAAlign and LGSlinkAlign
with sufconstruct and their storage on disk required 372
seconds. In the following we refer to this dataset as
RFAM10.1 for short. In this experiment we use the RSSP
tRNA-pat of length m = 74 shown in Figure 6 describ-
ing the consensus secondary structure of the tRNA family
(Acc.: RF00005). The results of this experiment are pre-
sented in Figure 7 and Table S4, S5, and S6 of Additional
file 1. LGSlinkAlign and LESAAlign are the fastest algo-
rithms. LGSlinkAlign is faster in particular for increasing
values of K and d, being only slower than LESAAlign for
small values of K and d and for fixed d = 0. The advan-
tage of LGSlinkAlign over LESAAlign with higher values
of K and d is explained by the increased reading depth
in the suffix array implicated by K and d and the fewer
suffixes sharing a common prefix that can be skipped.
This holds for both LGSlinkAlign and LESAAlign, how-
ever LGSlinkAlign counterbalances this effect by reusing
computed DP matrices for non-contiguous suffixes of
the suffix array. In a comparison to the two online
algorithms considering only approximate matching, i.e.
K ≥ 1, the speedup factor of LGSlinkAlign over ScanAlign
(LScanAlign) is in the range from 560 forK = 1 and d = 0
to 17 for K = d = 6 (from 15 for K = 2 and d = 0 to
3 for K = d = 6). LESAAlign achieves a speedup factor
over ScanAlign (LScanAlign) in the range from 1, 323 for
K = 1 and d = 0 to 9 for K = d = 6 (29 for K = 1 and
d = 0 to 1.6 for K = d = 6). In a comparison between
the online algorithms, LScanAlign is faster than ScanAlign
by up to factor 45 for K ≥ 1. In summary, all algo-
rithms except ScanAlign profit from low values of K and
d reducing their search times. This is a consequence of
the use of the early-stop alignment computation scheme.
As shown in Figure 7(2), also the number of allowed
indels d influences the search time. For an additional
experiment investigating the influence of K and d on the
search time required by the four algorithms, see Section
2 of Additional file 1. A further experiment, described in
Section 3 of Additional file 1, compares RaligNAtor and

http://code.google.com/p/libdivsufsort/
http://code.google.com/p/libdivsufsort/

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 15 of 24
http://www.biomedcentral.com/1471-2105/14/226

G

S

S

V

V

Y

R
U

R

GYYY
ARY

U

G

G
U U A

R M R C

R
Y

Y

D

S

V
Y

U

B
H H

A

M

B

C

H

R

D W
R

R

U

Y

R
Y

R
G

G U
U

C

R
AW

U

C
C

Y
D

Y
H

N

B

B

N

S

Y R1 74>tRNA-pat
GSSVVYRURGYYYARYUGGUUARMRCRYYDSVYUBHHAMBCHRDWRRUYRYRGGUUCRAWUCCYDYHNBBNSYR
(((((((..((((.........)))).(((((.......))))).....(((((.......)))))))))))).

Figure 6 Consensus secondary structure of the tRNA family (Acc.: RF00005) as drawn by VARNA [39] (top) and respective
sequence-structure pattern tRNA-pat (bottom).

the widely used tool RNAMotif [15] in terms of sensitiv-
ity and specificity in searches for the tRNA-pat depicted in
Figure 6.

Scaling behavior of the online and index-based algorithms
In a second experiment we investigate how the search
time of algorithms ScanAlign, LScanAlign, LESAAlign,
and LGSlinkAlign scales on random subsets of RFAM10.1
of increasing size. The searched RSSPs flg1, flg2, and
flg3 were derived from the three stem-loop substruc-
tures the members of family flg-Rhizobiales RNA motif
(Acc.: RF01736) [40] fold into. These patterns differ in
length, cost threshold K and number of allowed indels
d; see Figure 8 for their definition, noting that K and
d are simply denoted cost and indels in the RaligNA-
tor RSSP syntax. The results are shown in Figure 9 and
Table S7 of Additional file 1. LGSlinkAlign and LESAAlign
show a sublinear scaling behavior, whereas LScanAlign
and ScanAlign scale linearly. The fastest algorithm is
LGSlinkAlign, requiring only 11.68 (53.08) minutes to
search for all three patterns in the smallest (full) subset.
The second fastest algorithm is LESAAlign, followed by
LScanAlign and ScanAlign, which require 32.27 (126.97),
40.47 (321.01), and 98.35 (754.66) minutes, respectively,
to search for all the patterns in the smallest (full) sub-
set. This corresponds to a speedup of 8.4 to 14.2 of

LGSlinkAlign over ScanAlign on the smallest and the
full subsets. Comparing the search time for pattern flg3
individually, the speedup of LGSlinkAlign over ScanAlign
ranges from 22.6 to 38.8. We also observe that ScanAlign
requires the longest time to match the longest pattern
flg2 of length m = 37. The other algorithms profit
from the early-stop computation approach to reduce
the search time for this pattern on every database
subset.

Influence of stem and loop lengths on the search time
When searching a database for matches of a given pat-
tern, our algorithms compute the required DP matrices
using recurrences according to two main cases: either
a row corresponds to an unpaired or to a paired base
of the pattern. To analyze the influence of the used
recurrence on the search time of each algorithm, we
search RFAM10.1 for artificial stem-loop patterns. There-
fore we vary the number of bases in the loop of pattern
Q = (NNNACANNN,(((...)))) from 3 to 12 by
using As and Cs. Additionally, we vary the number of base
pairs in the stem of patternQ = (NNACANN,((...)))

from 2 to 11 by pairs of Ns. Matching the patterns in
these two experiments means to increase the use of the
DP recurrences in Equations (7) and (8), respectively.
The cost threshold and the number of allowed indels

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 16 of 24
http://www.biomedcentral.com/1471-2105/14/226

lo
g 1

0(
tim

e
[m

in
.])

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

K=d
 =

0 (1
)

K=d
 =

1 (1
68

)

K=d
 =

2 (9
00

)

K=d
 =

3 (3
,0

50
)

K=d
 =

4 (9
,2

74
)

K=d
 =

5 (2
8,

60
3)

K=d
 =

6 (7
7,

80
5)

lo
g 1

0
(t

im
e

[m
in

.])

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

K=6
 (1

0,
51

6)

d =0 K=6
 (3

0,
63

3)

d =1 K =
6 (4

9,
28

7)

d =2 K =
6 (6

4,
22

6)

d =3 K =
6 (7

4,
14

6)

d =4 K =
6 (7

7,
67

9)

d =5 K =
6 (7

7,
80

5)

d =6

lo
g 1

0
(t

im
e

[m
in

.])

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

K =
0 (1

)

d
=0

K =
1 (1

66
)

d =0
K =

2 (4
39

)

d =0

K =
3 (1

,1
12

)

d =0
K =

4 (2
,9

63
)

d =0
K =

5 (6
,5

18
)

d =0

K =
6 (1

0,
51

6)

d =0

(1) (2)

(3)

ScanAlign LScanAlign LESAAlign LGSlinkAlign

Figure 7 Running times (in minutes and log10 scale) needed by the different algorithms to search with an RSSP describing the tRNA in
RFAM10.1. In (1) the cost thresholdK and the number of allowed indels d are identical. In (2)K = 6 is constant and d ranges from 0 to 6. In (3)
d = 0 is constant andK ranges from 0 to 6. The numbers of resulting matches are given on the x-axes in brackets.

are fixed at K = d = 3. Allowed base pairs are (A,
U), (U, A), (C, G), and (G, C). The results are shown
in Figure 10. We observe that increasing the number of
bases in the loop has little influence and even reduces the
running time of the two fastest algorithms LGSlinkAlign
and LESAAlign. This can be explained by the use of the
early-stop alignment computation scheme in these algo-
rithms. The reduction of the running time is explained
by the fewer matches that need to be processed as the
pattern gets longer and more specific. For an increasing
number of base pairs in the stem, LGSlinkAlign is the
least affected algorithm. We also observe that the linear
increase in running time of the basic online algorithm
ScanAlign, caused by an extension of the pattern by one
base pair, is similar to the effect of adding two bases in the
loop.

RNA family classification by global chaining of RSSPmatches
In the next experiment we show the effectiveness of global
chaining when searching with two SSDs built for Rfam
families Cripavirus internal ribosome entry site (Acc.:
RF00458) and flg-Rhizobiales RNA motif (Acc.: RF01736)
[40]. These two families present only 53% and 69%
sequence identity, respectively, much below the average
of ∼ 80% of the Rfam 10.1 families. This illustrates the
importance of using both sequence and structure infor-
mation encoded in the SSDs of this experiment. The SSD
of family RF01736 comprises three RSSPs, denoted by
flg1, flg2, and flg3 in Figure 8, derived from the three
stem-loop substructures the members of this family fold
into. The SSD of family RF00458 comprises five RSSPs,
denoted by ires1, ires2, ires3, ires4, and ires5 in Figure S5
of Additional file 1, where the last four RSSPs describe the

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 17 of 24
http://www.biomedcentral.com/1471-2105/14/226

C

G

A

A

C

C

G

C

C

G

G

C

U

U

G

G
G

A

G

A

G

C

C

G

A

A

C

G

G

U

U

C

G A A G A C G

A

U

C

C

G
C

G

A

C

G
G

G

U

U

U

G

G G
A

G

A

G

C

C
U

C

G

G

C

G
C

G

G

G

U

C A A G

C

G

A

U

G

G

A

G

A

A

U
G C

G

C
U

U

C

U

C

A

U

C

G

G A C U G U C G C G G C A G A U G A U G C U C G

>flg1|cost=6|indels=3
BNRRCBCRBVNGYUUGGGAGARCBBNVNGSYHNV
((((.((((((((((....)))))).))))))))
>flg2|cost=4|indels=3
VNSBDBNVNKNBSSYYYGGGAGRRSBNBBNNVVVSNK
(((((.......(((((....)))))......)))))
>flg3|cost=2|indels=1
SCGRUGSMGAWYDCNMDBCUSRUCGS
(((((.(((((.....))))))))))

hp1 hp2 hp3

...
1 76 91 140

Figure 8 Consensus secondary structure of family flg-Rhizobiales RNAmotif (Acc.: RF01736) showing its three stem-loop substructures
hp1, hp2, and hp3 as drawn by VARNA [39]. The secondary structure descriptor (SSD) for this family, on the right-hand side, consists of three
RSSPs flg1, flg2, and flg3 derived from the stem-loop substructures.

stem-loop substructures the members of this family fold
into. ires1 describes a moderately conserved strand occur-
ring in these members. Observe also in Figures 8 and S5
the cost thresholdK and allowed number of indels d used
per pattern, remembering that these are denoted cost and
indels in the RaligNAtor RSSP syntax.
Searching with the SSD of family RF00458 in RFAM10.1

delivers 16, 033, 351matches for ires1, 8, 950, 417 for ires2,
1, 052 for ires3, 112 for ires4, and 1, 222, 639 for ires5.
From these matches, RaligNAtor computes high-scoring
chains of matches, eliminating spurious matches and
resulting in exactly 17 chains. Each chain occurs in one of
the 16 sequence members of the family in the full align-
ment except in sequence AF014388, where two chains
with equal score occur. The highest (lowest) chain score
is 171 (162). Using ScanAlign, LScanAlign, LESAAlign,
and LGSlinkAlign, the search for all five RSSPs requires
688.32, 585.59, 186.88, and 92.25 minutes, respectively,
whereas chaining requires 13.66 seconds. See Table S8
of Additional file 1 for the time required to match each
pattern using the different algorithms.
The same search is performed using the SSD of fam-

ily RF01736. It results in 4, 145 matches for flg1, 68, 024
for flg2, and 67 for flg3. Chaining the matches leads to 15
chains occurring each in one of the 15 sequence members
of the family in the full alignment. The highest (lowest)
chain score is 163 (156). Using ScanAlign, LScanAlign,
LESAAlign, and LGSlinkAlign, the search for all three
RSSPs requires 755.48, 336.69, 133.58, and 52.86 minutes,
respectively, whereas chaining requires 0.03 seconds. The
time required to match each pattern using each algorithm
is reported in Table S9 of Additional file 1.

We also show that the lack of the sequence-structure
edit operations supported by RaligNAtor deteriorates sen-
sitivity and specificity in the search for sequence members
of families RF00458 and RF01736. For this, we report
in Section 4 and Table S10 of Additional file 1 results
obtained with the Structator tool [23]. Structator is much
faster but, in contrast to RaligNAtor, does not support all
sequence-structure edit operations.

Importance of structural constraints for RNA family
classification
To assess the potential of using RSSPs for reliable RNA
homology search on a broader scale and to investigate
the effect of using base pairing information, we evaluated
RaligNAtor on 35 RNA families taken from Rfam 10.1
with different degrees of sequence identity and of different
sizes. See Table 1 for more information about the selected
families. In our experiment, we compared (1) RaligNA-
tor results obtained by using RSSPs derived from Rfam
seed alignments with (2) results obtained for the same
RSSPs ignoring base pairing information and (3) results
obtained by blastn [41] searches with the families’ consen-
sus sequence. For each selected family, we automatically
compiled an RSSP Q = (P,R) from the family’s seed
alignment using the following procedure: at each position
of the RSSP’s sequence pattern P, we choose the IUPAC
wildcard matching all symbols in the corresponding align-
ment column. As structure string R, we use the secondary
structure consensus available in the Rfam seed alignment.
From the resulting RSSPs we remove the maximum prefix
and suffix containing neither sequence information (i.e.
IUPAC symbol N) nor base pairing information. To obtain

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 18 of 24
http://www.biomedcentral.com/1471-2105/14/226

100 200 300 400 500 600 700 800

0
5

10
15

20
25

LGSlinkAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

0
10

20
30

40
50

60
70

LESAAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

20
40

60
80

10
0

14
0

LScanAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

50
10

0
15

0
20

0
25

0
30

0

ScanAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

Figure 9 Scaling behavior of algorithms LGSlinkAlign, LESAAlign, LScanAlign, and ScanAlignwhen searching with RSSPs flg1, flg2, and flg3
in subsets of RFAM10.1 of different length. For details, see main text.

a query sequence for blastn, we compute the consen-
sus sequence from the family’s seed alignment. Because
blastn does not appropriately handle IUPAC wildcard
characters in the query, we choose the most frequent sym-
bol occurring in a column as representative symbol in
the consensus sequence. For the RaligNAtor searches, we
adjust the cost threshold K and number of allowed indels
d such that we match the complete family. That is, we
achieve a sensitivity of 100%. The used operation costs are
ωd = ωm = 1, ωb = ωa = 2, and ωr = 3. For the Blast
searches, we called blastn with parameters -m8 -b 250000
-v 250000 and a very relaxed E-value cutoff of 1000. From
the two RaligNAtor and one blastn outputs we count the
number of true positives (#TPs) and false positives (#FPs)
and compute ROC curves on the basis of the RaligNAtor
score ω∗

Q−dist(Q,T) and the blastn bit score. See Table 1
and Figure 11 for the results of this experiment. A ROC

curve with values averaged over all families is shown in
Figure 11(1).
In addition, we show in Figures 11(2) and (3) the results

of the ROC analysis for the families with the lowest and
highest degree of sequence identity. For the ROC curve
of each selected family, see Figures S7 and S8 of Addi-
tional file 1. Clearly, by using base pairing information,
RaligNAtor achieves a higher sensitivity with a reduced
false positive rate compared to searches ignoring base
pairing (compare columns “RaligNAtor” and “RaligNAtor
(sequence only)” in Table 1). This is in particular evi-
dent when searching for families with a low degree of
sequence identity. This can be explained by the small
amount of information left in the RSSP for such a fam-
ily, once the structural information is removed. Due to
the high variability of bases in the columns of the multi-
ple alignment of the family, the pattern contains a large

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 19 of 24
http://www.biomedcentral.com/1471-2105/14/226

3 4 5 6 7 8 9 10 11 12

#bases in the loop

T
im

e
[m

in
.]

0
10

20
30

40
50

60

ScanAlign
LScanAlign
LESAAlign
LGSlinkAlign

2 3 4 5 6 7 8 9 10 11

#base pairs in the stem

T
im

e
[m

in
.]

0
20

40
60

80
10

0
12

0

Figure 10 Search times for different number of bases in the loop (left-hand side) and base pairs in the stem (right-hand side) for given
RSSPs.

number of wildcards. These symbols alone, without the
constraints imposed by the base pairs, lead to unspe-
cific patterns and therefore to a large number of false
positives. We observe that, for families with sequence
identity of up to 59%, the area under the curve (AUC)
is considerably larger when base pairing information
is taken into account. This difference decreases with
increasing sequence identity (compare Figures 11(2) and
(3)). Overall, the average AUC value over all families
is, with a value of 0.93, still notably higher when base
pairing information is considered compared to 0.89 if
base pairing information is ignored (see Table 1). In this
experiment, blastn only finds all members of those fam-
ilies whose sequence identity is at least 85%. This is
due to the fact that blastn cannot appropriately handle
IUPAC wildcard characters. Hence, by taking the most
frequent symbol in an alignment column as consensus
symbol, the heterogeneity of less conserved positions in
the alignment cannot be adequately modeled. For the
blastn searches, the average AUC value over all families is
only 0.72.

RaligNAtor software package
RaligNAtor is an open-source software package for fast
approximate matching of RNA sequence-structure pat-
terns (RSSPs). It allows the user to search target RNA or
DNA sequences choosing one of the new online or fur-
ther accelerated index-based algorithms presented in this
work. The index of the sequence to be searched can be
easily constructed with program sufconstruct distributed
with RaligNAtor.
Searched RSSPs can describe any (branching, non-

crossing) RNA secondary structure; see examples in
Figures 1, 6, 8, and S5 of Additional file 1. Bases

composing the sequence information of RSSPs can be
ambiguous IUPAC characters. As part of the search
parameters for RSSPs, the user can specify the cost of
each sequence-structure edit operation defined above, the
cost threshold of possible matches, and the number of
allowed indels. The RSSPs, along with costs and thresh-
olds per RSSP, are specified in a simple text file using a
syntax that is expressive but easy to understand as shown
in the mentioned figures. Another possibility is to provide
the same costs and thresholds for all searched patterns
as parameters in the command line call to RaligNAtor.
To ensure maximal flexibility, the user can also define the
base pairing rules from an arbitrary subset of A × A as
valid pairings in a separate text file. Searches can be per-
formed on the forward and reverse strands of the target
sequence. Searching on the reverse strand is implemented
by reversal of the RSSP and transformation according to
Watson-Crick base pairing. Wobble pairs {(G,U), (U,G)}
automatically become {(C,A), (A,C)}. Due to these trans-
formations, the index is built for one strand only.
For describing a complex RNA with our concept of

secondary structure descriptor (SSD), i.e. with multiple
RSSPs, the user specifies all RSSPs in one text file. The
order of the RSSPs in the file will then specify the order of
the RSSP matches used to build high-scoring chains. The
chain score directly depends on the score of each match
occurring in the chain. This is inversely proportional to
the sequence-structure edit distance of the RSSP and its
matching substring in the target sequence. Hence, higher
scores indicate sequences with a higher conservation
which are probably more closely related to the sought
RNA family.
Chaining of matches discards spurious matches not

occurring in any chain. An additional filtering option

M
eyeretal.BM

C
Bioinform

atics
2013,14:226

Page
20

of24
http

://w
w
w
.b
iom

edcentral.com
/1471-2105/14/226

Table 1 Results of RaligNAtor and blastn database searches for members of RNA families of different degrees of sequence identity in RFAM10.1

RaligNAtor RaligNAtor (sequence only) blastn

Family Size Seq. K = d #TP #FP AUC (pAUC) K = d #TP #FP AUC (pAUC) #TP #FP AUC (pAUC)
Acc. ident.

RF00032 9,900 48% 3 9,900 1,088,131 0.95 (0.17) 3 9,900 2,723,135 0.82 (0.09) 3,000 68 0.29 (0.05)

RF00080 688 52% 33 688 698,942 0.71 (0.08) 19 688 1,279,375 0.60 (0.06) 326 540 0.42 (0.06)

RF02003 176 52% 21 176 1,174,167 0.53 (0.03) 6 176 1,168,093 0.32 (0.00) 28 814 0.11 (0.01)

RF00458 16 53% 20 16 88 0.94 (0.18) 14 16 2,688 0.96 (0.18) 12 1,224 0.73 (0.13)

RF00685 131 55% 18 131 40,952 0.98 (0.19) 7 131 103,276 0.97 (0.19) 88 2,945 0.63 (0.10)

RF00167 1,244 56% 25 1,244 2,514,701 0.58 (0.04) 17 1,244 2,611,256 0.28 (0.00) 660 624 0.52 (0.10)

RF01705 598 56% 26 598 2,704,796 0.49 (0.02) 17 598 2,698,712 0.42 (0.00) 57 60 0.08 (0.01)

RF01852 1,050 56% 22 1,050 1,026,233 0.99 (0.19) 14 1,050 1,488,254 0.94 (0.17) 543 83,268 0.44 (0.06)

RF01734 584 57% 10 584 2,614,228 0.69 (0.05) 5 584 2,668,392 0.46 (0.01) 201 114 0.30 (0.05)

RF00556 201 58% 8 201 69,808 0.97 (0.18) 6 201 1,514,311 0.92 (0.15) 91 1,024 0.44 (0.08)

RF00713 14 58% 27 14 10,349 0.99 (0.19) 18 14 16,477 0.88 (0.16) 13 552 0.92 (0.18)

RF00170 41 59% 13 41 53 0.97 (0.18) 9 41 9,197 0.96 (0.18) 29 176 0.70 (0.14)

RF00706 69 59% 13 69 1 1.00 (0.20) 9 69 12 0.97 (0.19) 66 194 0.95 (0.18)

RF00747 29 59% 20 29 130 0.97 (0.18) 16 29 159,898 0.96 (0.18) 28 236 0.96 (0.19)

RF00778 20 59% 33 20 394,560 0.93 (0.17) 23 20 167,029 0.79 (0.13) 17 390 0.84 (0.16)

RF01065 118 59% 17 118 0 1.00 (0.20) 9 118 0 1.00 (0.20) 70 305 0.59 (0.11)

RF01733 9 63% 9 9 0 1.00 (0.20) 7 9 0 1.00 (0.20) 7 918 0.77 (0.15)

RF00522 415 67% 5 415 1,461 0.99 (0.19) 5 415 32,224 0.99 (0.19) 359 391 0.63 (0.10)

RF01862 15 67% 7 15 0 1.00 (0.20) 5 15 0 1.00 (0.20) 10 82 0.66 (0.13)

RF00104 406 69% 24 406 989,362 0.99 (0.19) 14 406 1,560,674 0.99 (0.19) 237 72 0.45 (0.07)

RF00165 431 69% 9 431 0 1.00 (0.20) 8 431 1 0.99 (0.19) 318 192 0.73 (0.14)

RF01185 108 69% 13 108 24,759 0.99 (0.19) 13 108 24,759 0.99 (0.19) 104 329 0.93 (0.18)

RF01838 77 69% 4 77 0 1.00 (0.20) 4 77 0 1.00 (0.20) 77 172 1.00 (0.20)

RF02031 164 71% 17 164 297,941 0.99 (0.19) 12 164 521,018 0.99 (0.19) 100 218 0.60 (0.11)

RF00052 210 72% 16 210 0 1.00 (0.20) 12 210 0 1.00 (0.20) 207 12,496 0.98 (0.19)

RF00543 103 73% 26 103 0 1.00 (0.20) 19 103 0 1.00 (0.20) 102 110 0.99 (0.19)

RF01744 14 73% 7 14 0 1.00 (0.20) 5 14 0 1.00 (0.20) 11 5,377 0.74 (0.14)

RF01769 149 75% 16 149 0 1.00 (0.20) 10 149 0 1.00 (0.20) 149 150 0.99 (0.19)

RF00110 161 81% 19 161 0 1.00 (0.20) 17 161 0 1.00 (0.20) 160 791 0.99 (0.19)

RF01967 50 84% 37 50 660,130 0.98 (0.19) 26 50 475,242 0.98 (0.19) 48 691 0.95 (0.19)

RF01472 26 85% 6 26 0 1.00 (0.20) 1 26 0 1.00 (0.20) 26 412 1.00 (0.20)

M
eyeretal.BM

C
Bioinform

atics
2013,14:226

Page
21

of24
http

://w
w
w
.b
iom

edcentral.com
/1471-2105/14/226

Table 1 Results of RaligNAtor and blastn database searches for members of RNA families of different degrees of sequence identity in RFAM10.1 (Continued)

RF01953 46 85% 32 46 0 1.00 (0.20) 22 46 0 1.00 (0.20) 46 772 1.00 (0.20)

RF00372 45 86% 28 45 0 1.00 (0.20) 24 45 0 1.00 (0.20) 45 197 0.99 (0.19)

RF01980 43 86% 39 43 830,971 0.97 (0.19) 28 43 702,352 0.96 (0.19) 43 341 1.00 (0.20)

RF00469 1,366 89% 12 1,366 46,351 0.99 (0.19) 7 1,366 99,045 0.99 (0.19) 1,341 474 0.97 (0.19)

Average 66% 0.93 (0.17) 0.89 (0.16) 0.72 (0.14)

Searches are performed using RaligNAtor with and without base pairing information (column “RaligNAtor (sequence only)”) and using program blastnwith the families’ seed alignment consensus sequence as query. Column
“size” indicates the number of members in a family. Column “seq. ident.” gives the families’ sequence identity as listed in the Rfam database. #TP and #FP stand for number of found true and false positives, respectively. AUC
is the area under the curve of the corresponding ROC curves shown in Figures 11, S7, and S8 of Additional file 1. Column pAUC gives the partial area under the curve up to a false positive rate of 20%. For additional details,
see main text.

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 22 of 24
http://www.biomedcentral.com/1471-2105/14/226

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

S
en

si
tiv

ity

Average

RaligNAtor
RaligNAtor (seq. only)
blastn

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

S
en

si
tiv

ity

RF00469 − 89% sequence identity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

S
en

si
tiv

ity

RF00032 − 48% sequence identity

(1)

(2) (3)

Figure 11 Results of ROC analyses using RaligNAtor with and without base pairing information and blastn for the 35 selected Rfam
families shown in Table 1. ROC curves showing RaligNAtor’s classification performance using (ignoring) base pairing information are shown in
green (blue). Blast performance results are shown in red. Subfigure (1) shows the performance results averaged over all selected families. (2) and (3)
show each the ROC analysis for the family with the lowest and highest level of sequence identity.

eliminates matches overlapping another with a higher
score for the same RSSP. This is particularly useful when
indels lead to almost identical matches that are only
shifted by a few positions in the target sequence.
The output of RaligNAtor includes not only matching

positions to single RSSPs and chains, but their sequence-
structure alignment to the matched substrings as well. In
the RaligNAtor software package, all programs for search-
ing patterns support multithreading to take advantage of
computer systems with multiple CPU cores. There are
two modes of parallelism. At first, different patterns are
searched using multiple threads. Additionally, the search
space (i.e. the sequence for the online algorithms and
the index structure for the index-based methods) is par-
titioned, processing each part using a different thread.
Lastly, we remark that our software also provides an

implementation of the original algorithm of Jiang et al. for
global sequence-structure alignment [25], easily applica-
ble by the user.

Conclusions
We have presented new index-based and online algo-
rithms for fast approximate matching of RNA sequence-
structure patterns. Our algorithms, all implemented in
the RaligNAtor software, stand out from previous search
tools based on motif descriptors by supporting a full set
of edit operations on single bases and base pairs. See
Table 2 for an overview of the algorithms. In each algo-
rithm, the application of a new computing scheme to
optimally reuse the entries of the required dynamic pro-
gramming matrices and an early-stop technique to avoid
the alignment computation of non-matching substrings

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 23 of 24
http://www.biomedcentral.com/1471-2105/14/226

Table 2 Overview of the presented algorithms

Algorithm Online Indexed Early-stop Additional memory Used index tables

Acceleration Requirements [bytes] suf lcp suf−1 vtab

ScanAlign � 0

LScanAlign � � 0

LESAAlign � � 5n � �
LGSlinkAlign � � 9.125n � � � �
The two online algorithms ScanAlign and LScanAlign need no additional memory except for the searched sequence of length n. Column additional memory
requirements refers to the additional memory needed by the used index tables. Recall that tables suf and suf−1 require 4n bytes each. Table lcp can be stored in 1n
bytes and the bit array vtab requires only n bits (= 0.125n bytes).

led to considerable speedups compared to the basic
scanning algorithm ScanAlign. Our experiments show
superior performance of the index-based algorithms
LGSlinkAlign and LESAAlign, which employ the suffix
array data structure and achieve running time sublinear
in the length of the target database. When searching
for approximate matches of biologically relevant pat-
terns on the Rfam database, LGSlinkAlign (LESAAlign)
was faster than ScanAlign and LScanAlign by a fac-
tor of up to 560 (1,323) and 17 (29), respectively (see
Figure 7). Comparing the two index-based algorithms,
LESAAlign was faster than LGSlinkAlign when search-
ing with tight cost threshold (i.e. sequence-structure edit
distance) and no allowed indels, but became consid-
erably slower when the number of allowed indels was
increased. In this scenario, LGSlinkAlign was faster than
LESAAlign by up to 4 times. In regard to the two
online algorithms, LScanAlign was faster than ScanAlign
by up to factor 45. In summary, LGSlinkAlign is the
best performing algorithm when searching with diverse
thresholds, whereas LScanAlign is a very fast and space-
efficient alternative. RaligNAtor also allows to use the
powerful concept of RNA secondary descriptors [23], i.e.
searching for multiple ordered sequence-structure pat-
terns each describing a substructure of a larger RNA
molecule. For this, RaligNAtor integrates fast global
and local chaining algorithms. We further performed
experiments using RaligNAtor to search for members of
RNA families based on information from the consensus
secondary structure. In these experiments, RaligNAtor
showed a high degree of sensitivity and specificity. Com-
pared to searching with primary sequence only, the use of
secondary structure information considerably improved
the search sensitivity and specificity, in particular for
families with a characteristic secondary structure but
low degree of sequence conservation. We remark that,
up to now, RaligNAtor uses a relatively simple scor-
ing scheme. By incorporating more fine grained scoring
schemes like RIBOSUM [13] or energy based scoring
[42], we believe that the performance of RaligNAtor
for RNA homology search can be further improved.

Beyond the algorithmic contributions, we provide with
the RaligNAtor software distribution, a robust, well-
documented, and easy-to-use software package imple-
menting the ideas and algorithms presented in this
manuscript.

Availability
The RaligNAtor software package including documenta-
tion is available in binary format for different operating
systems and architectures and as source code under the
GNU General Public License Version 3. See http://www.
zbh.uni-hamburg.de/ralignator for details.

Additional file

Additional file 1: Supplemental material. Additional file 1 contains
additional experiments, figures, and tables.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FM and MB developed the algorithms. FM implemented the algorithms. SK
implemented the chaining algorithms. MB initiated the project and provided
supervision and guidance. All three authors contributed to the manuscript. All
authors read and approved the final manuscript.

Acknowledgements
This work was supported by basic funding of the University of Hamburg. We
thank Steffen Dettmann for interesting discussions and algorithmic ideas that
contributed to this work.

Received: 27 February 2013 Accepted: 11 July 2013
Published: 17 July 2013

References
1. Mattick J: RNA regulation: a new genetics? Nat Rev Genet 2004,

5(4):316–323.
2. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR,

Gardner PP, Bateman A: Rfam 11.0: 10 years of RNA families. Nucleic
Acids Res 2012, 41(D1).

3. Siebert S, Backofen R:MARNA: multiple alignment and consensus
structure prediction of RNAs based on sequence structure
comparisons. Bioinformatics 2005, 21(16):3352–3359.

4. Höchsmann M, Voss B, Giegerich R: Pure multiple RNA secondary
structure alignments: a progressive profile approach. IEEE/ACM Trans
Comput Bio Bioinformatics 2004, 1:53–62.

http://www.zbh.uni-hamburg.de/ralignator
http://www.zbh.uni-hamburg.de/ralignator
http://www.biomedcentral.com/content/supplementary/1471-2105-14-226-S1.pdf

Meyer et al. BMC Bioinformatics 2013, 14:226 Page 24 of 24
http://www.biomedcentral.com/1471-2105/14/226

5. Sankoff D: Simultaneous solution of the RNA folding, alignment and
protosequence problem. SIAM J Appl Mathe 1985, 45:810–825.

6. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R: Inferring noncoding
RNA families and classes bymeans of genome-scale structure-based
clustering. PLoS Comput Biol 2007, 3(4):e65+.

7. Havgaard JH, Torarinsson E, Gorodkin J: Fast pairwise structural RNA
alignments by pruning of the dynamical programmingmatrix. PLoS
Comput Biol 2007, 3(10):e193+.

8. Torarinsson E, Havgaard JH, Gorodkin J:Multiple structural alignment
and clustering of RNA sequences. Bioinformatics 2007, 23(8):926–932.

9. Mathews DH, Turner DH: Dynalign: an algorithm for finding the
secondary structure common to two RNA sequences. J Mol Biol 2002,
317(2):191–203.

10. Mathews DH: Predicting a set of minimal free energy RNA secondary
structures common to two sequences. Bioinformatics 2005,
21(10):2246–2253.

11. Dalli D, Wilm A, Mainz I, Steger G: STRAL: progressive alignment of
non-coding RNA using base pairing probability vectors in quadratic
time. Bioinformatics 2006, 22(13):1593–1599.

12. Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA
alignments. Bioinformatics 2009, 25(10):1335–1337.

13. Klein R, Eddy S: RSEARCH: finding homologs of single structured RNA
sequences. BMC Bioinformatics 2003, 4:44.

14. Gautheret D, Lambert A: Direct RNAmotif definition and
identification frommultiple sequence alignments using secondary
structure profiles. J Mol Biol 2001, 313:1003–11.

15. Macke T, Ecker D, Gutell R, Gautheret D, Case D, Sampath R: RNAMotif –
A new RNA secondary structure definition and discovery algorithm.
Nucleic Acids Res 2001, 29(22):4724–4735.

16. Gautheret D, Major F, Cedergren R: Pattern searching/alignment with
RNA primary and secondary structures: an effective descriptor for
tRNA. Comput Appl Biosci 1990, 6(4):325–331.

17. RNABOB: a program to search for RNA secondary structure motifs in
sequence databases. [http://selab.janelia.org/software.html]

18. Chang T, Huang H, Chuang T, Shien D, Horng J: RNAMST: efficient and
flexible approach for identifying RNA structural homologs. Nucleic
Acids Res 2006, 34:W423–W428.

19. Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic
data. Trends Genet 1997, 13(12):497–498.

20. Grillo G, Licciulli F, Liuni S, SbisÃă E, Pesole G: PatSearch: A program for
the detection of patterns and structural motifs in nucleotide
sequences. Nucleic Acids Res 2003, 31(13):3608–3612.

21. Billoud B, Kontic M, Viari A: Palingol: a declarative programming
language to describe nucleic acids’ secondary structures and to
scan sequence database. Nucleic Acids Res 1996, 24(8):1395–1403.

22. Reeder J, Giegerich R: A graphical programming system for molecular
motif search. In Proceedings of the 5th international Conference on
Generative Programming and Component Engineering. New York: ACM
Press; 2006:131–140.

23. Meyer F, Kurtz S, Backofen R, Will S, Beckstette M: Structator: fast
index-based search for RNA sequence-structure patterns. BMC
Bioinformatics 2011, 12:214.

24. El-Mabrouk N, Raffinot M, Duchesne JE, Lajoie M, Luc N: Approximate
matching of structured motifs in DNA sequences. J Bioinform Comput
Biol 2005, 3(2):317–342.

25. Jiang T, Lin G, Ma B, Zhang K: A general edit distance between RNA
structures. J Comput Biol 2002, 9(2):371–388.

26. Abouelhoda M, Ohlebusch E: Chaining algorithms for multiple
genome comparison. J Discrete Algo 2005, 3(2–4):321–341.

27. Will S, Siebauer M, Heyne S, Engelhardt J, Stadler P, Reiche K, Backofen R:
LocARNAscan: incorporating thermodynamic stability in sequence
and structure-based RNA homology search. AlgoMol Biol 2013, 8:14.

28. Ukkonen E: Algorithms for approximate string matching. Inf Control
1985, 64(1–3):100–118.

29. Manber U, Myers E: Suffix arrays: a newmethod for on-line string
searches. SIAM J Comput 1993, 22(5):935–948.

30. Abouelhoda M, Kurtz S, Ohlebusch E: Replacing suffix trees with
enhanced suffix arrays. J Discrete Algo 2004, 2:53–86.

31. Kärkkäinen J, Sanders P: Simple linear work suffix array construction.
In Proceedings of the 13th International Conference on Automata,
Languages and Programming. Berlin - Heidelberg: Springer; 2003.

32. Puglisi SJ, Smyth W, Turpin A: The performance of linear time suffix
sorting algorithms. In DCC ’05: Proceedings of the Data Compression
Conference. Washington: IEEE Computer Society; 2005:358–367.

33. Manzini G, Ferragina P: Engineering a lightweight suffix array
construction algorithm. Algorithmica 2004, 40:33–50.

34. Fischer J:Wee LCP. Inf Proc Let 2010, 110(8–9):317–320.
35. Kasai T, Lee G, Arimura H, Arikawa S, Park K: Linear-time longest-

common-prefix computation in suffix arrays and its applications. In
Proceedings of the 18th Annual Symposium on Combinatorial Pattern
Matching. Berlin - Heidelberg: Springer; 2001:181–192.

36. Beckstette M, Homann R, Giegerich R, Kurtz S: Fast index based
algorithms and software for matching position specific scoring
matrices. BMC Bioinformatics 2006, 7:389.

37. Ukkonen E: On-line construction of suffix trees. Algorithmica 1995,
14(3):249–260.

38. Beckstette M, Homann R, Giegerich R, Kurtz S: Significant speedup of
database searches with HMMs by search space reduction with PSSM
family models. Bioinformatics 2009, 25(24):3251–3258.

39. Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of
the RNA secondary structure. Bioinformatics 2009, 25(15):1974–1975.

40. Weinberg Z, Wang J, Bogue J, Yang J, Corbino K, Moy R, Breaker R:
Comparative genomics reveals 104 candidate structured RNAs from
bacteria, archaea, and their metagenomes. Genome Biol 2010,
11(3):R31.

41. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman
DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389–3402.

42. Mathews DH, Turner DH: Prediction of RNA secondary structure by
free energy minimization. Curr Opin Struct Biol 2006, 16(3):270–278.

doi:10.1186/1471-2105-14-226
Cite this article as:Meyer et al.: Fast online and index-based algorithms for
approximate search of RNA sequence-structure patterns. BMC Bioinformat-
ics 2013 14:226.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://selab.janelia.org/software.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Preliminaries
	Approximate matching of RNA sequence-structure patterns
	Online approximate RNA database search for RSSPs: ScanAlign
	Faster online alignment with early-stop computation: LScanAlign
	Index-based search: LESAAlign
	Enhanced index-based search: LGSlinkAlign
	Example: searching for an RSSP with algorithm LGSlinkAlign

	RNA secondary structure descriptors based on multiple ordered RSSPs

	Results and discussion
	Implementation and computational results
	Comparison of running times
	Scaling behavior of the online and index-based algorithms
	Influence of stem and loop lengths on the search time
	RNA family classification by global chaining of RSSP matches
	Importance of structural constraints for RNA family classification

	RaligNAtor software package

	Conclusions
	Availability
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

