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A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a

buried structure using normalized residual anomalies obtained from gravity data. The problem

of shape factor estimation is transformed into a problem of finding a solution of a non-linear

equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points

on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and

the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid

for estimating parameters that produced gravity anomalies. This technique is used for a class of

geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infi-

nitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoret-

ical models with and without random errors. It is also successfully applied to real data sets from

Senegal and India, and the inverted-parameters are in good agreement with the known actual

values.

ª 2014 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

The gravity method has many applications such as hydrocar-
bon exploration [1], mineral exploration [2], cavity detection
[3], engineering applications [4,5], geothermal activity [6],

archaeological sites investigations [7,8], weapons inspection
[9] and hydrological investigations [10]. It is known that the
gravity data interpretation is non-unique where different sub-

surface causative targets may yield the same gravity anomaly;
however, a priori information about the geometry of the caus-
ative target may lead to a unique solution [11]. Various quan-

titative interpretation methods of the gravity data over
inhomogeneous structures have been developed. These meth-
ods can be classified into two categories:

Category I include two- (2D) and three-dimensional (3D)

gravity tomography and inversion for arbitrary structures,
which are found to be adequate in most cases [12–14]. The
3D gravity inverse problem solution based on rigorous and full

forward modeling demands high computer resources, compu-
tational time and a priori information for the model parame-
ters we invert for.
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Category II is based on describing the measured gravity
anomaly due to isolated buried structures that can be approx-
imated by some simple geometric-shaped bodies, such as a

semi-infinite vertical cylinder, a horizontal cylinder or a sphere.
In this case, fast quantitative interpretation methods based on
geometrically simple anomalies can be utilized to estimate the

shape and the other associated model parameters of the body
that best fits the measured data.

The research we propose in this paper falls in category II.

Several numerical methods have been developed to estimate
the nature of the sources such as: Walsh transform technique
[15], analytic signal [16], a simple formula approach [17], graph-
ical method [18], least-squares minimization approach [19], use

of moving average residuals [20,21], solving two quadratic
equations [16], and use of horizontal gradient residuals [22].

Also, numerous numerical methods have been developed to

estimate only the depth of the sources such as: using character-
istic points and distances [23,24], ratio techniques [25,26],
transformation techniques [27–29], least-squares approaches

[30,31], Euler deconvolution technique [32].
A new fast least-squares inversion algorithm is developed

which estimates the shape factor parameter (q-parameter)

using a non-linear least-squares sense. The q-parameter estima-
tion problem is transformed into the problem of finding also a
solution of a non-linear function f(q) = 0. The solution is ob-
tained by minimizing a function in the least-squares way. After

knowing the shape factor, the depth (z-parameter) parameters
and the amplitude coefficient (A-parameter) parameter is esti-
mated using simple formulas. Using the entire measured data

make the results produced more reliable and realistic, and
helps minimize the uncertainties due to the non-uniqueness
and ill-posedness of the inverse problem solution.

So, the proposed method has been tested on noise-free syn-
thetic data sets. In order to analyze this method better, we
examine the effect of noise in the data, the effect of the error

response of the chosen function related to N-value and error
in the choice of the origin point. Finally, the fast algorithm
is applied to two real data sets from Senegal and India and
the interpreted shape and depth parameters are in good agree-

ment with the known actual values.

Methodology

The general formula of a gravity anomaly generated by a semi-
infinite vertical cylinder, an infinitely long horizontal cylinder,
or a sphere (Fig. 1) at a pointP(xi) along a profile [26] is given by:

gðxi; z; qÞ ¼ A
zm

ðx2
i þ z2Þq ; i ¼ 1; 2; 3; . . . ;L ð1Þ

where

A ¼

4
3
pGrR3

2pGrR2; m ¼

1
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3
2
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8><
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In Eq. (1), z is the depth to the body (km), q is the shape

factor (dimensionless), A (mGal · km2q�m) is the amplitude
coefficient whose unit is shape factor dependent, xi is the coor-
dinate of the measurement station (km), r is the density con-
trast (g/cc), G is the universal gravitational constant, and R
is the radius (km). The shape factors of a sphere (3D), an infi-

nitely long horizontal cylinder (2D), and a semi-infinite vertical
cylinder (3D) are 1.5, 1.0, and 0.5, respectively.

At the origin (xi = 0), the Eq. (1) gives the following

relationship:

A ¼ gð0Þz2q�m; ð2Þ

Using Eq. (2), we obtain the following normalized gravity

anomaly form:

Fðxi; z; qÞ ¼
z2

x2
i þ z2

� �q

; ð3Þ

where Fðxi; z; qÞ ¼ gðxi ;z:qÞ
gð0Þ .

Again, for all shapes, Eq. (3) gives the following value at
xi =±N

T ¼ z2

N2 þ z2

� �q

; N ¼ �1; 2; 3; . . . . . . ð4Þ

From Eq. (4), we obtain the following equation for the
depth (z):

z ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1=q

1� T1=q

s
: ð5Þ

Substituting Eq. (5) into Eq. (3), we obtain the following
equation for the shape factor (q):

Fðxi; qÞ ¼
N2PðqÞ

x2
i þ PðqÞðN2 � x2

i Þ

� �q

; ð6Þ

where P(q) = T1/q.

The unknown shape factor (q) in Eq. (6) can be obtained by
minimizing:

uðqÞ ¼
XM
i¼1
½LðxiÞ � Fðxi; qÞ�2; ð7Þ

where L(xi) denotes the normalized observed gravity anomaly

at xi.
Setting the derivative of u(q) to zero with respect to q leads

to

fðqÞ ¼
XM
i¼1
½LðxiÞ �Wðxi; qÞ�W�ðxi; qÞ ¼ 0; ð8Þ

where W�ðxi; qÞ ¼ d
dq
Wðxi; qÞ

Eq. (8) can be solved for q using the standard methods for
solving nonlinear equations [33], and its iteration form can be
expressed as:

qf ¼ fðqjÞ; ð9Þ

where qj is the initial shape factor and qf is the revised shape
factor; qf will be used as the qj for the next iteration. The iter-
ation stops when |qf � qj| 6 e, where e is a small predetermined
real number close to zero.

Once the q-parameter is known, the depth (z-parameter)
can be estimated from Eq. (5) and the amplitude coefficient
(A-parameter) can be determined from Eq. (2). Theoreti-

cally, one N-value is enough to determine the shape factor
and the other model parameters. In real data, more than
one N-value is desirable because of the presence of noise

in data.
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Fig. 1 Diagrams for various simple geometrical structures: (a) a semi-infinite vertical cylinder, (b) a horizontal cylinder, and (c) a sphere.
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We then measure the goodness of fit between the observed
and computed gravity data for each set of solutions. The stan-
dard error (l) is used in this paper as a statistical preference
criterion in order to compare the observed and calculated val-

ues. This l is given by the following mathematical relationship
[34]:

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1½gðxiÞ � gcðxiÞ�2

k

s
; ð10Þ

where g(xi) is the observed gravity value and gc(xi) is the calcu-
lated gravity value at the point xi (i = 1,2, . . . ,k), respectively.
k stands for the total number of data.

Results and discussions

This new fast least-squares inversion algorithm was tested on

several synthetic datasets of a semi-infinite vertical cylinder
(3D), an infinitely long horizontal cylinder (2D), and a sphere
(3D) causative body. In order to assess and analyze this algo-
rithm better, we will examine in the following two subsections

the effect of the noise added to the data and the effect of error
in the origin and T-value.

Effect of random noise

Synthetic examples of a semi-infinite vertical cylinder (q = 0.5,
A= 250 mGal · unit, profile length = 20 units, sample inter-

val = 1 unit, andN = 3 units), an infinitely long horizontal cyl-
inder (q=1.0, A=500 mGal · unit, profile length=20 units,
sample interval = 1 unit, and N = 4 units), and a sphere (q

= 1.5, A = 1000 mGal · unit2, profile length = 20 units, sam-
ple interval = 1 unit, andN = 6 units) were defined. They were
buried at different depths and interpreted using the introduced
method (Eqs. (8), (5), and (2)) to estimate the shape factor

(q-parameter), depth (z-parameter), and amplitude coefficient
(A-parameter), respectively. In all cases examined, the exact
values of the q-, z-, and A-parameters were obtained. However,
in studying the error response of the least-squares method, syn-
thetic examples contaminated with 5% random errors were

considered using the following formula:

DgrandðxiÞ ¼ gðxiÞ þ 5ðRNDðiÞ � 0:5Þ; ð11Þ

where Dgrand(xi) is the contaminated anomaly value at xi, and
RND(i) is a pseudo-random number whose range is (0,1). The

interval of the pseudo-random number is an open interval, i.e.,
it does not include the extremes 0 and 1.

Following the proposed interpretation scheme, values of

the most appropriate model parameters (q, z, and A) were
computed and the percentages of error in model parameters
were plotted against the model depth for comparison (Fig. 2).

We verified numerically that the shape factor obtained is
within 5% for the semi-infinite vertical cylinder, 2% for the
horizontal cylinder and 1.7% for the sphere models. The depth
obtained is within 7.6% for the semi-infinite vertical cylinder,

3.3% for the horizontal cylinder and 3.4% for the sphere mod-
els, whereas the amplitude coefficient is within 8.6% for the
semi-infinite vertical cylinder, 9.1% for the horizontal cylinder

and 9.5% for the sphere models (Fig. 2).
A noisy synthetic examples of a sphere model (q = 1.5,

A= 1000 mGal · unit2, profile length = 30 units, sample

interval = 1 unit, and N= 3 units) was buried at different
depths. It interpreted using the present method and three
least-squares method [35] to estimate the shape factor, depth,

and amplitude coefficient, respectively. The numerical result
for the percentage errors in model parameters are summarized
in Table 1. Table 1 shows that the results are modified by using
the present algorithm are better than the other methods be-

cause our technique is robust in the presence of noise.
Good results are obtained by using the present algorithm-

especially for shape and depth estimation, which is a primary

concern in gravity prospecting and other geophysical work.
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Fig. 2 Error response in model parameters (q, z, and A) estimates for (a) a semi-infinite vertical cylinder model, (b) a horizontal cylinder

model, and (c) a sphere model. Abscissa: model depth. Ordinate: percent error in model parameters.

Table 1 Comparison results for the percentage errors in

model parameters of a sphere model (q= 1.5, A = 1000 mGa-

l · unit2, profile length = 30 units, and sample

interval = 1 unit).

% Of error in The present method Three least-squares method [35]

q-Parameter 1.6 3

z-Parameter 2.2 2.5

A-parameter 8.0 9
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For synthetic data, we also verified that only a few points

around g(0) are needed to obtain the exact values of q-, z-,
and A-parameters. However, the data with random errors re-
quire more points around g(0).

Effect of errors in g(0) and T

In studying the error response of the least-squares method,

synthetic example of an infinitely long horizontal cylinder
model (q = 1.0, z= 5 units, A= 800 mGal · unit, and profile
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Fig. 3 A map showing error response (a) in shape factor (q-parameter), (b) in depth (z-parameter), and (c) in amplitude coefficient (A-

parameter) estimates for a horizontal cylinder model (q= 1.0, z = 5 units, and A= 800 mGal · unit, profile length = 40 units). Abscissa:

percent error in g(0). Ordinate: percent error in T.
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length = 40 units) was considered in which errors of ±1%,
±2%,±3%, . . . ,±7% were assumed in both g(0) and T. Fol-
lowing the same interpretation method, values of the three

model parameters (q, z, and A) were computed and the percent-
age of errors in the model parameters were mapped, first using
synthetic data without random noise (Fig. 3) and then using

synthetic data with 20% random noise (Fig. 4). Figs. 3 and 4a
show that the maximum error in the q-parameter is about
20% when both g(0) and T have errors of 7% and �7%. Also,
Figs. 3 and 4b show the maximum error in the z-parameter is
about 30% when g(0) and T have 7% and �7% errors On the
other hand, Figs. 3 and 4c illustrate that the maximum error

in the A-parameter is about 125% when g(0) and T have 7%
and�7% errors. Finally, when g(0) andT are kept undisturbed,
the percentage of error inmodel parameters is slightly smaller or

greater than the imposed error. This demonstrates that the pro-
posed method will give reliable model parameters solution even
when both g(0) and T are not correct and noisy.
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Field examples

The Louga anomaly

The observed gravity anomaly profile is 32 km length, lying
over the Louga area, west coast of Senegal, West Africa [36].

The anomaly profile was digitized at an interval of 0.5 km
(Fig. 5a). The proposed inverse technique has been applied
to the observed data to estimate the q-parameter, z-parameter
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Fig. 4 A map showing error response (a) in shape factor (q-paramet

parameter) estimates for a horizontal cylinder model (q= 1.0, z = 5

adding 20% random noise. Abscissa: percent error in g(0). Ordinate:
and A-parameter using the normalized field of the observed
gravity data (Fig. 5b). Then we computed the standard error
(l) between the observed values and the values computed from

estimated parameters q, z and A for each N-value. The results
are shown in Table 2 for the cases ofN-value. Also we computed
the set of mean values and the optimum set (l = 2.48 mGal) is

given at N= 2 km. The best-fit-model parameters are q =
0.53, z = 4.94 km and A = 545.68 mGal · km (Fig. 5a). This
suggests that the shape of the buried structure resembles a 3-D
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Fig. 5 (a) The observed gravity anomaly over the Louga area,

west coast of Senegal, West Africa. (b) Normalized gravity

anomaly data over the Louga area, west coast of Senegal, West

Africa.
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Fig. 6 (a) The residual gravity anomaly over a manganese

deposit near Nagpur, India. (b) Normalized gravity anomaly data

over a manganese deposit near Nagpur, India.

Table 2 Numerical results for the Louga area, west coast of Senegal, West Africa.

N (km) q-Parameter z-Parameter (km) A-parameter (mGal · km) l (mGal)

1.0 0.50 4.59 481.60 5.35

1.5 0.56 5.31 632.75 3.34

2.0 0.53 4.94 545.68 2.48

2.5 0.51 4.72 503.73 4.07

3.0 0.50 4.57 477.43 5.64

3.5 0.49 4.47 462.11 6.66

4.0 0.49 4.44 456.78 7.07

4.5 0.49 4.37 445.82 8.05

5.0 0.47 4.18 420.41 10.39

Average (m) 0.51 4.62 491.81 5.62

Gravity anomalies interpretation 63



Table 3 Numerical results for the Manganese deposit near Nagpur, India.

N (km) q-Parameter z-Parameter (m) A-parameter (mGal · m) l (mGal)

55.5 1.092 53.234 16.460 0.007

111.0 1.149 56.779 17.813 0.005

166.5 1.000 47.224 14.715 0.011

Average (m) 1.080 52.412 16.329 0.007
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semi-infinite vertical cylinder model buried at a depth of
4.94 km.

Manganese deposit body anomaly

The residual gravity anomaly over a manganese deposit near
Nagpur, India [37] was shown (Fig. 6a). This profile has a
length of 333 m, and the gravity curve was digitized at intervals

of 55.50 m. The proposed inverse technique has been applied
to the observed data to estimate the q-parameter, z-parameter
and A-parameter using the normalized field of the observed

gravity data (Fig. 6b). Then we computed the standard error
(l) between the observed values and the values computed from
estimated parameters q, z and A for each N-value. The results

are shown in Table 3 for the three cases of different N-values.
Also we computed the set of mean values and the optimum set
(l = 0.005 mGal) is given at N= 111.00 m. The best-fit-mod-

el parameters are q = 1.15, z = 56.78 m and A= 17.81 mGal
· m (Fig. 6a). This suggests that the shape of the buried struc-
ture resembles a 2-D horizontal cylinder model buried at a
depth of 56.8 m. The shape and the depth to the center of

the ore body obtained by the present method agree very well
with those obtained from other methods [38].

Conclusion

Afast least-squares approachhas beendeveloped to estimate the
appropriate nature of the source (q-parameter), the depth (z-

parameter) and the amplitude coefficient (A-parameter) of a
buried structure from the normalized gravity anomaly data of
a long profile. The inverse fast algorithm has been derived for

fast gravity quantitative interpretation for geometrically simple
anomalous bodies, such as a 3D semi-infinite vertical cylinder, a
2D infinitely long horizontal cylinder, and a 3D sphere.

The suggested method is automatic and it can use all the

observed gravity data in estimating these three parameters.
Previous techniques have typically used only a few points, dis-
tances, standardized curves, and nomograms. The suggested

algorithm is found to be stable and can estimate the gravity
parameters with a reasonable accuracy even when the observed
data is contaminated with noise, and the origin of the gravity

structure is approximately determined. The method has been
successfully tested on synthetic examples with and without ran-
dom errors, and successfully applied to field examples from

Senegal and India. The estimated gravity inverse parameters
are found in a good agreement with the known published
values.
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