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a b s t r a c t

Motivated in part by various sequences of graphs growing under
random rules (such as Internet models), Borgs, Chayes, Lovász, Sós,
Szegedy and Vesztergombi introduced convergent sequences of
dense graphs and their limits. In this paper we use this framework
to study one of the motivating classes of examples, namely
randomly growing graphs.Weprove the (almost sure) convergence
of several such randomly growing graph sequences, and determine
their limit. The analysis is not always straightforward: in some
cases the cut-distance from a limit object can be directly estimated,
while in other cases densities of subgraphs can be shown to
converge.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Convergent graph sequences and their limits have been studied in connection with Internet
models, statistical physics, extremal graph theory, and more. In the context of dense graphs, a rather
complete theory has emerged. One can define a notion of convergence based on the convergence
of densities of subgraphs. An appropriate notion of distance between two graphs, called their cut-
distance, can be defined, such that convergent sequences are Cauchy in this metric and vice versa. The
completion of the metric space of graphs relative to this metric can be described, and its elements,
i.e., limit objects for convergent graph sequences, can be characterized in various ways. To mention
one of these, limit objects can be described using two-variable symmetric measurable functions
[0, 1]2 → [0, 1].

The goal of this paper is study in this framework one of themotivating classes of examples, namely
randomly growing graphs. Typically, such a sequence of graphs grows by every now and then adding
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a new node, and then creating new edges (between the new node and the old ones, or between two
old nodes) randomly, from some simple distribution determined by local conditions.

We will prove the (almost sure) convergence of several such randomly growing graph sequences,
and determine their limit. This analysis is not always straightforward: in some cases the cut-distance
from a limit object can be directly estimated, while in other cases densities of subgraphs can be shown
to converge.

2. Preliminaries

In this section we summarize those notions and results concerning convergent graph sequences
and their limits which are relevant for the rest of the paper.

2.1. Convergent graph sequences

For two simple graphs F and G, hom(F ,G) denotes the number of homomorphisms (adjacency-
preserving maps) from V (F) to V (G). We also consider the homomorphism densities

t(F ,G) =
hom(F ,G)
|V (G)||V (F)|

. (1)

(Thus t(F ,G) is the probability that a randommap V (F) → V (G) is a homomorphism.)
A sequence (Gn) of graphs is convergent if the sequence t(F ,Gn) has a limit for every simple graph

F . This notion was defined in [3,4].
Convergent graph sequences have a limit object, which can be represented as a measurable

function [8]. Let W denote the space of all bounded measurable functions W : [0, 1]2 → R such
that W (x, y) = W (y, x) for all x, y ∈ [0, 1]. We also define W0 = {W ∈ W : 0 ≤ W ≤ 1}. For every
simple graph F and W ∈ W , we define

t(F ,W ) =

∫
[0,1]V (F)

∏
ij∈E(F)

W (xi, xj) dx.

Every finite simple graph G can be represented by a function WG ∈ W0: let V (G) = {1, . . . , n}.
Split the interval [0, 1] into n equal intervals J1, . . . , Jn, and for x ∈ Ji, y ∈ Jj define

WG(x, y) =


1, if ij ∈ E(G),
0, otherwise.

Informally, we replace the (i, j) entry in the adjacency matrix of G by a square of size (1/n) × (1/n),
and define the value of the function WG on this square as the corresponding entry of the adjacency
matrix.

Such functions W represent limits of convergent graph sequences in the following sense.

Theorem 2.1. (a) For every convergent graph sequence (Gn) there is a W ∈ W such that t(F ,Gn) →

t(F ,W ) for every simple graph F .
(b) This function W is uniquely determined up to measure-preserving transformations in the following

sense: for every other limit function W ′ there are measure-preserving maps φ,ψ : [0, 1] → [0, 1]
such that W (φ(x), φ(y)) = W ′(ψ(x), ψ(y)).

(c) Every function W ∈ W0 arises as the limit of a convergent graph sequence.

Parts (a) and (c) of the theoremwere proved in [8], and part (b), in [2]. The proof of (c) in [8] depends
onW -random graphs, to be discussed in the next section.

We could consider any probability space (Ω,A, π) instead of [0, 1], with a symmetric measurable
function W : Ω × Ω → [0, 1]. These structures are called graphons. The densities t(F ,W )
in a graphon could be defined by a similar integral. Considering graphons would not give greater
generality, since we could always replace (Ω,A, π) by the uniform measure on [0, 1]. Still, it is
sometimes useful to represent the limit object by other probability spaces, as we shall see.
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2.2. The distance of graphs

The cut-norm introduced in [7] is defined forW ∈ W by

‖W‖� = sup
S,T⊂[0,1]

∫
S×T

W (x, y)dx dy
,

where the supremum is overmeasurable subsets of [0, 1]. We define the cut-distance of two functions
in W by

δ�(U,W ) = inf
φ: [0,1]→[0,1]

‖U − Wφ
‖� (2)

where the infimum is over all invertible maps φ : [0, 1] → [0, 1] such that both φ and its inverse are
measure preserving, and Wφ is defined by Wφ(x, y) = W (φ(x), φ(y)). For two graphs G and G′, this
yields a distance

δ�(G,G′) = δ�(WG,WG′).

Remark 2.2. (a) We call this a ‘‘distance’’ rather than a ‘‘metric’’ since two different graphs can have
distance 0. This is the case when one graph can be obtained from the other by replacing each node by
the same number of twins, or more generally, when both can be obtained from a third graph in this
way. To get ametric, we should identify such pairs of graphs. Similarly, to get ametric onW0, we have
to identify functions U,W for which δ�(U,W ) = 0. Several characterizations of such pairs are given
in [2].

(b) There are combinatorial, but somewhat lengthy ways to define this distance between graphs;
see [4].

We can define a similar distance function based on other norms. We shall use the L1-norm

‖W‖1 =

∫
[0,1]2

|W (x, y)| dx dy,

from which we can define the edit distance of two functions in W by

δ1(U,W ) = inf
φ: [0,1]→[0,1]

‖U − Wφ
‖1. (3)

The following characterization of convergent graph sequences was proved in [4] (see [5] for other
characterizations not used in this paper).

Theorem 2.3. A sequence of graphs (Gn) is convergent if and only if it is Cauchy in the δ� distance. The
sequence (Gn) converges to W if and only if δ�(WGn ,W ) → 0. Furthermore, if this is the case, and
|V (Gn)| → ∞, then there is a way to label the nodes of the graphs Gn such that ‖WGn − W‖� → 0.

If the graphs Gn are labeled such that ‖WGn − W‖� → 0, then

sup
S,T

∫
S×T
(WGn − W )

 → 0 (n → ∞).

In particular, it follows that∫
S×T
(WGn − W ) → 0 (4)

for every product set S × T , which implies that WGn → W in the weak* topology of L∞([0, 1]2).
Convergence in the norm ‖.‖� is, however, not equivalent to convergence in this weak* topology, as
the sequence of prefix attachment graphs shows (Section 3.3).

2.3. W-random graphs and extensions

Let (Ω,A, π,W ) be a graphon. For every finite subset S ⊆ Ω we define two graphs G(S,W ) and
H(S,W ) on V (G(S,W )) = V (H(S,W )) = S. In G(S,W ), we connect i, j ∈ S, i ≠ j, with probability
W (i, j). In H(S,W ), we connect i, j ∈ S, i ≠ j, by an edge with weight W (i, j). If W is {0, 1} valued,
then G(S,W ) = H(S,W ) is deterministic, and can be considered as an ‘‘induced subgraph’’.
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Let Sn be a random n-element subset of Ω (each element of Sn chosen independently from the
distribution π ). The graph G(n,W ) = G(Sn,W ) is called a W -random graph. The following fact was
shown in [8] (for the case when the underlying probability space is the uniform distribution on [0, 1],
but this is no essential restriction of generality).

Lemma 2.4. With probability 1, the sequence G(n,W ) is convergent and its limit is represented by the
function W.

In this paper, we will also need sequences Sn of subsets of Ω that are not random, but for which
G(Sn,W ) still converges toW . We prove and use the following sufficient condition for a deterministic
sequence Sn. Let (Ω, d) be ametric space, and π , a probability measure on the Borel subsets of (Ω, d).
For every n ≥ 1, let Sn be a finite subset of Ω such that |Sn| → ∞. We say that the sequence (Sn) is
well distributed in a set X ⊆ Ω if |Sn ∩ X |/|Sn| → π(X) as n → ∞. We say that (Sn) is well distributed
in (Ω, d, π) if for every ε > 0 there exists a partition {P1, . . . , Pm} of Ω into sets with diameter at
most ε such that Sn is well distributed in each Pj.

Lemma 2.5. Let (Ω, d, π) be a metric space with an atom-free probability measure. Let W : Ω ×Ω →

[0, 1] be a symmetric measurable function that is almost everywhere continuous. Let Sn be a sequence of
sets that is well distributed in (Ω, d, π).
(a) Then δ1(WH(Sn,W ),W ) → 0 and with probability 1, δ�(WG(Sn,W ),W ) → 0.
(b) If W is 0–1 valued, then δ1(WG(Sn,W ),W ) → 0.

It is clear that such a conclusion cannot hold without some assumption on W , since a general
measurable function could be changed on the sets Sn × Sn arbitrarily without changing its subgraph
densities.
Proof. (a) First we construct a special partition ofΩ .

Claim 2.6. There exists a sequence of partitions Qn of Ω into |Sn| sets such that every partition class
contains exactly one point of Sn, the maximum diameter of partition classes tends to 0, and the maximum
of

π(Q )|Sn| − 1
 (Q ∈ Qn) tends to 0.

Let ε > 0. Consider a partition {P1, . . . , Pm} into sets with diameter at most ε such that Sn is well
distributed in every Pj. For n large enough, we have (1 − ε)π(Pj) ≤ |Sn ∩ Pj|/|Sn| ≤ (1 + ε)π(Pj) for
every j. Let us partition each set Pj into |Sn ∩ Pj| sets of equal measure, each containing exactly one
point of Sn ∩ Pj to get the partition Qn. It is clear that this sequence of partitions has the properties as
required in the claim.

For each n and s ∈ Sn, let Qs be the partition class of Q containing s. Define the function Wn as
follows: for s, s′ ∈ Sn and (x, y) ∈ Qs ×Qs′ , letWn(x, y) = W (s, s′). ThenWn(x, y) → W (x, y) at every
point (x, y)where W is continuous; in particularWn → W almost everywhere. This implies that

‖Wn − W‖1 → 0 (n → ∞). (5)

We can view Wn as WHn , where Hn is a weighted graph with V (Hn) = Sn, the weight of node
s ∈ Sn is π(Qs), and the weight of ss′ (s, s′ ∈ S) is W (s, s′). Note that Hn is almost the same
weighted graph as Hn = H(Sn,W ): they are defined on the same set of nodes, the edges have the
same weights, and the nodeweight π(Qs) is asymptotically 1/|Sn| by the Claim. Given ε > 0, we
have |π(Qs) − 1/|Sn|| < ε/|Sn| if n is large enough. Hence there is a measure-preserving bijection
φ : [0, 1] → [0, 1] and a set R ⊆ [0, 1] of measure ε such that

WHn(x, y) = Wφ
Hn(x, y) (x, y ∉ R).

This implies that

δ1(Hn,Hn) → 0 (n → ∞). (6)

By Lemma 4.3 from [4], it follows that with probability 1,

δ�(H(Sn,W ),G(Sn,W )) → 0 (n → ∞). (7)

Eqs. (5)–(7) imply that G(Sn,W ) → W with probability 1.
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Fig. 1. The Petersen graph, its adjacency matrix, and its pixel picture.

Fig. 2. A half-graph, its pixel picture, and the limit function.

(b) follows trivially, since in this case H(Sn,W ) = G(Sn,W ). �

We note that (b) would also follow from the result of Pikhurko [9] that if a graph sequence tends
to a 0–1 valued function W in the δ� distance, then it also tends toW in the δ1 distance.

2.4. The pixel picture

We have seen that every finite simple graph G can be represented by a function WG ∈ W0. In fact,
this representation is very useful for creating figures representing graphs.

Every function W ∈ W0 can be represented by a grayscale picture on the unit square: the point
(x, y) is black if W (x, y) = 1, it is white if W (x, y) = 0, and it is appropriately dark grey if 0 <
W (x, y) < 1. For a graph, this picture gives a black-and-white picture consisting of a finite number
of ‘‘pixels’’. The origin is in the upper left corner (as for a matrix). Fig. 1 illustrates this construction.
Note that the function associated with a graph depends on the ordering of the nodes.

Example 1 (Half-Graphs). Consider the half-graphs Hn,n: they are bipartite graphs on 2n nodes
{1, . . . , n, 1′, . . . , n′

}, where i is connected to j′ if and only if i ≤ j′. It is easy to see that this sequence
is convergent, and to guess the limit function (Fig. 2).

Example 2 (Erdős–Rényi Random Graphs). The pixel picture of a random graph is essentially grey
(Fig. 3).

The following simple example illustrates the importance of the ordering of the nodes:

Example 3 (Chessboard). The 100×100 chessboard in Fig. 4 is the pixel picture of a complete bipartite
graph. It is also uniformly grey, so onemight assume that it represents a graph that is close to random.
But rearranging the rows and columns so that odd indexed columns come first, we see that it is
isomorphic to the graph represented by the 2 × 2 chessboard.

This example also shows that different graphs may be represented by the same pixel picture: all
complete bipartite graphs with equal color classes have the same pixel picture. If we restrict our
attention to graphs with no twin nodes, the pixel picture will determine the graph.
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Fig. 3. A random graph with 100 nodes and with edge density 1/2.

Fig. 4. A chessboard and the pixel picture obtained by rearranging the rows and columns.

The pixel picture of a random graph remains uniformly grey, nomatter how you reorder the nodes.
It is easy to verify that

t(F ,G) = t(F ,WG)

for every finite simple graph G.

3. Convergent graph sequences and their limits

3.1. Growing uniform attachment graphs

We generate a randomly growing graph sequence Gua
n as follows. We start with a single node. At

the nth iteration, a new node is born, and then every pair of nonadjacent nodes is connected with
probability 1/n. We call this graph sequence a randomly grown uniform attachment graph sequence.

Let us do some simple calculations. After n steps, let {0, 1, . . . , n − 1} be the nodes (born in this
order). The probability that nodes i < j are not connected is j

j+1 ·
j+1
j+2 · · ·

n−1
n =

j
n . These events are

independent for all pairs (i, j). The expected degree of j is (see Fig. 5)
j−1−
i=0

n − j
n

+

n−1−
i=j+1

n − i
n

=
n − 1
2

−
j(j − 1)

2n
.

The expected number of edges is

1
2

n−1−
j=0


n − 1
2

−
j(j − 1)

2n


=

n2
− 1
6

.

To figure out the limit function, note that the probability that nodes i and j are connected is
1 − max(i, j)/n. If i = xn and j = yn, then this is 1 − max(x, y). This motivates the following:
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Fig. 5. A randomly grown uniform attachment graph with 100 nodes.

Theorem 3.1. The sequence Gua
n tends to the limit function 1 − max(x, y) with probability 1.

Proof. For a fixed n, the events that nodes i and j are connected are independent for different i, j,
and so by the computation above, Gua

n has the same distribution as G(Sn, 1 − max(x, y)), where
Sn = {0, 1/n, . . . , (n − 1)/n}. It is easy to see that this sequence is well distributed in the metric
space [0, 1] with the uniform measure, and so the theorem follows by Lemma 2.5. �

One can get a good explicit bound on the convergence rate by estimating the cut-distance ofWGuan
and 1 − max(x, y), using the Chernoff–Hoeffding bound.

3.2. Growing ranked attachment graphs

This randomly growing graph sequenceGra
n is generated somewhat similarly.We startwith a single

node. At the nth iteration, a new node is born, and it is connected to node i with probability 1 − i/n.
Then every pair of nonadjacent nodes is connected with probability 2/n. We call this graph sequence
a randomly grown ranked attachment graph sequence.

Theorem 3.2. The sequence Gra
n tends to the limit function 1 − xy with probability 1.

Proof. The probability that nodes i and j are not connected after the nth step is

pij =
i
j
·


1 −

2
j


·


1 −

2
j + 1


· · ·


1 −

2
n


=

i(j − 2)(j − 1)
j(n − 1)n

=
ij
n2

−
(3n − j)ij − 2ni

jn(n − 1)
=

ij
n2

− qij,

where 0 < qij < min{
3
n , ij/n

2
}. Furthermore, these events are independent for different pairs

i, j. Therefore, we can generate the graph Gra
n as follows: we generate G(Sn, 1 − xy), where Sn =

{0, 1/n, . . . , (n − 1)/n}, and then connect each nonadjacent i and j with probability 1 − pij. Since
G(Sn, 1 − xy) tends to the function 1 − xy by Lemma 2.5 and the added edges change G(Sn, 1 − xy)
negligibly in δ� distance, the theorem follows. �

3.3. Growing prefix attachment graphs

In this construction, it will be more convenient to label the nodes starting with 1. At the nth
iteration, a new node n is born, a node z is selected at random, and node n is connected to nodes
1, . . . , z−1.We denote the nth graph in the sequence by Gpfx

n , and call this graph sequence a randomly
grown prefix attachment graph sequence (Fig. 6).

Remark 3.3. In a recent paper [6], Diaconis, Holmes and Janson study a related graph sequence,
where at each step, the new node is connected either to all previous nodes or to none of them, with
probability (in the simplest case) 1/2. These graphs are random threshold graphs, and they tend to
the limit graphon 1(x + y ≥ 1)with probability 1.
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Fig. 6. A randomly grown prefix attachment graph with 100 nodes, and the same graph with nodes ordered by their degrees.

Again we start with some simple calculations. The probability that nodes i < j are connected is j−i
j

(but these events are not independent in this case!). The expected degree of j is therefore
j−1−
i=1

j − i
j

+

n−
i=j+1

i − j
i

= n −
j
2

+ j ln
n
j

+ o(n).

The expected number of edges is n(n − 1)/4.
Looking at the picture, it seems that it tends to some function, which we can try to figure out

similarly aswe did in the case of uniform attachment graphs. The probability that i and j are connected
can be written in a symmetric form as

|j − i|
max(i, j)

.

If i = xn and j = yn, then this is

|x − y|
max(x, y)

.

Does this mean that the function U(x, y) = |x− y|/max(x, y) is the limit? Somewhat surprisingly,
the answer is negative, which we can see by computing triangle densities. The probability that nodes
i < j < k form a triangle is


1 −

j
k


1 −

i
j


(since if k is connected to j, then it is also connected to i).

Hence the expected number of triangles is−
i<j<k


1 −

j
k

 
1 −

i
j


=

1
6

n
3


.

Hence

t(K3,Gn) =
1
n3

n
3


→

1
6
.

On the other hand,

t(K3,U) =

∫
[0,1]3

|x − y|
max(x, y)

·
|x − z|

max(x, z)
·

|y − z|
max(y, z)

dx dy dz.

Since the integrand is independent of the order of the variables, we can compute this easily:

t(K3,U) = 6
∫
0≤x<y<z≤1


1 −

x
y

 
1 −

x
z

 
1 −

y
z


dx dy dz =

5
36
.

So U is not the limit of the sequence Gpfx
n . On the other hand, it is not hard to verify that∫

S×T
(WGpfxn

− W ) → 0 (8)
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for every S, T ⊆ [0, 1]. Indeed, it is enough to prove this for sets S, T from a generating set of the
σ -algebra of Borel sets, e.g. rational intervals. Since there are only a countable number of these
intervals, it suffices to prove that (8) holds with probability 1 for each fixed S and T . It is also easy
to see that it suffices to consider the case S = T . For a node j with j/n ∈ S, let Xn,j denote the number
of edges ij (i < j) in Gpfx

n with i/n ∈ S, and let Xn =
∑

j/n∈S Xn,j. Then direct computation shows that

1
n2

E(Xn) →

∫
S×S

U .

Furthermore, the variables Xn,j are independent for fixed n; hence the Chernoff–Hoeffding Inequality
implies that P(|Xn − E(Xn)| > εn2) drops exponentially with n. Hence it follows that Xn/n2

→

S×S U

with probability 1.
So WGpfxn

→ W in the weak-star topology of L∞[0, 1]2, but not in our sense. This example also
shows that had we defined convergence of a graph sequence through this convergence in weak-star
topology (after appropriate relabeling), the limit would not be unique.

Perhaps ordering the nodes by degrees helps? The second pixel picture in Fig. 6 suggests that
after this reordering, the functions WGpfxn

converge to some other continuous function. But again this
convergence is only in the weak-star topology, not in the δ� distance. We will see that no continuous
function can represent the ‘‘right’’ limit: the limit graphon is 0–1 valued, and it is uniquely determined
up to measure-preserving transformations by Theorem 2.1, which do not change this property.

Is this graph sequence convergent at all? Our computation of the triangle densities above can be
extended to computing the density of any subgraph, and it follows that the sequence of densities
t(F ,Gpfx

n ) is convergent for every n. How do we figure out the limit?
Let us label a node born in step k, connected to {1, . . . ,m}, by (k/n,m/k) ∈ [0, 1] × [0, 1]. Then

we can observe that nodes with label (x1, y1) and (x2, y2) are connected if and only if either x1 < x2y2
or x2 < x1y1.

Consider the functionW : [0, 1]2 × [0, 1]2 → [0, 1], given by

W pfx((x1, y1), (x2, y2)) =


1, if x1 < x2y2 or x2 < x1y1,
0, otherwise.

Proposition 3.4. The prefix attachment graphs Gpfx
n tend to W pfx with probability 1.

Proof. Let Sn be the (random) set of points in [0, 1]2 of the form (i/n, zi/i)where i = 1, . . . , n and zi
is a uniformly chosen random integer in {1, . . . , i}. Then Gpfx

n = G(Sn,W pfx) = H(Sn,W pfx).
Furthermore, with probability 1, the sets Sn are well distributed in [0, 1]2. Indeed, for m ≥ 1,

let Jm,k denote the interval (k/m, (k + 1)/m], and let Pm denote the partition of [0, 1]2 into the sets
Jm,k × Jm,l (k, l = 0, . . . ,m − 1). We want to prove that for every fixed m and 0 ≤ k, l ≤ m − 1,
|Sn ∩ (Jm,k × Jm,l)|/n → 1/m2 as n → ∞ with probability 1. Let

Xi =


1, if (i, zi) ∈ Jm,k × Jm,l,
0, otherwise.

Then

|Sn ∩ (Jm,k × Jm,l)| =

n−
i=1

Xi.

We have

E(Xi) =


1
i

 (l + 1)i
m


−

 li
m


, if

k
m

≤
i
n

≤
k + 1
m

,

0, otherwise,
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Fig. 7. The limit of randomly grown prefix attachment graphs (as a function on [0, 1]2).

and hence

E|Sn ∩ (Jm,k × Jm,l)| =

−
i∈nJm,k

1
i


(l + 1)i

m


−


li
m


=

−
i∈nJm,k

1
m

+ O(log n)

=
1
m


(k + 1)n

m


−


kn
m


+ O(log n) =

n
m2

+ O(log n).

Thus

E
1
n
|Sn ∩ (Jm,k × Jm,l)|


→

1
m2

(n → ∞).

The fact that |Sn ∩ (Jm,k × Jm,l)|/n → 1/m2 with probability 1 (not just in expectation) follows by the
Law of Large Numbers, since the Xi are independent.

Thus Lemma 2.5 applies and proves the proposition. �

Lemma 2.5 in fact implies (since W pfx is 0–1 valued) that WGpfxn
tend to W pfx with probability 1 in

the edit distance, not just in the cut-distance. This means that while the graphs Gpfx
n are random, they

are very highly concentrated: two instances ofGpfx
n only differ in o(n2) edges if overlaid properly (not in

the original ordering of the nodes!). Informally, they have a relatively small amount of randomness in
them, which disappears as n → ∞. Indeed, Gpfx

n is generated using only O(n log n) bits, as opposed to,
say, G(n, 1/2), which is generated using

 n
2


bits. It would be interesting to explore this phenomenon.

Proposition 3.4 gives a nice and simple representation of the limit object with the underlying
probability space [0, 1]2 (with the uniform measure). If we want a representation on [0, 1], we can
map [0, 1] into [0, 1]2 by a measure-preserving map φ; then Wφ

pfx(x, y) = W pfx(φ(x), φ(y)) gives a
representation of the same graphon as a two-variable function. For example, using the map φ that
separates even and odd bits of x, we get the fractal-like picture in Fig. 7.

It is interesting to note that the graphs G(n,W ) form another (different) sequence of random
graphs tending to the same limitW with probability 1.

3.4. Growing preferential attachment graphs

This randomly growing graph sequence Gpf
n is generated as follows. We start with a single node. At

the nth step (when we already have a graph with n nodes), a new node labeled n+ 1 is created, and is
connected to each old node i with probability (dn(i)+ 1)/(n + 1), independently for different nodes
i (here dn(i) is the current degree of node i). (Adding 1 to the degree in the numerator is needed in
order to generate anything other than empty graphs.)

The behavior of the graph sequence Gpf
n is somewhat unexpected: it is convergent with probability

1, but the limit is not determined. More precisely:
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Proposition 3.5. With probability 1, the sequence Gpf
n is quasirandom, i.e., it converges to a constant

function. The constant is not determined.

Proof. Set Xn = |E(Gpf
n )|. Then

E(Xn | Gpf
n−1) = Xn−1 +

n−1−
i=1

dn−1(i)+ 1
n

= Xn−1 +
2
n
Xn−1 +

n − 1
n

.

Hence
1

(n + 2)(n + 1)
E(2Xn + 2n + 1 | Xn−1) =

1
(n + 1)n

(2Xn−1 + 2n − 1),

which shows that the values

Yn =
2Xn + 2n + 1
(n + 2)(n + 1)

form a martingale. Since they are obviously bounded, the Martingale Convergence Theorem implies
that with probability 1 there is a value a such that Yn → a. Clearly, Yn ∼ t(K2,G

pf
n ), and so

t(K2,G
pf
n ) → a.

Given Gpf
n−1, the degree of node n when it is born is

∑n−1
i=1 Xi, where the Xi are independent 0–1

random variables with E(Xi) = (dn−1(i)+ 1)/(n + 1). Hence

E(dn(n) | Gpf
n−1) =

n−1−
i=1

dn−1(i)+ 1
n

=
2
n
|E( Gpf

n−1)| +
n − 1
n

,

and hence (dn(n)+ 1)/(n + 1)will be heavily concentrated around a. In particular, (dn(n)+ 1)/(n +

1) → a as n → ∞.
Next, observe that the development of dn(i), for a fixed i, follows a PólyaUrnmodelwith di(i)+1 red

and i−di(i) green balls, whence (dn(i)+1)/(n+1) is a martingale converging to the beta distribution
with parameters di(i)+ 1 and i− di(i). So for large i, (dn(i)+ 1)/(n+ 1)will be heavily concentrated
around its expectation (di(i)+ 1)/(i+ 1), which in turn is heavily concentrated around a. So for large
n, most nodes will have degree around an.

It follows that the process is almost the same as G(n, a), where we can also think of the nodes
created one by one and joined to each previous node with probability a. We can couple the two
processes to show that with probability 1, they converge to the same limit, which is clearly the
function that is identically a.

Note that from the basic properties of martingales,

E(a | Gpf
n ) = Yn =

2|E(Gpf
n )| + 2n + 1

(n + 2)(n + 1)
.

Since Gpf
n can be any simple graph on n nodes with positive probability, it follows that a is not

determined, and with a more careful computation one can see that a falls into any interval with
positive probability. It would be interesting to determine the distribution of a. �

3.5. A preferential attachment graph on n fixed nodes

A preferential attachment graph with n fixed nodes and m edges PAG(n,m) is the random graph
obtained by the following procedure. Let v1 . . . vn be a set of nodes. We extend this sequence, one
by one, by picking an element of the current sequence randomly and uniformly, and append a copy
of it at the end. We repeat this until 2m further elements have been added. So we get a sequence
v1 . . . vnvn+1 . . . vn+2m.

Now we connect nodes vn+2k−1 and vn+2k for k = 1, 2, . . . ,m, to get PAG(n,m). (Note that
PAG(n,m)may have multiple edges and loops, which we have to live with for the time being.)
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Fig. 8. (a) A preferential attachment graph PAG(50, 1000). Darkness of a pixel indicates multiplicity of the edge. (b) The same
graph with the nodes ordered by decreasing degrees.

Another way of describing this construction is to view it as adding edges one by one, where the
probability of adding an edge connecting u and v is proportional to the product of their degrees. To be
more precise, the probability that the (k + 1)st edge connects u and v is

2(dk(u)+ 1)(dk(v)+ 1)
(n + 2k)(n + 2k + 1)

if u ≠ v,

(dk(u)+ 1)(dk(u)+ 2)
(n + 2k)(n + 2k + 1)

if u = v,

where dk(u) is the current degree of the node (adding 1 to the degree is needed to start the procedure
at all; adding 2 to the second factor in the case when u = v is a minor trick that makes everything
come out more nicely; Fig. 8).

Preferential attachment graphs are motivated by the (sparse) Albert–Barabási graphs [1], and they
have been studied in detail by Pittel [10].

The somewhat awkward definition of preferential attachment graphs is justified by the following
nice properties. First, let us compute the probability that this process yields a multigraph G on
V (G) = [n], with degrees d1, . . . , dn, withm edges andm′ non-loop edges. Fix any order of the edges,
and for the non-loop edges fix an order in which their endpoints were inserted (i.e., an orientation of
G). Then the probability that G arises this way is

d1! . . . dn!
n(n + 1) · · · (n + 2m − 1)

. (9)

Summing over all orientations and orderings of the edges, we get that the probability that
PAG(n,m) = G is

m!2m′ d1! . . . dn!
n(n + 1) · · · (n + 2m − 1)

. (10)

An important observation that we can make from this computation is the following:

Lemma 3.6. Conditioning on the graph G(n,m), all the 2m′

m! possibilities in which the edges could have
been inserted have the same probability.

We can use this lemma to determine the expected subgraph densities in PAG(n,m). For two
multigraphs F and G, let inj(F ,G) denote the number of embeddings of f into G, i.e., the number of
pairs (φ, ψ) of injective maps φ : V (F) → V (G) and ψ : E(F) → E(G) that preserve incidence. Let

tinj(F ,G) =
inj(F ,G)
(n)k

,

where k = |V (F)| and n = |V (G)|.
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Let F be a multigraph on V (G) = [k], with degrees r1, . . . , rk, with l edges and l′ non-loop edges.
Fix an order of the edges of F and also an orientation σ of the non-loop edges of F as above. Let
−→e 1, . . . ,

−→e m be the order and orientation in which PAG(n,m) arises. Let p(σ , v1, . . . , vk, j1, . . . , jl)
denote the probability that edges −→e j1 , . . . ,

−→e jl form a copy of F on nodes v1, . . . , vk (with the given
labeling of the nodes, the given order of the edges, and the given orientation). By Lemma 3.6, this
number is the same for any l-tuple (j1, . . . , jl), and trivially, it is the same for every k-tuple (v1, . . . , vk).
Hence

E

inj(F , PAG(n,m))


=

−
v1,...,vk

−
j1,...,jl

−
σ

p(σ , v1, . . . , vk, j1, . . . , jl)

= (n)k(m)l2l′p(σ0, 1, . . . , k, 1, . . . , l),
where σ0 is any fixed orientation of F . By (9), we have

p(σ0, 1, . . . , k, 1, . . . , l) =
r1! . . . rk!

(n + 2l − 1) 2l
,

and so

E

tinj(F , PAG(n,m))


=

1
(n)k

(n)k(m)l2l′ r1! . . . rk!
(n + 2l − 1) 2l

= 2l′ r1! . . . rk!
(m)l
(n)2l

. (11)

Suppose that n,m → ∞ so thatm ∼ cn2/2. Then

E

tinj(F , PAG(n,m))


∼ 2l′ r1! . . . rk!

ml

n2l
−→ 2l′−lc lr1! . . . rk!.

If we assume that F has no loops, then
E

tinj(F , PAG(n,m))


−→ c lr1! . . . rk!.

Using high concentration results, one can show not only that this convergence holds in expectation,
but also that with probability 1,

tinj(F , PAG(n,m)) −→ c lr1! . . . rk!.
Note that the relation tinj(F , PAG(n,m)) ∼ t(F , PAG(n,m)) does not hold in general if F has

multiple edges. In fact, it is easy to see that

tinj(F , PAG(n,m)) ∼

−
F ′

t(F , PAG(n,m))
∏

i,j∈V (F)

m′

ij!
mij

m′

ij


,

where F ′ ranges through all multigraphs obtained from F by reducing the edge multiplicities (not
strictly, but keeping at least one copy of each edge),mij andm′

ij denote the multiplicities of the edge ij
in F and F ′, respectively, and {

a
b } denotes the Stirling number of the second kind. For example, if K (2)2

denotes the graph on two nodes having two parallel edges, then

t(K (2)2 , PAG(n,m)) ∼ tinj(K
(2)
2 , PAG(n,m))+ tinj(K2, PAG(n,m)).

Let Lc(x, y) = c(ln x)(ln y). Then for a multigraph F without loops we have

t(F , Lc) =

∫
[0,1]k

∏
ij∈E(F)

W (xi, xj) dx =

∫
[0,1]k

c l
k∏

i=1

(ln xi)ri dx = c lr1! . . . rk!.

This implies that the limit of preferential attachment graphs PAG(n, cn2), with probability 1, is
described by the function Lc . To be precise, the graphs PAG(n, cn2) have multiple edges, and hence
the theory of convergent graph sequences developed in [4,5] does not apply, but the computations
above show that the convergence does occur in at least one possible sense.

Proposition 3.7. If m(n) = (c + o(1))n2, then with probability 1, tinj(F , PAG(n,m)) → t(F , Lc) for
every multigraph F without loops.

Let SPAG(n, cn2) denote the simplified preferential attachment graph obtained from PAG(n, cn2) by
deleting loops and keeping only one copy of parallel edges. Szakács [11] proved that this sequence of
graphs is convergent with probability 1, and its limit is the function 1 − exp(−c ln x ln y).
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4. Convergence to a prescribed function

Lemma 2.4 gives a way to construct a randomly growing graph sequence converging to a given
functionW . Let s1, s2, . . . ∈ Ω be independent random samples from π , and let Sn = {s1, . . . , sn}. We
can construct G(Sn,W ) by taking G(Sn−1,W ), adding sn as a new node, and connecting sn to si with
probability W (sn, si). Then G(S1,W ),G(S2,W ), . . . is a randomly growing sequence of graphs, and
by Lemma 2.4, we have G(Sn,W ) → W with probability 1.

However, one can have several objections to this method: first, the new edges are not added
independently of each other; second, even ifΩ = [0, 1], and the function W is, say, continuous and
monotone, the order in which the nodes of G(Sn,W ) are born is random, and has nothing to do with
the order of the points si ∈ [0, 1] representing them. In other words, to get a labeling for which
WG(Sn,W ) → W in the ‖.‖� norm, we have to reorder the nodes.

It may be interesting to consider rules for generating randomly growing graph sequences (Gn)
with a prescribed limit function W for which these objections cannot be raised. Given a function
W ∈ W0, monotone decreasing in each variable, construct a randomly growing simple graph sequence
(G1,G2, . . .) as follows. G1 is a single node labeled 1. For n > 1, define

pn,j = W


j
n
, 1


, pn,ij =

W ( i
n ,

j
n )− W ( i

n−1 ,
j

n−1 )

1 − W ( i
n−1 ,

j
n−1 )

.

To get Gn from Gn−1, we add a new node n, connect it to each node j < n with probability pn,j,
and connect any two nonadjacent nodes i, j < n with probability pn,ij. All of these decisions are
independent. The monotonicity ofW implies that 0 ≤ pn,ij ≤ 1 is a legal probability.

Proposition 4.1. The sequence of graphs Gn constructed above has the property that WGn → W in the
‖.‖� norm.

Proof. The probability that nodes i < j are not connected in Gn is

(1 − pj,i)(1 − pj+1,ij) · · · (1 − pn,ij)

=


1 − W


i
j
, 1

 1 − W ( i
j+1 ,

j
j+1 )

1 − W ( ij ,
j
j )

· · ·
1 − W ( i

n ,
j
n )

1 − W ( i
n−1 ,

j
n−1 )

= 1 − W


i
n
,
j
n


,

and hence the probability that they are adjacent is W ( i
n ,

j
n ). Thus Gn is the graph G(Sn,W ), where

Sn = {
1
n ,

2
n , . . . ,

n−1
n }. It is trivial that this sequence of sets is well distributed in [0, 1], and sinceW is

almost everywhere continuous, it follows by Lemma 2.5 that Gn → W with probability 1. �

The convergent sequences discussed in Sections 3.1 and 3.2 are special cases of this construction.
A more general nice case is whenW = 1−U , where U is homogeneous of some degree: U(λx, λy) =

λcU(x, y) with some c ≥ 0. When a new node n is born we connect it to node i < n with probability
W ( i

n , 1), and then at each further step, we connect any two nonadjacent nodes with probability
1 −

 n−1
n

c .
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