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SUMMARY

In Drosophila, Dicer-1 binds Loquacious-PB (Loqs-
PB) as its major co-factor. Previous analyses indi-
cated that loqsmutants only partially impede miRNA
processing, but the activity of minor isoforms or
maternally deposited Loqs was not eliminated in
these studies. We addressed this by generating a
cell line from loqs-null embryos and found that only
�40% of miRNAs showed clear Loqs dependence.
Genome-wide comparison of the hairpin structure
and Loqs dependence suggested that Loqs sub-
strates are influenced by base-pairing status at the
dicing site. Artificial alteration of base-pairing stabil-
ity at this position in model miRNA hairpins resulted
in predicted changes in Loqs dependence, providing
evidence for this hypothesis. Finally, we found that
evolutionarily young miRNA genes tended to be
Loqs dependent. We propose that Loqs may have
roles in assisting the de novo emergence of miRNA
genes by facilitating dicing of suboptimal hairpin
substrates.

INTRODUCTION

MicroRNAs (miRNAs) are a family of �22-nt small regulatory

RNAs that are processed from longer precursor transcripts

(Ha and Kim, 2014), and dysregulation of miRNA-processing ac-

tivity is often associated with human diseases (Foulkes et al.,

2014; Garzon et al., 2009). In the canonical miRNA-processing

pathway, miRNA hairpins residing in primary miRNA transcripts

(pri-miRNAs) are cleaved by theMicroprocessor complex, which

contains the nuclear RNase III enzyme Drosha, to produce �60-

to 80-nt precursor- (pre-) miRNAs. Pre-miRNAs are then ex-

ported to the cytoplasm and undergo the second processing
Cel
This is an open access article under the CC BY-N
step. The cytoplasmic RNase III protein Dicer cleaves pre-miR-

NAs to release short RNA duplexes by removing loop regions

of pre-miRNAs. Processed mature miRNAs are loaded to the

effector complexes containing Argonaute proteins to execute

their functions.

Eukaryotic RNase III enzymes often require partner proteins to

carry out their miRNA-processing functions (Heo and Kim, 2009).

Drosha and its partner protein Pasha (DGCR8 in vertebrates)

form the core of the Microprocessor complex, and Pasha is

essential for recognition and precise cleavage of hairpin sub-

strates (Denli et al., 2004; Gregory et al., 2004; Han et al.,

2004; Herbert et al., 2016; Kwon et al., 2016; Martin et al.,

2009; Nguyen et al., 2015).

Dicer also binds its partner proteins. In contrast to Pasha/

DGCR8 whose activity is essential for pri-miRNA cleavage, roles

of Dicer partner proteins are enigmatic. In mammals, two paral-

ogs of Dicer partners, TRBP and PACT, have been identified

(Chendrimada et al., 2005; Haase et al., 2005; Lee et al.,

2006). Both proteins were originally reported to facilitate miRNA

maturation at the dicing and/or loading steps (Chendrimada

et al., 2005; Haase et al., 2005; Lee et al., 2006). However,

studies showed that TRBP only has roles in modulating lengths

of mature miRNA species for specific genes and is dispensable

for efficient pre-miRNA processing (Fukunaga et al., 2012; Lee

and Doudna, 2012). Furthermore, miRNA expression profiles

of a recently established TRBP/PACT double-knockout cell

line are indistinguishable from profiles of TRBP single-knockout

cells, indicating that PACT does not compensate for the

absence of TRBP (Kim et al., 2014). However, these results do

not exclude the possibility that TRBP plays tissue-specific roles

in miRNA processing or the lack of TRBP may be compensated

for by alternative mechanisms including binding of ADAR1

(Adenosine deaminase acting on RNA 1) to Dicer (Ding et al.,

2015; Ota et al., 2013). Besides dicing functions, TRBP plays

roles in gene regulation and immune response via Dicer-inde-

pendent mechanisms (Goodarzi et al., 2014; Kim et al., 2014;

Nakamura et al., 2015).
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In flies, the counterpart of TRBP/PACT is known as Loqua-

cious (Loqs; also known as R3D1) (Förstemann et al., 2005; Jiang

et al., 2005; Saito et al., 2005). There are three alternative

splicing/polyadenylation variants expressed at detectable

levels, Loqs-PA, -PB, and -PD. Loqs-PA and -PB stably bind

to Dicer-1 (Dcr-1) to form the miRNA Dicing complex and have

been suggested to play distinct but overlapping roles in the

miRNA pathway (Förstemann et al., 2005; Fukunaga et al.,

2012; Jiang et al., 2005; Saito et al., 2005). The remaining isoform

Loqs-PD plays roles in the small interfering RNA (siRNA) pathway

by binding to the siRNA Dicer, Dicer-2 (Hartig et al., 2009;

Miyoshi et al., 2010; Zhou et al., 2009). RNAi-mediated knock-

down of loqs often results in accumulation of pre-miRNAs, and

the Dcr-1/Loqs-PB heterodimer complex shows more rapid

pre-miRNA processing compared to the Dicer protein itself in

in vitro assays or heterologous reconstitution assays in Dicer-

knockout mammalian cells (Bogerd et al., 2014; Förstemann

et al., 2005; Jakob et al., 2016; Jiang et al., 2005; Saito et al.,

2005). These observations led to the notion that Loqs is generally

required for efficient miRNA processing. Zygotic loqs mutant

shows larval/pupal lethality, a phenotype that is commonly

seen in mutants of core miRNA-processing enzymes (Lee

et al., 2004; Martin et al., 2009; Park et al., 2007; Pressman

et al., 2012; Smibert et al., 2011). In contrast, a study that tested

miRNA expression levels in loqs mutant flies demonstrated that

only a subset of miRNAs showed decreased mature miRNA

levels (Liu et al., 2007; Marques et al., 2010). Due to the possible

contribution of maternally deposited Loqs protein from their het-

erozygous mothers, it has remained unclear whether mature

miRNAs present in loqsmutants were generated by a Loqs-inde-

pendent mechanism, or a result of maternal Loqs protein and

mature miRNA carryover.

To completely eliminate Loqs, we established a cell line that

lacks the loqs gene locus and demonstrated that loqs is

dispensable for processing of most miRNA genes. As previ-

ously reported, Loqs-PB altered Dicer-mediated cleavage sites

in a small number of miRNA hairpins. We confirmed that a

subset (�40%) of miRNAs showed reduced expression in the

absence of Loqs and characterized molecular features of

loqs-dependent miRNAs to show that Loqs-dependent miRNA

hairpins often had unstable base-pairing structures around the

Dcr-1 cleavage sites. Using mutated model hairpins, we further

verified the importance of the base-pairing status at this posi-

tion in determining the loqs independence. Our results provide

an insight into the mechanism by which a Dicer partner protein

facilitates biogenesis of a subset of miRNAs. Furthermore, we

found that evolutionarily young miRNAs tended to be Loqs

dependent, suggesting a role for Loqs in evolution of miRNA

genes.

RESULTS

Generation of a loqs Mutant Cell Line
To study miRNA processing in the complete absence of Loqs,

we generated a cell line from loqs-null mutant embryos (loqs-

KO, a deletion allele) following a protocol for establishing

Drosophila cell lines using expression of oncogenic RasV12 (Liu

et al., 2007; Simcox et al., 2008a, 2008b). Only cells mutant for
1796 Cell Reports 15, 1795–1808, May 24, 2016
loqs also express RasV12, which gives them a proliferation

advantage (Figure 1A) (Simcox et al., 2008a). We verified the

loqs deletion by PCR assays with primers specific for the wild-

type or mutant alleles (Figure 1B). Recovering only the expected

product specific to the deletion allele from the cells showed that

the line is comprised of homozygous loqs knockout cells and any

other cells, if present, are rare.

The cell line has a doubling time of about 1 day (Figure 1C) and

could be passaged more than 50 times showing that it is a

continuous line. The extensive cell doublings that occurred dur-

ing this time in culture exclude the possibility that any residual

Loqs function remains and makes the line an ideal source of

loqs mutant cells. Moreover, the loqs mutant cells could also

be transiently transfected with plasmids encoding other individ-

ual loqs isoforms allowing a molecular dissection of Loqs func-

tion (Figure 1D) (Förstemann et al., 2005; Hartig et al., 2009).

Furthermore, we found that cells stably transfected with a

plasmid encoding the Loqs-PB cDNA sequence under the con-

trol of a CuSO4-inducible promoter (Saito et al., 2005) showed a

similar growth characteristics to the mutant cells, suggesting

that presence or absence of Loqs-PB function did not strongly

affect cell growth (Figures 1C and 1E). In summary, we have

generated a cell line with complete absence of Loqs function

that is amenable to molecular analysis.

loqs Mutant Cells Show Expected Defects in Known
Loqs-Dependent miRNAs
To confirm that Loqs functionalities were abolished in the loqs

mutant cells, we first examined whether the previously reported

Loqs-PB-dependent long isoform of miR-307a was produced in

the loqsmutant cells (Fukunaga et al., 2012). We overexpressed

mir-307a along with isoform-specific loqs rescue constructs

(Figure 2A, upper panel). When Loqs-PA or -PD was co-ex-

pressed, we observed a mild shift of the cleavage site. A more

dramatic effect was observed in cells rescued with Loqs-PB,

consistent with a previous study (Fukunaga et al., 2012). In addi-

tion, the levels of two other miRNAs that are known to require

Loqs-PB for efficient processing (mir-283 and mir-305) were

increased by expression of Loqs-PB (Fukunaga et al., 2012) (Fig-

ure 2A, middle and lower panels). Similarly to the effects on

mir-307a, we unexpectedly observed weak but reproducible up-

regulation of mature miRNA production for these genes when

Loqs-PA or -PD was co-expressed. We also tested whether

siRNA production was restored by Loqs-PD expression. Plas-

mids encoding hp-siRNA precursors were co-transfected with

the rescue constructs and mature siRNA were detected by

northern blotting (Figure 2B). As expected, we observed clear

signals of mature siRNAs from hp-CG4068 and hp-CG18854

only in cells rescued with Loqs-PD, while the mature siRNA sig-

nals were very weak or undetectable in other lanes. These results

further confirmed that all known functions of Loqs isoforms were

impaired in the loqs mutant cell line and could be rescued by

re-expression of specific Loqs isoforms.

Small RNA Library Analysis Confirms Molecular
Phenotypes of loqs Mutant Cells
To understand global effects of Loqs-PB re-expression in loqs

mutant cells, we sequenced small RNA libraries prepared from



Figure 1. Generation of a loqs Mutant Cell Line

(A) Schematic representation of cell line establishment. Only cells mutant for loqs express RASV12 and hence have a proliferation advantage.

(B) PCR genotyping. The presence of the wild-type (upper panel) or knockout (lower panel) loqs allele was tested by specific primers using genomic DNA

templates prepared from loqsmutant cells or a control cell line established by the same procedure. Only the loqs-KO allele was detected in the loqsmutant cell

line.

(C) Growth curves of loqs mutant cells rescued with EGFP control or Loqs-PB. Stably transfected loqs mutant cells (dark yellow, control EGFP; blue, Loqs-PB

rescue) were grown under a standard condition, and cell densities were monitored for 4 days. Cell counts were normalized by the count on day 1 of each cell line

and the normalized numbers (dots) were plotted on a log scale.

(D)Western blotting detection of individual myc-tagged Loqs isoforms overexpressed by transient transfection. Proteins were detected by anti-myc antibody and

re-probed with anti-b-tubulin antibody for loading control.

(E) Western blotting detection of stably transfected genes. loqs mutant cells stably transfected with indicated plasmids were incubated with or without CuSO4.

Membranes were incubated with anti-FLAG (upper panel) or anti-Loqs (lower panel) and then re-probed with anti-b-tubulin antibody for loading control.
the cell lines stably transfectedwith the Loqs-PB rescue or EGFP

control plasmid that were grown in the presence or absence of

the inducer (2 mM CuSO4). These yielded �5–14 million reads

mapping to the Drosophila melanogaster genome, �60%–70%

of which were derived frommiRBase miRNA hairpins (Kozomara

and Griffiths-Jones, 2014) (Table S1).

It is important to use an appropriate read normalization

methodwhen the amount of bulkmiRNAs is expected to change,

for example, by a mutation of a general miRNA-processing fac-

tor. To account for the change in the bulk miRNA abundance, we

added synthetic RNA oligonucleotides with ten different se-

quences (hereafter termed spike-in oligos) to RNA samples prior

to library construction and used the spike-in read counts as cal-

ibrators (Table S1). We believe that this normalization method al-

lows for more accurate estimation of the relative bulk abundance

of miRNAs than conventional normalization methods (Yi et al.,

2009).
Our small RNA library analysis independently supported our

northern blotting results (Figure 2C). We observed a clear shift

of the major 50 end of miR-307a-3p species, and enhanced

expression of miR-305 and miR-283 mature species when cells

were rescued with Loqs-PB. Unexpectedly, the effects of the

Loqs-PB rescue construct were already observed in the absence

of CuSO4 inducer, suggesting that the low level of expression

by the ‘‘leaky’’ metallothionein promoter in the absence of

CuSO4 was sufficient to support Loqs functions (Djuranovic

et al., 2012). The CuSO4-independent effects were confirmed

by northern blotting (Figure S1).

Taken together, our northern blotting and sequencing ana-

lyses verified the expected effects of the loqsmutation onmiRNA

processing, further confirming the validity of the cell lines.

Because we observed similar expression patterns in the libraries

made from cells cultured with and without the CuSO4 inducer

(Figures 2C, S1, and S2A), we used the average miRNA
Cell Reports 15, 1795–1808, May 24, 2016 1797



Figure 2. Known miRNA-Processing Phenotypes Can Be Rescued by Loqs-PB Expression

(A) Northern blotting verification of the Loqs-PB-dependent miRNAs. Amir-307a,mir-305, ormir-283 overexpression plasmid was co-transfected with a control

(EGFP or R2D2) or isoform-specific rescue (Loqs-PA, -PB, or -PD) plasmid in loqs mutant cells. Total RNA was analyzed by northern blotting. Production of the

miR-307a long isoform (upper panel) and all isoforms of miR-305 and miR-283 were enhanced slightly by Loqs-PA or -PD and strongly by Loqs-PB.

(B) Production of hp-siRNAs is dependent on Loqs-PD. Plasmids encoding hp-CG4068 (upper panel) or hp-CG18854 (lower panel) were transfected in loqs

mutant cells, and northern blotting was performed to detect siRNA species as indicated. rRNA was visualized by SYBR Green II.

(C) Small RNA read densities at the mir-307a, mir-305, and mir-283 loci in EGFP or Loqs-PB rescue libraries. In EGFP control cells, a majority of miR-307a-3p

reads have the 50 ends shifted from the canonical cleavage site by 2 nt, in contrast to the normal 50 position of miR-307a-3p in the Loqs-PB rescue library. Read

densities of mature miR-305 and miR-283 species were higher in Loqs-PB rescue cells compared with control cells.

1798 Cell Reports 15, 1795–1808, May 24, 2016



Figure 3. Subset of miRNA Genes Requires

Loqs-PB

(A) 5’ position analysis. The weighted mean of the

5’ position was calculated for each miRNA arm,

and the mean values from EGFP control cells and

Loqs-rescue cells were plotted on the x and y axes,

respectively. The perpendicular distance (D) of

each plotted point to the line y = x was computed.

Gene names are shown for arms with D > 0.43.

Note that no 5p arm satisfied our criteria.

(B) 240miRNAgeneswere divided into ‘‘No reads,’’

‘‘Detected’’ (0 < average normalized reads < 2.5),

and ‘‘Expressed’’ (>2.5 average normalized reads)

based on the read count in the four libraries. The

129 expressed miRNA genes were further divided

into ‘‘Increased’’ (>2), ‘‘Unchanged’’ (<2 or >0.5)

and ‘‘Decreased’’ (<0.5) based on the ratio of read

counts in Loqs rescue libraries and EGFP control

libraries.

(C) UCSCGenome Browser screen shot of themir-

310 cluster. Read counts normalized by spike-ins

(reads per thousand spike-in) are shown and the

maximum value is fixed at 300. Individual genes

show distinct responses to Loqs-PB rescue.

miR-311 is upregulated in Loqs-PB rescue cells,

whereas miR-312 is not strongly changed.

(D) Northern blotting verification. Plasmids encod-

ing individualmiRNAgenes from themir-310cluster

were co-transfected with the indicated rescue

plasmids. Processed miRNAs were detected by

northern blotting. The results are consistentwith the

library analysis results shown in (C).

See also Figure S1 and S2.
expression values of two libraries (with or without CuSO4) in the

following sections.

Efficient Processing of Many miRNAs in loqs-KO Cells
We first analyzed the mean 50 position of each miRNA arm on

a genome-wide scale (Figure 3A; Table S2). We found only five

genes with shifts exceeding our threshold in cells rescued with

Loqs-PB, and these genes largely overlap with those identified in

the previous study using isoform-specific loqsmutant tissues (Fu-

kunaga et al., 2012). As expected, no 5p species met this cutoff,

consistent with the fact that the 50 ends of 5p species are defined

byDrosha-mediatedcleavage (Figure3A,blackpoints). Therefore,

these results confirmed the previous conclusion that Loqs-PB

modulates dicing positions of a small number of miRNA genes.

Next, we examined expression levels of individual miRNAs. To

our surprise, the bulk miRNA read abundance was only mildly

(�50%) increased in cells rescued with Loqs-PB (Figure S2A).
Cell R
This indicated that the global miRNA-

processing efficiency was not strongly

enhanced by reintroduction of Loqs-PB.

There were 129 miRNA genes that

met our expression cutoff (>2.5 average

normalized reads in the four libraries). We

found that more than half of miRNA genes

(68/129 miRNAs) were unchanged (0.5- to

2-fold), and about 40% (55/129 miRNAs)
were upregulated at least by 2-fold in cells rescued with Loqs-

PB (Figures 3B and S2B; Table S2). On the other hand, very few

miRNA genes were downregulated (>2-fold; 6/129), consistent

with the known roles for Loqs in enhancing Dcr-1 activity.

The behavior of clustered miRNA genes also supported the

idea that differential responses of individual miRNAs to Loqs-

PB expression were primarily due to differential processing effi-

ciencies of individual miRNAs in control and rescued cells.

Clustered miRNA genes are generally co-transcribed; therefore,

distinct changes in the abundance of mature miRNA species

derived from a cluster can be attributed to distinct processing ef-

ficiencies. As an example, individual members within themir-310

cluster showed distinct responses to Loqs-PB expression, with

mir-311 and mir-312 showing the strongest and weakest

enhancement of mature miRNA production, respectively (Fig-

ure 3C). Differential effects on the mir-310 cluster genes could

be verified by northern blotting analysis (Figure 3D).
eports 15, 1795–1808, May 24, 2016 1799
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Figure 5. Loqs Is Dispensable for miRNA Duplex Loading and Strand Selection

(A) mir-10 duplex loading in vitro. Synthetic RNA oligonucleotides corresponding to the mir-10 duplex sequence were incubated in cell extracts prepared from

loqs mutant cells expressing EGFP or Loqs-PB. Loaded RNA was precipitated by anti-AGO1 antibody and analyzed by native PAGE.

(B) Quantification of loaded RNA. In vitro loading was performed in triplicates and bands were quantified. Columns and error bars show averages and SDs of the

loading efficiency normalized by the value in the EGFP control sample. No significant difference was observed between loading efficiencies in EGFP and Loqs-PB

lysates (p > 0.15). See also Figure S3 for single-stranded RNA loading results.

(C) Small RNA sorting is not affected in loqsmutant cells. RNA samples from loqsmutant cells rescued with EGFP or Loqs-PB cultured in the presence of CuSO4

were subjected to oxidation and b-elimination. RNA was separated by denaturing PAGE and probed with the indicated probes. The b-elimination sensitivities of

strongly AGO1-sorted (Bantam), intermediate (miR-277), and strongly AGO2-sorted (hp-CG4068) species were similar in EGFP control and Loqs-PB rescue cells.
The northern blotting results for additional seven randomly

chosen miRNA genes of the overexpressed miRNAs were

consistentwith the results of small RNA library analysis (Figure 4).

These results suggested that the changes in mature miRNA

levels in small RNA libraries primarily reflected enhanced pro-

cessing efficiencies in rescued cells, not the secondary effects

caused by Loqs-PB expression.

In summary, the overall miRNA abundance was only margin-

ally (�50%) increased by reintroduction of Loqs-PB in loqs

mutant cells. It is possible that the loss of Loqs activity was

somehow compensated for by other mechanisms, such as

increased levels of miRNA-processing factors. However, this

possibility is unlikely because our qPCR analysis did not detect

consistent upregulation of miRNA-processing factors in EGFP

control cells (Figure S2C). The genome-wide data indicated

that individual miRNAs exhibit variable responses to loqs defi-

ciency, with �40% of miRNA genes showing an increase after

Loqs-PB re-expression.

Loqs Is Dispensable for miRNA Duplex Loading
In theDrosophila siRNA pathway, loading of siRNAs to the AGO2

complex and selection of loading siRNA strand require Dicer-2

and its partner dsRBD protein, R2D2 (Liu et al., 2003, 2006; Oka-

mura et al., 2011; Tomari et al., 2004). The mechanism of miRNA
Figure 4. Northern Blotting Validation of Library Data

Northern blotting was performed with loqsmutant cells transfected with the indic

loqs rescue plasmid. The bar charts next to the northern blotting panels show norm

cells. The relative levels of overexpressed mature miRNAs (Loqs-PB and EGFP)

revealed by the small RNA library analysis are highly consistent, suggesting that

miRNA-processing efficiency in the rescued cell line.
duplex loading is less well understood. Although a previous

study showed that Loqs was dispensable for miRNA duplex

loading in flies, it has remained controversial whether Dicer part-

ner proteins are involved inmiRNA duplex loading in general (Be-

tancur and Tomari, 2012; Liu et al., 2007; Noland et al., 2011).

We attempted to directly test whether miRNA duplex loading

and strand selection were affected in loqsmutant cells using ex-

tracts prepared from loqsmutant cells stably transfectedwith the

EGFP or Loqs-PB plasmid. We chose the mir-10 duplex for this

test, because both of these strands accumulate at similar levels

in flieswhile the relative accumulation levels of the 5p and3p spe-

cies vary in other organisms (Griffiths-Jones et al., 2011; Oka-

mura et al., 2008b). It is also conceivable that weakly asymmetric

duplexes would be more sensitive to any slight changes in the

strand selection mechanisms than highly asymmetric duplexes.

Therefore, we expected that the mir-10 duplex would provide

a sensitive means to detect changes in strand selection. We

labeled one of the duplex strands with 32P at the 50 end and incu-

bated the labeled duplex in the cell lysate. The major miRNA

effector complex was precipitated using an anti-AGO1 antibody

and co-precipitated RNAwas analyzed on a native gel that could

separate double-stranded and unwound small RNA species (Fig-

ure 5A). To exclude the possibility of peripheral binding of small

RNAs to AGO1, we focused our attention on the unwound
ated miRNA-overexpression plasmid along with the control or isoform-specific

alized read counts in EGFP control (blue) or Loqs-PB rescued (red) loqsmutant

in northern blotting analysis and endogenous mature miRNA expression levels

increased mature miRNA levels in our small RNA libraries primarily reflect the

Cell Reports 15, 1795–1808, May 24, 2016 1801



Figure 6. Features of Loqs-Sensitive miRNAs

(A) Overall folding free energy and Loqs dependence. Pre-miRNA ends were

defined by 50 ends of 5p and 30 ends of 3p, and folding free energies (DG) were

predicted by mfold. DG values were plotted against Log2 ratios of read counts

in Loqs-PB rescue libraries and those in EGFP control libraries. The p value

associated with the correlation is 0.408 and Bootstrap 95% confidence in-

terval span the value zero, suggesting that there was no clear trend.

(B) Analysis of mismatch positions. The 50 nucleotide of 3p species was set as

position 1. Each nucleotide on the 3p arm was numbered according to the

nucleotide distance from position 1 (see hairpin structure). miRNA hairpins

were grouped according to base-pairing status in each 2-nt window, and the

distribution of read count ratios in Loqs-PB/EGFP libraries for each group was

plotted. Windows from �1/0 to 9/10 are shown in this figure. Only position

‘‘�1/0’’ (red underline) showed a significant difference (p = 0.003), and other

positions showed no statistical significance (N.S.: p > 0.05; k-sample Ander-

son-Darling test) on mismatched/G:U group versus paired group for each

position. See also Figure S4 for other windows.
species because duplex unwinding occurs only after proper

loading (Kawamata andTomari, 2010). Toaccount for theamount

of available empty AGO1 proteins in the lysate, we performed

a control experiment using a single-stranded RNA (ssRNA) oligo-

nucleotide corresponding to the mir-34 loop sequence (Fig-

ure S3). Because ssRNA loading to Argonaute proteins generally
1802 Cell Reports 15, 1795–1808, May 24, 2016
occurs in passivemechanismswithout additional loading factors

(Chak and Okamura, 2014; Okamura et al., 2013; Rivas et al.,

2005), we assumed that the amount of ssRNA loading would

reflect the amount of AGO1 available for loading. After this

normalization, the loading efficiencies of miR-10-5p and miR-

10-3p showed no significant difference (Figure 5B). These results

supported the previous conclusion that miRNA duplex loading

occurs independently of Loqs in flies (Liu et al., 2007), whereas

its mammalian homolog TRBP is known to sense duplex thermo-

dynamic stability (Noland et al., 2011).

In Drosophila, small RNAs are sorted to AGO1 and AGO2 ac-

cording to their duplex structures, and these two small RNA

loading pathways compete with each other (Förstemann et al.,

2007; Nishida et al., 2013; Okamura et al., 2011; Tomari et al.,

2007). Although our in vitro experiments did not detect defects

in miRNA loading to AGO1, we were interested to test whether

small RNA sorting to the two Argonautes was affected in the

loqs mutant cells. We took advantage of the difference in the

chemical structure of the 30 nucleotide between AGO1- and

AGO2-loaded species. Small RNAs in the AGO1 and AGO2 com-

plexes have 20-OH and 20-O-methyl groups at their 30 ends,

respectively (Han et al., 2011; Horwich et al., 2007). NaIO4 selec-

tively oxidizes vicinal 20- and 30-OH groups in RNA molecules;

therefore, AGO1-loaded species but not AGO2-loaded small

RNAs are sensitive to oxidation by NaIO4. b-elimination after

the oxidation reaction removes the oxidized 30 nucleotide, result-
ing in higher mobility of AGO1-loaded small RNAs on denaturing

gels (Han et al., 2011; Horwich et al., 2007). We carried out

the oxidation and b-elimination experiment using RNA from

loqs mutant cells stably transfected with the EGFP- or Loqs-

PB-expression plasmid and probed the membrane for highly

AGO1-enriched (Bantam), intermediate (miR-277), or highly

AGO2-enriched (hp-CG4068B) small RNAs (Figure 5C). We

observed no difference in the ratios of these small RNA popula-

tions in the two Argonaute complexes, supporting the notion that

Loqs-PB is dispensable for proper small RNA sorting.

Structural Features of Loqs-Dependent miRNAs
Our genome-wide analyses revealed that a subset of miRNA

genes require Loqs for their normal expression (Figures 2

and 3). We sought to determine common features of Loqs-

dependent miRNA hairpins. We first considered overall stability

of their hairpin structures by calculating folding free energy using

mfold (Zuker, 2003). The predicted folding free energy (DG) was

plotted against the ratio of read abundances in Loqs-PB rescue

and control EGFP mock rescue cells (Loqs-PB/EGFP) (Fig-

ure 6A). However, no significant correlation between the overall

structural stability and the Loqs dependence was observed,

suggesting that overall hairpin stability is not amajor determinant

of Loqs dependence.

We decided to examine the hairpin structures more closely

and asked whether the base-pairing status at any specific posi-

tion showed a correlation with Loqs dependence. For this anal-

ysis, the 50 nucleotide position of the most abundant 3p was

defined as the standard position (position +1), and the nucleo-

tides on the 3p arm were numbered from �1 to 20 (Figure 6B,

hairpin structure). The base-pairing status at each position

was analyzed based on the structures predicted by mfold



(Table S3). miRNA genes were then grouped based on the base-

pairing status within 2-nt windows across the entire stem region.

If the miRNA hairpin had at least one mismatch or a G:U wobble

pair in the 2-nt window, the hairpin was considered to have ‘‘un-

paired’’ nucleotides in the window. If both nucleotides in the win-

dow were paired, the gene was considered as a ‘‘paired’’ gene

for the window. The distributions of Loqs-PB/EGFP read count

ratios were plotted for all these groups (Figures 6B and S4A).

Almost all windows showed no significant differences between

the paired and unpaired groups, with the striking exception of

window �1/0. The unpaired group at window �1/0 showed

significantly higher Loqs-PB/EGFP read ratios than those of

the paired group (p = 0.003, Anderson-Darling test). This position

coincides with the site of Dicer-mediated cleavage, suggesting

the hypothesis that Loqs-PB may be required for processing of

miRNA hairpins with unstable base-pairing structures at the

dicing sites.

We further analyzed base-pairing status at a single-nucleotide

resolution for window �1/0 and found that genes with a

mismatch or G:U wobble pair at position �1 and genes with

those at position 0 showed similar distributions (Figure S4B).

Having two mismatches/wobble pairs did not further shift the

distribution (Figure S4B). These results suggested that one

mismatch/G:U pair at either nucleotide in window �1/0 was suf-

ficient to alter the behavior. In summary, our secondary structure

analysis identified the base-pairing status at the dicing site as a

potentially important feature that distinguishes Loqs-dependent

and independent hairpins.

Base-Pairing Status at the Dicing Site Affects the Loqs
Dependence
Our genome-wide analysis raised the possibility that the base-

pairing status at the dicing site may have active roles in deter-

mining the Loqs dependence. To test this possibility, wemutated

themir-283 hairpin that exhibited the strictest Loqs dependence

(Figure 2A) (Fukunaga et al., 2012) and contained a G:U wobble

pair at position 0 (Figure 7A).

We introduced a single-nucleotide mutation to mir-283 to

change the U at position 0 to a C, converting the Dicer cleavage

site to fully canonical base pairing (Figure 7A). This mutant mir-

283 construct (U-to-C mut) was transfected along with the

rescue constructs in loqs mutant cells. In contrast to the very

weak mature miRNA signal produced from wild-type mir-283 in

EGFP control cells, the mature miR-283 product could be easily

detected when expressed from the U-to-C mutant, reaching

�10% of the amount that could be processed in cells rescued

with Loqs-PB (Figures 7B and 7C, U-to-Cmutant, EGFP rescue).

To ensure that the weaker Loqs dependence was caused by

the change in the structure, not in the sequence of the mir-283

hairpin, we made an additional mutant that reverts the G:C pair

in the U-to-C mutant to an A:C mismatch (U-to-C, G-to-A

mutant; Figures S5A, S5B, and S5D). As expected, no clear pro-

duction of mature miR-283 from this double mutant was

observed in the absence of Loqs-PB. Furthermore, we

confirmed that the position of the G:U pair is important, because

a mutant changing the G:U pair at position 2 to a canonical pair

did not enhance miRNA processing in the absence of Loqs

(mutant A; Figures S5A, S5C, and S5D). To generalize our
finding, we used another Loqs-dependent miRNA mir-311,

whose dicing site contains an asymmetric bulge (Figure S6A).

Restoring the double-stranded structure in this region weakened

its Loqs dependence, again confirming our conclusion (Figures

S6B and S6C).

Because the Loqs dependence could be alleviated by point

mutations stabilizing base-pairing structures of dicing sites, we

sought to test whether the opposite is also true. We chose mir-

277 based on its paired dicing site and very weak Loqs depen-

dence (Figure 7D; Tables S2 and S3). Consistent with our library

data, production of mature miR-277 was not strongly enhanced

by co-expression of Loqs-PB (Figures 7E and 7F). We mutated

the mir-277 hairpin by changing the G:C pair at position 0 to

introduce a G:U pair (Figure 7D). Supporting our hypothesis,

the mutant hairpin showed higher sensitivity to the loqsmutation

(Figures 7E and 7F).

Taken together, our small RNA sequencing and structure-

function analyses demonstrated active roles of structural stabil-

ity at the dicing site in determining the Loqs dependence of pre-

miRNA processing.

Distinct Responses of Young and Old miRNAs to loqs

Mutation
Evolutionarily ‘‘young’’ and ‘‘old’’ miRNA genes often exhibit

distinct properties. For example, for young miRNAs, expression

levels are generally lower and the impact of their ectopic expres-

sion on gene regulatory networks tends to be smaller (Bejarano

et al., 2012; Berezikov et al., 2011;Mohammed et al., 2014; Ruby

et al., 2007). These features of young miRNAs may reflect evolu-

tionarily transitional states where miRNA loci are in the process

of acquiring hairpin features that promote efficient processing

and gaining effective target sites in the transcriptome (Bartel

and Chen, 2004; Berezikov, 2011).

We asked whether ‘‘young’’ and ‘‘old’’ miRNA genes generally

had distinct sensitivities to the loqsmutation. miRNA genes were

grouped according to their evolutionary ages as defined in a pre-

vious study (Mohammed et al., 2013), and we plotted the distri-

butions of Loqs dependence values of the two groups (Figure 7G;

Table S2, sheet 2). The ‘‘young’’ miRNA gene group tended to

show higher sensitivity to the loqs mutation (p = 0.003; Ander-

son-Darling test).

Our biochemical and genomics analyses indicated that Loqs-

PB enhances dicing of suboptimal hairpins including ones with

mismatches at the dicing site (Figure 7H). The enrichment of

Loqs-sensitive miRNAs in young miRNA genes may reflect a

role for Loqs in the emergence of new miRNA genes by facili-

tating dicing of substrates that have not acquired hairpin features

essential for efficient miRNA processing.

DISCUSSION

Utility of the loqs Mutant Cell Line
In Drosophila, Loqs protein is maternally deposited and may

mask the role of the gene in miRNA processing when studied

in zygotic mutants (Fukunaga et al., 2012; Liu et al., 2007). The

recovery of complete loss-of-function animals derived from

germline clones is compounded by a stem cell loss phenotype

(Liu et al., 2007; Park et al., 2007). To circumvent these
Cell Reports 15, 1795–1808, May 24, 2016 1803



Figure 7. Roles for Dicing Site Structures and Significance of Loqs in miRNA Gene Evolution

(A–F) Base-pairing status at position 0 of mir-283 (A–C) or mir-277 (D–F) hairpin affects Loqs dependence. See also Figure S6.

(A) Structures of wild-type (upper) or ‘‘U-to-C’’ mutant (lower)mir-283 hairpin. The G:U pair at position 0 (magenta) is changed to aG:C pair in the ‘‘U-to-C’’ mutant

mir-283 hairpin.

(B) Mature miRNA production fromwild-type and U-to-Cmutantmir-283 hairpin with or without individual Loqs isoforms. The Loqs-independentmir-312was co-

transfected as an internal control (Figure 3D). UAS-mir-283 wild-type or U-to-C mutant was transfected along with the indicated rescue plasmid in loqs mutant

cells. miR-283 and miR-312 products were detected by northern blotting. A representative result of three independent trials is shown. A clear signal from mature

miR-283 is seen even in EGFP control cells when transfected with the mutant mir-283 plasmid (red arrowheads).

(legend continued on next page)
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problems, we established a cell line that is null for the loqs gene

(Figure 1). The loqs mutant cell line has been continually

passaged (>50 passages) demonstrating that cells are viable in

the complete absence of Loqs. By analyzing the loqs mutant

cells, we found that most miRNA genes do not require loqs for

efficient processing in the cell line (Figure 3). Analysis of these

cells, which are devoid of Loqs function, allows a more rigorous

test of gene function than RNAi experiments or the analysis of zy-

gotic mutant animals that may have residual functions. The cells

also provided a convenient platform for structure-function anal-

ysis by simple transfection experiments (Figures 7, S5, and S6).

Given that loss-of-function mutant flies have been established

for all of the core miRNA/siRNA-processing factors, generation

of mutant cell lines from these mutants, as we have done for

loqs, should be possible and will allow comprehensive analysis

of molecular phenotypes that result from complete depletion of

gene products in these pathways.

Gene-Specific Regulation of miRNAs via Control of
General miRNA-Processing Factors
Using bioinformatics analysis, we were able to identify a feature

of Loqs-dependent miRNA hairpins that could be experimentally

validated (Figures 6 and 7). Together with a recent study identi-

fying features of miRNA hairpins that are sensitive to Drosha

levels (Sperber et al., 2014), our study encourages similar ap-

proaches in different contexts, such as disease conditions with

altered general miRNA-processing activity.

Expression of miRNA processing factors is tightly regulated,

often involving auto-regulatory loops to keep miRNA-process-

ing activity in appropriate ranges (Han et al., 2009; Kadener

et al., 2009; Ristori et al., 2015; Zisoulis et al., 2012). Failure

to precisely control levels of miRNA-processing activity can

be a cause of diseases (Herbert et al., 2013; Stark et al.,

2008; Torrezan et al., 2014; Walz et al., 2015). Although the

complete removal of core miRNA-processing factors would

result in universal depletion of mature miRNAs, mild modula-

tion of miRNA-processing activity may cause misregulation

of a subset of miRNA genes (Ding et al., 2015; Paroo et al.,

2009; Stark et al., 2008). Interestingly, in some cases, aberrant

miRNA-processing activity only affects expression of miRNAs

having related biological functions, such as cell proliferation

(Paroo et al., 2009). Therefore, an attractive possibility is that

miRNA structures may have evolved in such a way that miRNA

expression profiles can be changed by altering the level of

general miRNA-processing activity. It will be interesting to

further study structural features of the miRNA hairpins that

determine the sensitivity to the level of general miRNA-pro-

cessing activity.
(C) Quantification of (B). Signals of mature miR-283 products were quantified and

the signal in Loqs-PB rescue cells as 100%. Columns and error bars indicate ave

n = 2).

(D) Structures of wild-type (upper) or ‘‘C-to-U’’ mutant (lower) mir-277 hairpin. T

(magenta).

(E and F) Mature miRNA production from wild-type and C-to-U mutantmir-277 ha

quantified triplicate results (F). The figure format is same as (B) and (C).

(G) Distributions of Loqs dependence values for evolutionarily ‘‘old’’ (Pan-Droso

were plotted (p values: Anderson-Darling test).

(H) Working hypothesis. Loqs-PB helps Dcr-1 process a subset of miRNA hairpi
Biological Roles for Loqs Isoforms in Fly Development
Due to the similarity of loqs and dcr-1 mutant phenotypes, loqs

was believed to play essential roles in miRNA processing (Jin

and Xie, 2007; Park et al., 2007). Furthermore, the lethal phase

of loqs-KO mutant (late pupae) is only slightly later than those

in other core miRNA-processing factor mutants such as drosha

and pasha (late third-instar larvae/pupae) or dcr-1 mutant

(larvae/pupae) (Lee et al., 2004; Martin et al., 2009; Park et al.,

2007; Pressman et al., 2012; Smibert et al., 2011). Therefore, it

was assumed that the lethality of loqs-KO mutant was caused

primarily by miRNA dysfunction.

However, according to our results, expression of only a small

number of miRNAs was strongly enhanced by Loqs-PB expres-

sion in the loqs mutant cells (27 out of 129 expressed miRNA

genes at the cutoff of 5-fold enhancement by Loqs-PB expres-

sion). Although our cell-based analysis does not exclude

possible tissue-specific Loqs functions as seen in mammalian

TRBP mutant (Ding et al., 2015), it will be interesting to test

whether these highly Loqs-dependent miRNAs identified in this

study can explain the described organismal phenotypes in loqs

mutant animals. It is also interesting to note that Loqs isoforms

have distinct functions; only Loqs-PA and Loqs-PB, but not

Loqs-PD, could rescue the lethality of loqs mutant (Fukunaga

et al., 2012). On the other hand, our northern blotting experi-

ments demonstrated that only Loqs-PB could strongly enhance

processing of Loqs-dependent miRNAs, whereas the effect of

Loqs-PA expression on miRNA processing was very weak and

often not greater than that of Loqs-PD expression (Figures 2,

3, and 4). The fact that the lethality could be partially rescued

by Loqs-PA suggests that the reduction of miRNA production

in loqs mutant flies may not be the major cause of lethality and

Loqs may play additional roles besides miRNA biogenesis. In

fact, recent studies have uncovered miRNA-independent func-

tions of TRBP through direct interaction with protein kinase R

or mRNAs (Goodarzi et al., 2014; Kim et al., 2014; Nakamura

et al., 2015). To investigate this idea, it will be important to under-

stand the molecular mechanisms underlying the organismal

phenotypes of loqs mutant flies.

Roles for Loqs-PB in Evolution of miRNA Genes
We experimentally demonstrated that Loqs facilitates process-

ing of suboptimal substrates, such as hairpins containing mis-

matches at the dicing site (Figures 6 and S6). Moreover, small

RNA expression profiling indicated that evolutionarily young

miRNAs tended to be more strongly dependent on Loqs-PB

than old miRNAs (Figure 7G). These results collectively sug-

gested that Loqs-PB broadens the range of structures that can

be processed by Dcr-1, and this activity of Loqs-PB may
normalized by the miR-312 signals. Values were further normalized by setting

rages and SDs of three replicates (except for U-to-C mutant with R2D2 control;

he G:C pair at position 0 was changed to a G:U pair in the ‘‘C-to-U’’ mutant

irpin with or without Loqs-PB. A representative northern blotting result (E) and

philid) and ‘‘young’’ (Sophophoran or melanogaster-subgroup specific) genes

ns, particularly those with unstable structures at the dicing site.
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promote the emergence of novel miRNA genes. Dicer binds a

variety of cellular RNA molecules other than pre-miRNAs, but a

small fraction of them appear to be efficiently cleaved (Rybak-

Wolf et al., 2014). Modulating cleavage specificity of Dicer may

have a considerable impact on the repertoire of small RNAs pro-

duced from suboptimal substrates. Such structured RNA mole-

cules are a plausible source of novel miRNA genes when they

emerge de novo, and the range of RNA structures that can be

cleaved by Dicer would be an important determinant of the birth

rate of miRNA genes (Wen et al., 2015).

Newly emerged miRNAs would more frequently have delete-

rious effects than beneficial effects on fitness (Bartel and

Chen, 2004; Chen and Rajewsky, 2007). Indeed, organisms are

equipped with mechanisms suppressing excessive emergence

of active miRNA genes produced via themirtron pathway (Borto-

lamiol-Becet et al., 2015; Reimão-Pinto et al., 2015). On the other

hand, the miRNA pathway has to be flexible enough to support

the emergence of beneficial genes as well. There must be a bal-

ance between negative and positive regulators determining the

birth rate of miRNA genes. We propose that Loqs-PB is part of

this regulatory system keeping the frequency of miRNA gene

emergence within an optimal range.

EXPERIMENTAL PROCEDURES

Generation of loqs Mutant Cells

The loqs mutant cell line was established from loqs mutant embryos using

expression of RasV12 as described previously by crossing heterozygous flies

carrying the loqsKO, Act5C-Gal4, P[attP.w+.attP] or loqsKO, UAS-RasV12,

P[attP.w+.attP] chromosomes (Park et al., 2007; Simcox et al., 2008a). The

detailed procedure can be found in the Supplemental Information.

Molecular Biology

pDsRed-miRNA hairpin constructs were described previously (Bejarano et al.,

2012). Plasmids encoding mutant hairpins were generated by site-directed

mutagenesis. Transfection was performed using the protocol for S2 cells

with minor modifications (Okamura et al., 2007). Total RNA was extracted by

Trizol and analyzed by northern blotting as described previously (Okamura

et al., 2007). For northern blotting analysis of mutated miRNAs, a Loqs-inde-

pendent miRNA miR-312 was co-transfected and used as an internal control

to account for variations in transfection efficiency and gel loading. b-elimina-

tion and qRT-PCR protocols were described previously (Okamura et al.,

2007, 2008a), and in vitro loading assays were performed as previously

described (Okamura et al., 2013). Oligos used in this study are shown in Table

S4. Detailed information of all experiments can be found in the Supplemental

Information.

Library Construction and Bioinformatics Analyses

Small RNA libraries were constructed using a modified version of a previously

published method (Brennecke et al., 2007). Bioinformatics analysis was per-

formed as previously described (Chak et al., 2015). Briefly, adaptors were

removed using cutadapt (Martin, 2009), mapped to the dm3 Drosophila

genome and the spike-in sequences using bowtie -q -S -v 0 -a-best -M 1

(Langmead et al., 2009). miRNA sequences were defined based on mirbase20

(Kozomara and Griffiths-Jones, 2014). The spike-in read count was used for

normalization. Sequences with the most abundant reads mapped to each

arm in the Loqs-PB rescue library (+CuSO4) were used as the standard 5p

and 3p sequences. Reads having 50 ends falling in the ±4-nt range were

counted. Structural analysis was performed as described in a previous study

with some modifications (Okamura et al., 2009; Zuker, 2003). The ‘‘old’’ and

‘‘young’’ miRNA groups were defined previously (Mohammed et al., 2013).

Detailed bioinformatics procedure can be found in the Supplemental

Information.
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